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Abstract— Phase unwrapping is the inference of absolute phase
from modulo-27 phase. This paper introduces a new energy
minimization framework for phase unwrapping. The considered
objective functions are first-order Markov random fields. We
provide an exact energy minimization algorithm, whenever the
corresponding clique potentials are convex, namely for the phase
unwrapping classical L norm, with p > 1. Its complexity is
KT(n,3n), where K is the length of the absolute phase domain
measured in 27 units and T'(n, m) is the complexity of a max-flow
computation in a graph with n nodes and m edges. For nonconvex
clique potentials, often used owing to their discontinuity preserv-
ing ability, we face an NP-hard problem for which we devise an
approximate solution. Both algorithms solve integer optimization
problems, by computing a sequence of binary optimizations, each
one solved by graph cut techniques. Accordingly, we name the
two algorithms PUMA, for phase unwrapping max-flow/min-cut.
A set of experimental results illustrates the effectiveness of the
proposed approach and its competitiveness in comparison with
state-of-the-art phase unwrapping algorithms.

Index Terms—Phase unwrapping, energy minimization,
integer optimization, submodularity, graph cuts, image
reconstruction, computed image, discontinuity preservability,
InSAR, MRI.
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I. INTRODUCTION

The need for phase estimation is common to many imaging
techniques, from which we point up interferometric synthetic
aperture radar and sonar (INSAR/INSAS) [3], [4], [5], [6], [7],
[8], [9], magnetic resonance imaging (MRI) [10], [11], and op-
tical interferometry [12]. In InSAR, as in InSAS, two or more
antennas measure the phase between them and the terrain; the
topography may then be inferred from the difference between
those phases, relying on simple geometric reasoning. In MRI
phase is used, namely, to determine magnetic field deviation
maps, which are used to correct echo-planar image geometric
distortions [13], to determine chemical shift based thermom-
etry [14], and to implement BOLDcontrast based venography
[15]. In optical interferometry, phase measurements are used
to detect objects shape, deformation, and vibration [12].

In all the examples above, the acquisition system can only
measure phase modulo-2, the so-called principal phase value,
or wrapped phase. Formally, we have
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where ¢ is the true phase value (the so-called absolute phase
value), v is the measured (wrapped) modulo-27 phase value,
and k£ € Z (Z denotes the set of integers) is an integer
accounting for the number of 27 multiples [5].

Phase unwrapping (PU) is the process of recovering the
absolute phase ¢ from the wrapped phase . This is, however,
an ill-posed problem, if no further information is added. In
fact, an assumption taken by most phase unwrapping algo-
rithms is that the absolute value of phase differences between
neighbouring pixels is less than 7, the so-called Itoh condition
[16]. If this assumption is not violated, the absolute phase can
be easily determined, up to a constant. Itoh condition might
be violated if the true phase surface is discontinuous, or if the
wrapped phase is noisy. In either cases, PU becomes a very
difficult problem, to which much attention has been devoted
[171, [18], [19], [20], [5], [21]. [7].

Phase unwrapping approaches belong mainly to one of the
following classes: path following [17], [22], [23], minimum L ?
norm [24], [25], [19], [20], [26], [7], Bayesian/regularization
[18], [27], [28], [29], [30], [7], [31], [32], and parametric
modelling [33], [34].

Path following algorithms apply line integration schemes
over the wrapped phase image, and basically rely on the
assumption that Itoh condition holds along the integration
path. Wherever this condition fails, different integration paths
may lead to different unwrapped phase values. Techniques
employed to handle these inconsistencies include the so-called
branch cuts [17] and quality maps [5, Chap. 4].

Minimum norm methods try to find a phase solution ¢
for which the L? norm of the difference between absolute
phase differences and wrapped phase differences (so a second
order difference) is minimized. This is, therefore, a global
minimization in the sense that all the observed phases are used
to compute a solution. With p = 2, we have a least squares
method [35]. The exact solution with p = 2 is developed in
[7] using network programming techniques. An approximation
to the least squares solution can be obtained by relaxing
the discrete domain ZMY to RMN, where M and N are,
respectively, the number of lines and columns, and applying
FFT or DCT based techniques [5, Chap. 5], [24]. A drawback
of the L2 norm based criterion is that it tends to smooth
discontinuities, unless they are provided as binary weights.
L! norm performs better than 22 norm in what discontinuity
preserving is concerned. Such a criterion has been solved
exactly by Flynn [19] and Costantini [20], using network
programming concepts. With 0 < p < 1 the discontinuity
preserving ability is further increased at stake, however, of
highly complex algorithms [29], [31]. In particular, Z° norm
is generally accepted as the most desirable in practice. The
minimization of L° norm is, however, an NP-hard problem
[29], for which approximate algorithms have been proposed



in [5, Chap. 5] and [26].

The Bayesian approach relies on a data-observation mech-
anism model, as well as a prior knowledge of the phase
to be modelled. For instance in [36], a non-linear optimal
filtering is applied, while in [27] an INSAR observation model
is considered, taking into account not only the image phase,
but also the backscattering coefficient and correlation factor
images, which are jointly recovered from INSAR image pairs.
Work [37] proposes a fractal based prior, and work [32]
employs dynamic programming techniques.

Finally, parametric algorithms constrain the unwrapped
phase to a parametric surface. Low order polynomial surfaces
are used in [33]. Very often in real applications just one
polynomial is not enough to describe accurately the complete
surface. In such cases the image is partitioned and different
parametric models are applied to each partition [33].

A. Contributions

The main contribution of the paper is an energy mini-
mization framework for phase unwrapping, where the min-
imization is carried out by a sequence of max-flow/min-
cut calculations. The objective functions considered are first-
order Markov random fields, with pairwise interactions. The
associated energy is therefore a generalization of the classical
LP norm, used in phase unwrapping [25]. We show that, if the
clique potentials are convex, the exact energy minimization is
achieved by a finite sequence of binary minimizations, each
one solved efficiently from the computational point of view,
by a max-flow/min-cut calculation on a given graph, building
on energy minimization results presented in [38], [39], and
[40]; we thus benefit from existing efficient algorithms for
graph max-flow/min-cut calculations [41]. Accordingly, we
call the method to be presented PUMA algorithm (for PU-
max-flow). Besides solving exactly the classical minimum LP?
norm problem for p > 1, PUMA is able to minimize a wider
class of energies, rendering flexibility to the method.

