
Construction of an Agent-based Framework for
Evolutionary Biology: a Progress Report

Yu Pan Phan Huy Tu Enrico Pontelli Tran Cao Son

Department of Computer Science
New Mexico State University

{ypan,tphan,epontell,tson }@cs.nmsu.edu

Abstract. We report on the development of an agent-based system, calledΦLOG,
for the specification and execution of phylogenetic inference applications. We de-
tail the implementation of the main components of the system. In the process, we
discuss how advanced techniques developed in different research areas such as
domain-specific languages, planning, Web services discovery and invocation, and
Web services composition can be applied in the building of theΦLOG system.

1 Introduction

In the biological sciences, data is accumulating much faster than our ability to convert
it into meaningful knowledge. For example, the Human Genome Project and related
activities have flooded our databases with molecular data. The size of the DNA se-
quence database maintained by NCBI has surpassed 15 million sequences and keeps
growing at a rapid pace. Our modeling tools are woefully inadequate for the task of
integrating all that information into the rest of biology, preventing scientists from using
these data to draw meaningful biological inferences. Thus, one of the major challenges
faced by computer scientists and biologiststogetheris the enhancement of information
technology suitable for modeling a diversity of biological entities, leading to a greater
understandingfrom the influx of data. Instead of allowing the direct expression of high-
level concepts natural to a scientific discipline, current development techniques require
mastery of programming and access to low level aspects of software development.

The ΦLOG Project: The ΦLOG project at NMSU is aimed at the development of
a computational workbench to allow evolutionary biologists to rapidly and indepen-
dently construct computational analysis processes in phylogenetic inference. Phyloge-
netic inference involves the study of evolutionary change of traits (genetic or genomic
sequences, morphology, physiology, behavior, etc.) in the context of biological entities
(genes, genomes, individuals, species, higher taxa, etc.) related to each other by a phylo-
genetic tree or genealogy depicting the hierarchical relationship of common ancestors.

The overall objective of theΦLOG framework is to allow biologists to design com-
putational analysis processes by describing them at the same level of abstraction com-
monly used by biologists to think and communicate—and not in terms of complex
low-level programming constructs and communication protocols. TheΦLOG frame-
work automatically translates these high-level descriptions into executable programs—
commonly containing appropriately composed sequences of invocations to existing
bioinformatics tools (e.g., BLAST, DNAML).

TheΦLOG framework is characterized by two innovative aspects: the use of aDo-
main Specific Language (DSL)as interface to the biologists and the adoption of an
agent-based platform for the execution ofΦLOG programs. These aspects are dis-
cussed in the next subsections.

The ΦLOG Language: The ΦLOG framework offers biologists aDomain Specific
Language (DSL)for the description of computational analysis processes in evolution-
ary biology. The DSL allows biologists to computationally solve a problem by program-
ming solutionsat the same level of abstraction they use for thinking and reasoning. In
the DSL approach, a language is developed to allow users to build software in an appli-
cation domain by using programming constructs that are natural for the specific domain.
A DSL results in programs that are more likely to be correct, easier to write and rea-
son about, and easier to maintain [12, 15, 20]. TheΦLOG DSL has been extensively
described in [25]. The language provides:

• High-level data types representing the classes of entities typically encountered in
evolutionary biology analysis (e.g., genes, taxon, alignments). The set of types and
their properties have been derived as a combination of existing data description
languages (e.g., NEXUS [22]) and biological ontologies (e.g., Bio-Ontology [28]).

• High-level operations corresponding to the transformations commonly adopted in
computational analyses for evolutionary biology (e.g., sequence alignment, phylo-
genetic tree construction, sequence similarity search). The operations are described
at a high-level; the mapping from high-level operations to concrete computational
tools can be either automatically realized by theΦLOG execution model, or ex-
plicitly resolved by the programmer.

• Both declarative as well as imperative control structures to describe execution flow.
Declarative control relies on high-level combinators (e.g., functions, quantifiers)
while imperative control relies on sequencing, conditional, and iterative constructs.

The ΦLOG Agent Infrastructure: An essential goal behind the development of
ΦLOG is to provide biologists with a framework that facilitates discovery and use
of the variety of bioinformatics tools and data repositories publicly available. The Web
has become a mean for the widespread distribution of a large quantity of analysis tools
and data sources, each providing different capabilities, interfaces, data formats and dif-
ferent modalities of operation. Biologists are left with the daunting task of locating the
most appropriate tools for each specific analysis task, learning how to use them, dealing
with the issues of interoperability (e.g., data format conversions), and interpreting the
results. As a result of this state of things, frequently biologists make use of suboptimal
tools, are forced to perform time-consuming manual tasks, and, more in general, are
limited in the scope of analysis and range of hypothesis they can explore.

ΦLOG relies on an agent infrastructure, where existing bioinformatics tools and
data sources are viewed asbioinformatics services. Services are formally described; the
agent infrastructure makes use of such formal descriptions and of the content ofΦLOG
programs to determine the appropriate sequence of service invocations required to ac-
complish the task described by the biologist. The reasoning component of the agent is
employed to select services and compose them, eventually introducing additional ser-
vices to guarantee interoperability. The rest of this paper describes in detail the structure
of such agent infrastructure.