In image reconstruction and in phase unwrapping in par-
ticular, it is well known that unknown discontinuities pose a
challenging problem (as well as an usual one in practice),
for which nonconvex clique potentials are critical to deal
with [42], [43], [44], [45], [5, Chap. 5], [46]. Nonconvexity,
however, turns our minimization problem into an NP-hard one
[39], [29], and part of the concepts and results developed
under the convexity assumption do not apply any more.
Namely, energy cannot be minimized by a sequence of binary
minimizations, nor each one of these problems can be solved
by the former max-flow/min-cut calculations.

We also introduce an approximate algorithm that tackles
those issues by 1) enlarging the configuration space of each
binary problem; 2) applying majorize minimize (MM) [47]
concepts to our energy function, which still allow max-
flow/min-cut calculations. For the sake of uniformity, we
still term the obtained algorithm PUMA. Experimental results
illustrate the state-of-the-art competitiveness of the presented
algorithms.

After this paper has been submitted, Jérdbme Darbon [48]
and Vladimir Kolmogorov [49], exploiting the concept of
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Fig. 1. Representation of the site (7, j) and its first order neighbours along
with the variables h;; and v;; signalling horizontal and vertical discontinuities
respectively.

submodularity, have independently generalized the class of
energies herein studied, in the convex scenario. Besides pair-
wise terms depending on differences, they have included unary
convex terms. These class of energies arise in many computer
vision and image processing problems. The algorithms they
propose are similar to ours, replacing a binary optimization by
a sequence of two binary optimizations. A major contribution
of Jérdme Darbon and Vladimir Kolmogorov is a tight bound
on the number of steps.

Other related works are the steepest descent algorithm
of Murota for minimizing L# functions [50], the very fast
algorithms of Jérdme Darbon and Marc Sigelle [51], Antonin
Chambolle [52], and Hochbaum [53], if pairwise terms are
absolute differences.

Il. PROBLEM FORMULATION

Figure 1 shows a site (i,) € Go =
{(k,)) : k=1,.... M,l=1,....,N} (Go is the usual
image pixel indexing 2D grid) and its first-order neighbours
along with the variables h;; and v;; signalling horizontal and
vertical discontinuities, respectively; i.e. h;;,v;; € {0,1} and
hij,vi; = 0 signals a discontinuity.

Let us define the energy

Eklgp)= Y V(A¢h)vi; +V (A¢Y) hij,  (2)
ij€Go

where k = {k;; € Z: (i,5) € Go} is an image of integers,
denoting 27 multiples, the so-called wrap-count image, ¥ =
{tij € [=m,m) : (i,7) € Go} is the observed wrapped phase
image, V (-) is the clique potential, a real valued function?, and
()" and ()" denote pixel horizontal and vertical differences
given by

Aqﬁfj = [27m(kiy — kij—1) — AWhj] ©)
Ay = [2m(kij — kio1y) — Ay @)
Ay = thijo1 — i ©
Ay = io1j — i ©

Furthermore, each of the above defined differences is con-
sidered to be zero, whenever their definition leads to consider
any k;; or 1;; term with any index (4, j) ¢ Go.

1The clique is a set of sites that are mutually neighbours. A clique function
is a function defined on cliques, i.e., it depends only on site variables indexed
by the respective clique elements.



Our goal is to find the integer image k that minimizes
energy (2), k being such that ¢ = 27k + v, where ¢ is
the estimated unwrapped phase image. As will be seen in
the next section, this energy minimization approach yields the
classical minimum LP? norm formulation or a more general
one, depending on the clique potential V.

We should stress that the variables h;; and v;;, conveying
discontinuity information, are introduced when available. In
PU jargon these images are the so-called quality maps. These
maps can also be used as continuous variables in [0, 1],
expressing prior knowledge on phase variability. Quality maps
can be derived, for example, from correlation maps in INSAR,
or from phase derivative variance in a more general setting
[5, Chap. 3]. Nevertheless, in practice, quality maps are
often very noisy or unavailable, implying blind handling of
discontinuities and, therefore, calling for nonconvex potentials.

Although energy (2) was introduced deterministically in a
natural way, it can also be derived under a Bayesian per-
spective as in [7]. Consider a first-order Markov random field
prior on the absolute phase image given by p(¢) = Ze~Y(®),
where U(¢) = 2icq, V (A¢)) vij + V (AdY;) hij, and Z
is a normalizing constant. Assuming that the wrapped phase
is noiseless, then ¢ = v + 2kn. Therefore, the maximum
a posteriori (MAP) estimate exactly amounts to minimize
E(k|) with respect to k.

I1l. ENERGY MINIMIZATION BY A SEQUENCE OF BINARY
OPTIMIZATIONS: CONVEX POTENTIALS

In this section, we present in detail the PUMA algorithm.
We show that for convex potentials V, the minimization
of E(k|ty) can be achieved through a sequence of binary
optimizations; each binary problem is mapped onto a certain
graph and a binary minimization obtained by computing a
max-flow/min-cut on it. Finally, we address a set of potentials
tailored to phase unwrapping.

A. Equivalence Between Local and Global Minimization

The following theorem is an extension of Lemma 1 in [7],
which in turn is inspired by Lemma 1 of [19]. Assuming a
convex clique potential V/, it assures that if the minimum of
E(k|1) is not yet reached, then, there exists a binary image
8 € {0,1}MN = B (i.e., the elements of & are 0 or 1) such that
E(k+d|y) < E(k|vy). Therefore, if a given image k is locally
optimal with respect to the neighborhood N5 (k) = {k + 4 :
d € B}, ie, if E(k'|¢) > E(k|yp) for all k" € N;(k), then
k it is also globally optimal.

Theorem 1: Let k; and ko, be two wrap-count images such
that

E(kz|y) < E(ki|e). (M
Then, if V' is convex, there exists a binary image d € B such
that

E(ky +6|¢) < E(ki|v). 8
Proof: See the Appendix.

B. Convergence Analysis

In accordance with Theorem 1, we can iteratively compute
ki*t! = k' +4§, where § € B is such that it minimizes? E (k! +
d]1)), until the the minimum energy is reached. There is of
course the pertinent question of whether the algorithm stops
and, if it does, in how many iterations. Assuming that k° = 0,
the next lemma, which is inspired in the Proposition 3.7 of
[48], leads to the conclusion that after ¢ iterations the algorithm
minimizes E(-|sp) in D, = {k': 0 < kj; <t}

Lemma 1. Let k' be a globally optimal minimizer of
E(:]3p) on D,. Then, there exists an image k!*! that is a
global minimizer of E(-|¢) on D441 and

kTt — k! e B.

Therefore, k**! can be found by minimizing E(k+d|v) with
respect to 6 € B.

Proof: See the Appendix.

Assume that the range of E spans over K wrap-counts.
Then its global minimizer is in the set D4, and therefore
Lemma 1 assures that the iterative scheme

do
k'™ = argmin E(k' 4 §|¢)
0cB
while E(k't'|) < E(k|v),

starting with k° = 0, finds this minimizer in at most K
iterations. Its complexity is therefore KT, where T is the
complexity of a binary optimization.

C. Mapping Binary Optimizations onto Graph Max-Flows

Let k}' = kI, + 6;; be the wrap-count at time ¢ + 1
and pixel (i, ). Introducing k™" into (3) and (4), we obtain,
respectively,

Agfy = [2m(ki = ki) — Auly] ©)
Ay = [2m(kiy " — kity;) — Ayjj]. (10)
After some simple manipulation, we get
Ay = [2m(8i5 — 6ij-1) + a] (11)
Agy; = [2m(0i5 — di—15) +a”], (12)
where
a" = 2”(’%‘ - kfj—l) - Az/%hj (13)
a’ = 2m(ki; — ki_y;) — Ay (14)

Now, introducing (11) and (12) into (2), we can rewrite
energy E(k’+4|t) as a function of the binary variables §;; €
{0,1}, i.e,

E(K' +38ly) = Y V [27(8;; —d;j-1) +a"] vy (15)

1j€Gq

B (8i5-1,0i5)
+V [277(51'3' — 51’—1]’) + CLU] hij .

E(8i-15,0:5)

20r at least decreases.



Occasionally, and for the sake of notational simplicity, we
use the representation,

Bk +0lp) = > EY(5:.6),
ij€Gy

where indices i, j correspond now to the lexicographic column
ordering of G, &; € {0,1}, and & = {5;} € {0, 1}"".
Notice that with this representation some terms E% stand for
horizontal cliques whereas others stand for vertical ones (e.g.,
E'2 and EYM+1) represent vertical and horizontal cliques,
respectively).

The minimization of (15) with respect to & is now mapped
onto a max-flow problem. Since the seminal work of Greig
et al. [54], a considerable amount of research effort has been
devoted to energy minimization via graph methods (see, e.g.,
[38], [39], [40], [55], [56], [57]). Namely, the mapping of
a minimization problem into a sequence of binary minimiza-
tions, computed by graph cut techniques, has been addressed in
works [39] and [40]. Nevertheless, these two works assume the
potentials to be either a metric or a semi-metric, which is not
the case for the clique potentials that we are considering: from
(15), it can be seen that £ # E7% as a consequence of the
presence of a” and av terms (by definition both a metric and
a semi-metric satisfy the symmetry property). For this reason,
we adopt the method proposed in [38], which generalizes the
class of binary minimizations that can be solved by graph cuts.
Furthermore, the graph structures therein proposed are simpler.

At this point a reference to work [57] should be made:
it introduces an energy minimization for convex potentials
also by computing a max-flow/min-cut on a certain graph.
However, for a general convex potential that graph can be
huge, imposing in practice, heavy computational and storage
demands.

Following, then, [38], we now exploit a one-to-one map
existing between the energy function (15) and cuts on a
directed graph G = (V, &) (V and £ denote the set of vertices
and edges, respectively) with non-negative weights. The graph
has two special vertices, namely the source s and the sink t¢.
An s —tcut C = S, T is a partition of vertices V into two
disjoint sets S and 7', such that s € S and ¢t € T'. The number
of vertices is 2+ M x N (two terminals, the source and the
sink, plus the number of pixels). The cost of the cut is the
sum of costs of all edges between S and T

Using the notation above introduced, we have

(16)

EU (0, 0) =V (a) dij,

El.J_(lﬁ ) = V() dij, (17)
EY(0,1) = V(-27+a)dy,

EY(1,0) = V(27 +a)dyy,

where « represents aj or a, and d;; represents h;; or v;;.
Energy E(k! + 8|v) is a particular case of the 72 class of
functions addressed in [38], with zero unary terms. Roughly
speaking®, a function of F2 is graph representable, i.e.,

3As defined in [38], a function E of n binary variables is called graph-
representable if there exists a graph G = (V, £) with terminals s and t and
a subset of vertices Vo = {v1,...,vn} C V — {s,t} such that, for any
configuration 41, . .., dn, the value of the energy E(é1,...,dn) is equal to
a constant plus the cost of the minimum s-¢-cut among all cuts C = S, T in
which v; € S, if é; =0, and v; € T,if 0; =1 (1 <i < n).

Source

Source

Sink

() (b) Sink

Fig. 2. (a) Elementary graph for a single energy term, where s and ¢ represent
source and sink, respectively, and v and +/ represent the two pixels involved in
the energy term. In this case E(1,0)—E(0,0) > 0 and E(1,0)—E(1,1) >
0. (b) The graph obtained at the end results from adding elementary graphs.

there exists a one-to-one relation between configurations é €
{0, 13" [i.e., points in the domain of E(k’+4&|+)] and s—¢
cuts on that graph, if and only if holds

EY(0,0) 4+ E¥(1,1) < EY(0,1) + EY(1,0). (18)

In terms of E% [see expression (17)] inequation (18) can be
stated as [V (—27 +a) + V(27 + a)] d;; > 2V (a)d,;, which
is verified due to convexity of V. So, our binary function is
graph-representable.

The structure of the graph is as follows: first build vertices
and edges corresponding to each pair of neighbouring pixels,
and then join these graphs together based on the additivity
theorem also given in [38]. N

So, for each energy term E,’ and E¥/ [see expression
(15)], we construct an “elementary” graph with four vertices
{s,t,v,v'}, where {s,t} represents source and the sink,
common to all terms, and {v,v’} represents the two pixels
involved [v being the left (up) pixel and v’ the right (down)
pixel]. Following very closely [38], we define a directed edge
(v,v") with the weight £(0,1) + E(1,0) — E(0,0) — E(1,1).
Moreover, if E(1,0) — E(0,0) > 0, we define an edge (s, v)
with the weight E(1,0) — E(0,0) or, otherwise, we define
an edge (v, t) with the weight £(0,0) — E(1,0). In a similar
way for vertex v/, if E(1,1) — E(1,0) > 0, we define an
edge (s,v’) with weight £(1,1) — E(1,0) > 0 or, otherwise,
we define an edge (v’,t) with the weight £(1,0) — E(1,1).
Figure 2(a) shows an example where E(1,0) — E(0,0) > 0
and £(1,0)— E(1,1) > 0. Figure 2(b) illustrates the complete
graph obtained at the end.

D. Energy Minimization Algorithm

Algorithm 1 shows the pseudo-code for the Phase Unwrap-
ping Max-Flow (PUMA) algorithm. It solves a sequence of
binary optimizations until no energy decreasing is possible.

Concerning computational complexity, PUMA takes
Npopt X Ny, ¢ flops (measured in number of floating point
operations), where Nyop: and N, stand for number of
binary optimizations and number of flops per max-flow
computation, respectively. In section I1I-B we have proofed
that the algorithm stops in K iterations, where K is the range
of E in wrap-counts. Therefore, Ny,,x = K. Concerning



Algorithm 1 PUMA: Graph cuts based phase unwrapping
algorithm.
Initialization: k = k’ = 0, possible_improvement = 1
1: while possible-improvement do
2:  Compute E(0,0),E(1,1),E(0,1), and E(1,0) {for
every horizontal and vertical pixel pair}.
3:  Construct elementary graphs and merge them to obtain
the main graph.
4:  Compute the max-flow/min-cut (S,T") {S- source set;
T-sink set}.

5. for all pixel (i,7) do

6: if pixel (i,7) € S then

7 k,i,j = ki,j +1

8: else

9: k', ; = k; ; {remains unchanged}
10: end if

11:  end for

122 if E(k'|¢) < E(k|v) then
13: k=K

14:  else

15: possible-improvement = 0
16:  end if

17: end while

Nz, in the results presented in section V, we have used the
augmenting path type max-flow/min-cut algorithm proposed
in [41]. The worst case complexity for augmenting path
algorithms is O(n?m) [58], where n and m are the number
of vertices and edges, respectively. However, in a huge array
of experiments conducted in [41], authors systematically
found out a complexity that is inferior to that of the push-
relabel algorithm [59], with the queue based selection rule,
which is O(n?/m). Thus, we herein take this bound.

Given that in our graphs m =~ 3n and Ny, does not depend
on n, the worst case complexity of the PUMA algorithm is
bounded above by O(n?%). In section V, we run a set of
experiments where the worst case complexity is roughly O(n).
This scenario has systematically been observed.

Regarding memory usage, PUMA requires 7n bytes.

E. Cligue potentials

So far, we have assumed the clique potentials to be convex.
This is central in the two main results in the paper: the
Theorem 1 and the regularity of energy (2). Both are implied
by the inequality (34)

Via)+V(e)=V(b) >V(a+c—D), (19)

shown in Appendix, where min(a, ¢) < b < max(a, ¢).
What if we apply a function 6 to the arguments of V2 Using

the notation 6(x) = ', we get the proposition:
V(d)+V(d)=V{@®)>V]a+c—0)] (20)

Now, noting that, by construction*, a, b and c differ from each
other by multiples of 2r, if we choose 6(z) = P(z) + axz,

4Stated in the proof of Theorem 1.

where P is any 2r-periodic real valued function and « € R,
proposition (20) becomes,

V(d)+V(d)=V{) V[P(a+c—b)+ala+c—0b)
VIP(a)+ ala+c—0b)] (21)
= VI[(P(a)+ aa) + (P(a) + ac)

— (P(a) + abd)] (22)

= V(d+d-V). (23)

Since any 2w-sampling of @ is a monotone sequence, it is
guaranteed that min(a’, ¢') < b < max(d’, ¢’); so, proposition
(23) follows from expression (19). Therefore we have the
following result:

Proposition 1: The set of clique potentials considered in
Theorem 1 can be enlarged by admitting functions of the form
V =Co(P+ L), where C is a convex function, P is a 27-
periodic function, and L is a linear function.

It should be stressed that for such a potential, the regularity
condition (18) is also satisfied; it follows directly from (23).
We can thus conclude that the PUMA algorithm is valid for
this broader class of clique potential functions. We next give
some examples of possible clique potentials.

1) The classical L? norm: By far, this is the most widely
used class of clique potentials in phase unwrapping; it is given
by V(A¢) = |Ap — W(Ay)|P, where W(x) is the principal
phase value of 2 defined in the interval [—, 7). In the jargon,
W is termed the wrapping operator. Since A¢ and Az differ
by a multiple of 27, then |A¢g—W(AY)|? = |A¢—W(A¢)|P.
Therefore, in our setting, we identify immediately C(z) =
|z|”, P(z) = —W(x), and A(x) = .

As stated in the Introduction, methods using this clique
potential find a phase solution ¢ for which L? norm of the
difference between absolute phase differences and wrapped
phase differences (so a second order difference) is minimized.

From above, we see that C' is convex given that p > 1.
Therefore, we conclude that, for this range of p values,
PUMA exactly solves the classical minimum L? norm phase
unwrapping problem.

From now on we refer to Qar(z) = —W(z) + z as the
2m-quantization function and denote Va(z) =V [Q2r (z)].

Figure 3 plots the potential C(z) = |z|'4, the quantiza-
tion function Q. (), and the classical L*# norm given by
Var () = |Qan ()|,

2) Convex potential: Choosing any convex C(z), P(z) =0
and L(x) = x, we obviously get back to the convex potential
case. For example, the quadratic clique potential V(z) = 2
was used in work [7], under a Bayesian approach and a
Markovian prior for the absolute phase. As already said, this
potential tends to smooth phase discontinuities.

IV. NONCONVEX POTENTIALS

In image reconstruction, and in phase unwrapping in partic-
ular, images usually show a piecewise smooth spatial arrange-
ment; this is a consequence of the smoothness of the imaged
objects themselves, and of the discontinuities introduced by
their borders. These discontinuities encode, then, relevant
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Fig. 3. (a) The convex function C(z) = |z|**4; (b) Q2x(z) =  — W(x);
(c) The classical !4 norm potential given by Vo (z) = C[Q2x(z)].

information that should be preserved in the reconstructed
image.

It is well known that, in an energy minimization framework
for image reconstruction, nonconvex clique potentials are de-
sirable to allow discontinuity preservation (see, e.g., [60, Chap.
3] for discussion about discontinuity adaptive potentials). We
should note here that, as we have shown in Section IlI-
E, formally, a nonconvex clique potential is allowed in the
algorithm, as long as every 2m-periodic sampling is convex
(about the issue of convex functions on discrete domains see,
e.g., [61]). It is, however, a trivial reasoning to conclude
that this kind of nonconvex potentials are not discontinuity
preserving. We will not enter, in this paper, into further detail
on this subject.

A general nonconvex potential, nevertheless, makes the
above introduced algorithm not valid and the reason is twofold.
First, Theorem 1 demands a 2x-periodically convex V, i.e.,
a potential V' such that every 2x-periodic sampling of it is
convex. Let us use the terminology of [39] and call a 1—jump
move the operation of adding a binary image d; so, if V is
nonconvex it is not possible, in general, to reach the minimum
through 1-jump moves only. Second, as we emphasize in the
sequence, it is trivial to show that, with a general nonconvex
V, condition (18) does not hold with generality for every
horizontal and vertical pairwise clique interaction. This means
that we cannot apply the energy graph-representation used in
the binary optimization employed on algorithm I11-D.

We now devise an approximate algorithm as a minor mod-
ification of PUMA to handle those two issues.

Regarding the latter, as the problem relies on the non-
regularity of some energy terms E% (4;,4;), i.e., they do not
verify (18), our procedure consists in approximating them by
regular ones. We do that by leaning on majorize minimize
MM [47] concepts. Assume that we still want to minimize
E(k'+8|1) given by (16). E(k!|1p) corresponds to § = 0 and,
therefore, to §; = 0. Consider the regular energy E'%(4;,d;)

"Regularized" energy| terms

E'(1,0)=E'(1)
' Nl -":/‘ g
: B0 =E 1D =E©)

-1 5 0 1

// /l
L] //
" A ’ >
o
. A
Two possible Pl &,

energy approximatior:s E'(0,1) = E'(-1)
by increasing E"(0,1)

"Regularized" energy terms: a limite case

Original nonregular energy terms

Fig. 4. Replacing nonregular energy terms by regular ones; we end-up with
an approximate energy. One of the possible approximations is to increase
E%(0,1).

such that
E'(5;,8;) > E9(8;,8;), if (6:,0;) # (0,0)
E™(0,0) = E9(0,0), if (5:,0;)=/(0,0
(24)

e, E'V majorizes E'/. Define Q(8) = ey, E'(6;,0;)
and 6" = ming Q(d). Then,

BE(k" +6%[y) < Q%) < Q(0) = E(K'[¢).

Therefore, the sequence {E(kt|v), t =0,1,---
ing.

A possible solution to obtain the replacement terms
is, for instance, to increase term FE%(0,1) until
[E%(0,1) + EY(1,0) — E¥%(0,0) — EY(1,1)] equals
zero; the corresponding graph of the Fig. 2 has no more
negative edge weights. This solution, while may not be
the best (concerning energy decreasing), is the simplest to
implement: by observing that £%(0,1) does not enter into
any of the source/sink edges in the graph, it suffices to set
the (v,v’) inter-pixel edge (see Section I11-C) weight to zero
(thus assuring regularity).

In Fig. 4 we illustrate this energy approximation. We recall
that, using a notation abuse, £/ (8;,4;) = E%(5;—4;) [see (2)
and (15)]. The regularity condition (18), thus, can be written
as

} is decreas-

< EY(—1)+ EY (1)
— 2 )
which, being a convexity expression, means that regularity and
convexity are equivalent for the energy that we are consid-
ering. Continuous convex and concave functions are shown
to emphasize the regular/convex and nonregular/nonconvex
parallel®>. We note again that other energy approximations
are possible and eventually even better; for instance, equally
increasing E£%(0,1) and E%(1,0) until condition (25) is
satisfied. This issue is however out of the scope of this paper.

EY(0) (25)

S1t should be noted that discrete functions f : Z — IR are convex iff there
exists an extension of f, f : R — R, that is also convex.



With respect to the first referred reason for non validity of
PUMA, our strategy is to extend the range of allowed moves.
Instead of only 1-jumps we now use sequences of s-jumps,
introduced in [39], which correspond to add an sé image
(increments can have 0 or s values).

The above presented approximate algorithm has proved
outperforming results in all the experiments we have put
it through; in the next section we illustrate some of that
experiments. Algorithm 2 shows its pseudo-code®.

Algorithm 2 PUMA (nonconvex cliques).
Initialization: k=k’' =0

1. forall sin[1,2...,m,1,2,...,m] (m is the maximum jump

size) do

2:  possible-improvement = 1

3:  while possible-improvement do

4: Compute E(0,0), E(1,1), E(0,1), and E(1,0) {for
every horizontal and vertical pixel pair}.

5: Find non-regular pixel pairs [E(0,1) + E(1,0) —
E(0,0) — E(1,1) < 0]. If there is any, regularize it
using the MM method (for instance, set the linking
edge weight to zero).

6: Construct elementary graphs and merge them to
obtain the main graph.
7: Compute the max-flow/min-cut (S,7T") {S- source

set; T-sink set}.
for all pixel (i,7) do
: if pixel (z,7) € S then
10: k/i,j =k;;+s

11 else

12: k’; ; = k; ; {remains unchanged}
13: end if

14: end for

15: if E(k'|¢) < E(k|t) then
16: k=K

17: else

18: possible-improvement = 0
19: end if

20:  end while

21: end for

Finally, it should be noted that the question of what par-
ticular nonconvex potential to choose is a relevant one. The
main problems, in phase unwrapping, arise both from noise
and from discontinuities presence. The small amplitude noise
(variance smaller than ) is well described by a Gaussian
density, meaning that the potentials near the origin should be
quadratic. In what relates to larger amplitude discontinuities,
they should not be too much penalized and, as such, it makes
sense to employ potentials growing much slower than the
quadratic. This is why it makes sense to choose potentials
like, e.g, the truncated quadratic [43] and the potential used
by Geman and Mclure [62].

6We note that, preferably, the maximum jump size should be chosen to be
equal to the range of values of the unwrapped surface divided by 2.

V. PUMA APPLICATION EXAMPLES

In this section, we briefly illustrate PUMA performance
on representative phase unwrapping problems. The results
presented were obtained with MATLAB coding (max-flow al-
gorithm is implemented in C++7), and using a PC workstation
equipped with a 1.7 Ghz Pentium-IV CPU.

Figures 5(a) and 5(b) display two phase images (256 x 256
pixels) to be unwrapped; they are synthesized from original
absolute phase surfaces formed by Gaussian elevations with
heights of 257 and 507 radians, respectively, and common
standard deviations o; = 25 and o; = 40 pixels, in the
vertical and horizontal dimensions, respectively. The wrapped
images are generated according to an InSAR observation
statistics (see, €.g., [7]), producing an interferometric pair, with
correlation coefficient 0.7 and 1.0, respectively. The wrapped
phase images are, then, obtained (for each pair), by computing
the product of one image by the complex conjugate of the
other, and finally taking the argument.

Regarding the first image [Fig. 5(a)], the coherence value
of 0.7 corresponds to a noise whose standard deviation is 1.07
rad, thus inducing a huge number of phase jumps (residues),
making the unwrapping a hard task. Figure 5(c) shows the
corresponding unwrapped surface by PUMA using a non-
quantized L2 norm potential. Even with low-correlation in-
duced discontinuities, PUMA successfully accomplishes a cor-
rect unwrapping (error free). We emphasize that our algorithm
seeks the correct wrap-count image, so it does not intend to get
rid of the possible existing noise, whatsoever. Regarding the
second image [Fig. 5(b)], although the coherence value is at
the maximum (there is no noise), it presents phase rates large
enough to produce aliasing, such that the unwrapping becomes
a hard task. Figure 5(d) shows the corresponding unwrapped
surface by PUMA using again a non-quantized L2 norm
potential. Even with aliasing induced discontinuities, PUMA
successfully accomplishes a correct unwrapping (error free).
For both the unwrappings we have chosen the non-quantized
L? norm potential, as it shows a good performance regarding
the unwrapping of this kind of noisy/aliased wrapped surfaces
[7]. Figure 5(e) shows the residues existing on the image
shown in Fig. 5(a); white pixels are positive residues and
black pixels are negative residues. We point out that it was
not supplied any discontinuity information to the algorithm.
Figure 5(f) shows the regions of the original image that present
aliasing (white pixels region). Figures 5(e) and 5(f) show the
energy evolution along the fifteen and twenty-six iterations
taken by the algorithm to perform the unwrapping of the
images in Figs. 5(a) and 5(b), respectively. It is noticeable
a major energy decreasing in the first few iterations.

As referred in Section 111-D, we have observed approxi-
mately an O(n) complexity (where n is the size of the input
image) in the experiences we have run with PUMA. Figure
6 illustrates this for the unwrapping of the Gaussian surface
with and without noise, and employing two kinds of clique
potentials.

"Max-flow code made available at
http://www.cs.cornell.edu/People/vnk/software.html
by V. Kolmogorov. See [41] for more details.
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Fig. 5. (a) Wrapped Gaussian elevation with 257 height. The associated
noise standard deviation is 1.07 rad. (b) Wrapped Gaussian elevation with
507 height. The associated noise standard deviation is 0 rad. (c) Image in (a)
unwrapped by PUMA. (d) Image in (b) unwrapped by PUMA. (e) Residues
on the image presented in (a): white and black pixels means positive and
negative residues, respectively. (f) Aliased regions (signalled by white pixels)
of the image in (b). (g) Energy decreasing for the unwrapping of image in
(@). (h) Energy decreasing for the unwrapping of image in (b).

Figure 7(a) is analogous to Fig. 5(a) but now the original
phase surface is a Gaussian with a 207 rad height and a
quarter of the plane set to zero. This null quarter causes,
therefore, many discontinuities, which renders a very difficult
phase unwrapping problem. It should be noted that, again, we
do not provide any discontinuity information to PUMA in this
experiment. Figure 7(b) shows the tentative unwrapped image
with a classical L' norm. With such a potential, the computed
phase is useless. Figure 7(c) shows a successful, with an error
of 3 x 27 in just one pixel (the dark among white ones in
the border), unwrapping in 12 iterations, for which the energy
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Fig. 6. Unwrapping times of a 147 height Gaussian surface with PUMA,
using a PC workstation equipped with a 1.7 Ghz Pentium-1V CPU: time
(s) vs image size (n). Time grows roughly as O(n) in all the four shown
experiments. An O(n?-5) line is shown for reference. (A) Gaussian surface
with 1.07 rad interferometric noise unwrapped with a non-quantized I? norm.
(B) Gaussian surface without interferometric noise unwrapped with a non-
quantized L? norm. (C) Gaussian surface with 1.07 rad interferometric noise
unwrapped with a classical (quantized) Z? norm. (D) Gaussian surface without
interferometric noise unwrapped with a classical (quantized) I? norm.

decreasing is shown in Fig. 7(h). Figure 7(d) shows the mesh
corresponding to 7(c). This unwrapping was obtained using the
approximate version of PUMA with the nonconvex potential
depicted in Fig. 7(g), and a maximum jump size m = 1.
In Figs. 7(e) and 7(f) we show respectively the nonregular
horizontal and vertical cliques during the first iteration of
the algorithm (signalled as white). The number of nonregular
cliques is relatively small (235 and 243, respectively).

Figure 8(a) shows a phase image (152 x 458 pixels) to be
unwrapped. It was obtained from an original absolute phase
surface, that corresponds to a (simulated) INSAR acquisition
for a real steep-relief mountainous area inducing, therefore,
many discontinuities and posing a very tough PU problem.
This area corresponds to Long’s Peak, Colorado, USA, and
the data is distributed with book [5]. The wrapped image is
generated according to an INSAR observation statistics (see,
e.g., [14]), producing an interferometric pair; by computing the
product of one image of the pair by the complex conjugate
of the other and finally taking the argument, the wrapped
phase image is then obtained. Figure 8(d) shows a quality map
(also distributed with book [5]) computed from the INSAR
coherence estimate (see [5, Chap.3] for further details). How-
ever, to illustrate the discontinuity preserving ability of the
PUMA method with nonconvex potentials, we have reduced,
substantially, the number of supplied discontinuities in the
algorithm. The corresponding quality map is shown in Fig.
8(c). The PU problem thus obtained is far more difficult
than the original (i.e., using the complete quality map) and
a nonconvex potential is able to solve it. The resulting phase
unwrapped is “3-D” rendered in Fig. 8(b), corresponding to
an error norm (variance of the image given by the difference
between original and unwrapped phase images) of 0.6 squared
radians. The unwrapping was obtained using the approximate
version of PUMA, with m = 2. In Fig. 8(f) the employed non-



)1(] 20 30 40 50 60 70 80 90 100 )l(l 20 30 40 50 60 70 80 90 100
a

10 20 30 40 50 60 70 80 90 100
(©

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90

0.5 1520

X2, [x|<0.5

1500
0.5%+ (x| -0.5)"1,

04
035
0.3
0.25
0.2
0.15
0.1
0.05
0

1480

Energy

1460

440

1420

1400
302 1 0 1 2 3 4 0 2 4 6 8 10 12

4 -
(2 X (h) Iterations

Fig. 7. (a) Wrapped Gaussian elevation with a quarter of the plane with
zero height. (b) Image in (a) tentatively unwrapped with a classical I} norm
clique potential. (c) Image in (a) successfully unwrapped (3 x 27 error in
one pixel) using a nonconvex clique potential. (d) A “3-D” rendering of
the unwrapped image. (e) Nonregular horizontal cliques (white signalled)
during the first iteration (successful unwrapping). (f) Nonregular vertical
cliques (white signalled) during the first iteration (successful unwrapping).
(9) Nonregular clique potential employed. (h) Energy decreasing along the
successful unwrapping.

convex, quantized, potential is depicted. The correspondent
analytical expression is given by Vo (z) = [Q2x(z)]%%%
Figure 8(e) illustrates the energy evolution with the algorithm
iterations.

Figure 9(a) shows another phase image (257 x 257 pixels) to
be unwrapped, which was synthesized from an original surface
(distributed with the book [5]) consisting of two “intertwined”
spirals built on two sheared planes. It should be noticed that
the original phase surface has many discontinuities, which
make this an extremely difficult unwrapping problem, if no
information is supplied about discontinuities locations. The
approximate version of PUMA is able to blindly unwrap this
image as is shown in Fig. 9(b), by using a maximum jump
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Fig. 8.  (a) Wrapped phase image obtained from a simulated InSAR
acquisition from Long’s Peak, Colorado, USA (Data distributed with [5]).
(b) Image in (a) unwrapped by PUMA (32 iterations). (c) Discontinuity
information given as input to the unwrapping process. White pixels signal
discontinuity locations. (d) The total discontinuity information at disposal.
White pixels signal discontinuity locations. (e) Energy decreasing for the
unwrapping of image in (a). (f) The potential employed.

size m = 7 and a nonconvex potential given by the following
analytical expression:
lz] < 0.5

0.5(0-001-2) 2.
Viz) = { > 05.

|$|0.001 7 |:L‘|
Figure 9(c) shows a “3-D” rendering of the unwrapped surface
and Fig. 9(d) shows the decreasing of the energy, along 31
iterations, in the unwrapping process.

We emphasize that we obtained a correct (error free)
unwrapping except for a few (ten or so) pixels; these are
pixels that in image 9(a) are in the border of the two spirals
and furthermore present continuity with both vertical and
horizontal neighbours. This is considered an image artifact
and not an error of the algorithm.

Figure 10(a) shows another phase image (256 x 256 pixels)
to be unwrapped. As in [31], it is a kind of cylinder upon
a ramp and has a uniform noise of 3 radians. The result
of unwrapping this image using the approximate version of
PUMA is shown in Fig. 10(b). It was employed the nonconvex
potential

(26)

@7)

(0.01-2),.2 <
V(x):{2 2%, |z < 2

o, el > 2.

and a maximum jump size of m = 9. Figure 10(c) shows
the pixels where the unwrapping went wrong; it amounts to
only 0.39% of the total pixels. It should be noticed that no
discontinuity information was supplied to the algorithm, which
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Fig. 9. (a) Wrapped phase image corresponding to an original phase surface
of two intertwined spirals in two sheared planes (Data distributed with [5]).
(b) Image in (a) blindly unwrapped by PUMA (31 iterations). (c) A “3-D”
rendering of the unwrapped image. (d) Energy decreasing for the unwrapping
of image in (a). Notice that no discontinuities are supplied to the algorithm.
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Fig. 10. (a) Wrapped phase image corresponding to an original phase surface
given by a kind of cylinder upon a ramp. In all the image there is a uniform
noise of 3 radians (data reported in [31]). (b) Image in (a) blindly unwrapped
by PUMA (43 iterations). (c) 0.39% of the total number of pixels (shown in
white) had a wrong unwrapping. (d) The potential employed.

employed 43 iterations along nearly 100 seconds. Figure 10(d)
depicts the employed potential. The results here presented
show an apparent more accurate and fast phase unwrapping
than those reported in [31] (note that we use 4 neighbors for
each pixel).

V1. CONCLUDING REMARKS

We developed a new graph cuts based phase unwrapping
methodology, which embraces, in particular, the minimum L?
norm class of PU problems. The iterative binary optimization
sequence proposed in the ZxM algorithm [7] was generalized
to a broader family of clique potentials; this broader set
is now given by the composition of any convex pairwise
function, depending only on differences, with the sum of a

2m-periodic with a linear function. Furthermore, each binary
optimization problem in the above referred sequence is solved
by applying results on energy minimization using graph cuts
from [38]. These optimizations are computed efficiently using
max-flow/min-cut algorithms well known from combinatorial
optimization. The proposed algorithm, termed PUMA, is an
exact solver, in particular, of the minimum LP? norm class
of PU algorithms, for p > 1; its computational complexity
is KT'(n,3n), where K is the number of 27 multiples and
T(n,m) is the complexity of a max-flow computation in
a graph with n nodes and m edges. In practice, we have
observed that the complexity is O(n), what is in line with
other reports on graph cuts based optimization.

Moreover, we have also addressed the phase discontinu-
ities issue by employing nonconvex discontinuity preserving
potentials. As this turns out to be an NP-hard problem, we
devised an approximate version of the PUMA algorithm by
leaning on two main ideas: first, to apply majorize-minimize
approximation, which allows us to exploit the graph cuts
binary optimization framework; second, to enlarge the size
of allowable binary moves, thus coping with the local minima
arising from nonconvex potentials. A set of phase unwrapping
experiments presented illustrates the state-of-the-art disconti-
nuity preserving abilities of PUMA.



APPENDIX

Proof of Theorem 1

This proof parallels the proofs of Lemma 1 in the appen-
dixes of [7] and of [19], with the appropriate modifications to
deal with the more general clique potentials here employed.

Define Ak;; = [ka];; — [ki1];;, for (i,5) € Go where
Go={@G,j):i=1,...,.M, j=1,...,N}, with M and N
denoting the number of lines and columns respectively (i.e.,
the usual image pixel indexing 2D grid). Given that the energy
E(k|) depends only on differences between elements of k,
we take Ak;; > 0 for (i,4) € Go. Define n = max;;(Ak;;)

and the wrap-count image sequence {k(t),t =0,...,n},such
that k© = k;, k™ = k», and
kY =k +min (t, Akyj) ,t =0,...,n (28)

The energy variation AE = E(ks|vy)
decomposed as

— E(ki|y) can be

=3 [B01) - B ).

AE®)

Since AE < 0 by hypothesis, then at least one of the terms
AE® of the above sum is negative. The theorem is proved
if we show that the variation 6E® = E(k© + §®|ep) —
EXO|qyp) satisfies sE® < AE®, where 6@ = k) —
k®=Y for any t = 1,...,n. This condition is equivalent to

EkW ) — Bk V]yp)
EK® +k® — kD)) + B(K|),

for t = 1,...,n. Introducing (2) into (29), we obtain 0 <
S+ Sv, where

0 < (29)

st = Y [v(aey?) - v (ack V) + v (ael”)
- vf (A¢>§;<°) N A¢>§;<t—1>)] Ty (30)
s =Y v (agi?) v (Aol ) +v (ag)?)

)

1% (Ao;jj(o) + g — A¢fj(t_1))} T (31)
where V is the clique potential, and Aqsfj(t) and Aq&fj(t) are
given by (3) and (4), respectively, computed at the wrap-count
image k®). To prove (29), we now show that the terms of S”"
corresponding to a given site (i,7) € G have positive sum.
The same is true concerning S*.

The difference & — k(! |, for ¢ = 0,...,n, is a monotone
sequence. This is a consequence of the definition (28): if
Ak;; > Ak;;—1 the sequence is monotone increasing; if
Ak;; < Ak;;_1 the sequence is monotone decreasing. There-

fore the sequence {A¢fj(t)}, for t = 0,...,n, is also

monotone. Define a = Agb?j(o), b = Agzsfj(t*l), and ¢ =

11

Agb ), and without loss of generality let us assume® a > b >
c. We WI|| show that the sum of terms of S”, corresponding
to the site (¢, 7) is positive:

Vie)=V(b)+V(a)—V(a+c—b)>0
V(a)+V(c)—V(b)>V(a+c—0D).

By hypothesis, V' is convex. Also by hypothesis, a > b > ¢,
so 3t € [0,1]: b= at + ¢(1 —¢t). Thus,

(32)

V) < tV(a)+(1-1tV(e)
V(a)+ V()= V() > V(a)+V(c)
—[tV(a) + (1 =)V (c)]
> (1-t)V(a) +tV(e). (33)

As V is convex, (1 —t)V(a) +tV(c)
So, from (33),

> V[(1 - t)a+ td.

V(a) +V(c)=V(b) > V[1-ta+td
> V(a+c—[at+c(l—1t)])
b
> V(a+c—0). (34)
The same reasoning applies to S*.
[

Proof of Lemma 1

The proof is inspired in the Proposition 3.7 of [48]. The
main difference is that the class of energies herein considered
does not have unary terms. The implication of this is that
our steepest descent algorithm, in each steep, finds a move in
the set B = {0,1}M~, whereas the presence of unary terms
imposes the search in the larger set {—1,0, 1} ™ as proposed
in [48, Chap. 3.3] and in [49].

Define u = k* and E(-) = E(-|¢p). Let M, be the set of
minimizers of E(-) on Dyy4. If E(v) = E(u) for v.e My,
then u € M, and the lemma is proved by choosing § = 0.
Let us then assume that E(v) < E(u) for v.e M. We
proceed by contradiction supposing that v — u ¢ B, for all
v € Myyq, e, for all v € My there exists at least one
site 4,7 € Go such that

Vij — U5 ¢ {O, 1}

Givenu € M, and v € M1, define image h with 7;; = 1
if v;; —u;; > 0 and zero elsewhere. At least one element of
v takes the value ¢+ 1 and all elements of u are less ou equal
to ¢. Therefore, we have h # 0.

Since E(-) is a linear combination of convex terms, each
one depending only on a difference of two components, then
a reasoning based on (32) leads to

(35)

E(u) — E(v —h) > E(u+h) - E(v).

The right hand side of the above inequality is nonnegative,
for v is a global minimizer in D¢yy. If E(u+h) = E(v),

8The only possibilities are either a > b > c or a < b < ¢, because the
sequence {Aq&?j(t)} is monotone as we have shown.
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hypothesis (35) would be contradicted because v—u € 5. We
have then

E(u) > E(v —h).

But v — h € D,. To verify this, let us analyse the differences
v;; —hijz, having in mind that 2,;; € {0,1} and 0 < v;; < t+1.

If vy; = t+1, then hij =1 and Vij

— hi; = t. Otherwise,

vij — hi; < t. Then v — h € Dy, contradicting the fact that u
is a global minimizer of £ on D,. This ends the proof.
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