Related Work: Relatively limited effort has been invested in the use of agent-based
technology to facilitate the creation of analysis processes and computational biology ap-
plications. TAMBIS [11] provides a knowledge base for accessing a set of data sources,
and it can map queries expressed in graphical form to sequences of accesses. Some
proposals have recently appeared addressing some of the aspects covered byΦLOG
, such as ontologies for computational biology (e.g., BIOML [13] and Bio-Ontology
[28]), interoperability initiatives (e.g., the Bioperl Project [6], XOL project [21] and
the TAMBIS project [11]), low-level infrastructure for bioinformatics services (e.g.,
OmniGene [8], BioMOBY [10], and the DAS [24]), and generic bioinformatics com-
putational infrastructures (e.g., BioCorba [9] and BioSoft [14, 16]).

2 System Overview

The overall architecture of our system is illustrated in Figure 1. The execu-
tion of ΦLOG programs will be carried out by an agent infrastructure and will
develop according to the flow denoted by the arrows in Figure 1. In this frame-
work, bioinformatics tools are viewed asWeb services; in turn, each agent treats
such services asactions, and the execution ofΦLOG programs is treated as an
instance of theplanning and execution monitoring problem[19]. Each data source
and tool has to be properly described—in terms of capabilities, inputs and outputs—
so that the agent can determine when a particular data source or tool can be used
to satisfy one of the
steps required by the
ΦLOG program. This
description process is
supported by abioin-
formatics ontologiesfor
the description of the
entities involved in this
process.ΦLOG pro-
grams will be processed
by a compiler and trans-

Compiler
Configuration
Component

Planning
Execution
Monitoring

Abstract
Plan

ΦLOG
Program

Action Theories
& GOLOG Program

Execution
Output

Service Broker
Service

Descriptions
Service

Invocations

Fig. 1: Overall System Organization

lated into anabstract plan, that identifies the high-level actions (i.e., analysis steps)
required, along with their correct execution order. The abstract plan is processed by a
configuration component; the output of the configuration component is a situation cal-
culus theory [26] and a ConGolog program [17]. The ConGolog program represents the
underlying skeleton of the plan required to perform the computation described in the
original ΦLOG program. The action theory describes the actions that can be used in
such plan. These actions correspond to the bioinformatics services that can be employed
to carry out the tasks described by the high-level actions present in the abstract plan.
The descriptions of such actions are retrieved from aservice broker, which maintains
(DAML-S) descriptions of all registered bioinformatics services.
The situation calculus theory and the ConGolog program are then processed by aplan-
ner; the task of the planner is to develop aconcrete plan, which indicates how to com-
pose individual bioinformatics services to accomplish the objectives described by the

ΦLOG programs. In the concrete plan, the high-level actions are replaced by invoca-
tion calls to concrete bioinformatics services; it might also include additional steps not
indicated in the originalΦLOG program, required to support interoperation between
services (e.g., data format conversions) and to resolve ambiguities (e.g., tests to select
one of possible services). The creation of the concrete plan relies on the technology
for reasoning about actions and change. The planner is integrated with an execution
monitor, which is in charge of executing the concrete plan by repeatedly contacting the
broker to request execution of specific services. The execution monitor interacts with
the planner to resolve situations where a plan fails and replanning is required.

3 Service Description and Management

Bioinformatics services are described in our framework using DAML-S 0.7, a language
built on top of the DAML+OIL ontology for Web Services. We adopt DAML-S over
previously developed Web Service languages (e.g., WSDL or SOAP1), for its expres-
siveness and declarativeness. Furthermore, DAML-S has been designed to make Web
Services computer-interpretable, thus allowing the development of agents for service
discovery, invocation, and composition. As such, it is an ideal representation language
for describing bioinformatics services.

Fig. 2. Part of Service Hierarchy

Service Description:Bioinformatics services inΦLOG are classified according to a
type hierarchy. This classification facilitates the matching between the high-level ac-
tions present in aΦLOG program and the actual services. More details related to this
topic will be discussed in Section 5. A part of the service hierarchy is shown in Figures
2. The top class in this hierarchy is calledBioinformaticsServices and is spec-
ified by the following XML element:
<daml:Class rdf:ID="BiologyServices">

<rdfs:label>Biology Service</rdfs:label>

<rdfs:comment> ... </rdfs:comment>

<rdfs:subClassOf rdf:resource= "http://www.daml.org/services/

daml-s/0.7/ProfileHierarchy.daml#Information Service" />

</daml:Class>

All the other classes are derived directly or indirectly from this class. As an example

1 http://www.w3.org/TR/wsdl andhttp://ws.apache.org/soap/

(Figure 2),BibliographicDatabases andGenomeDatabases are subclasses
of the Databases class, which, in turn, is a subclass ofBioinformaticsSer-
vices . Both of them describe database-related services which allow users to access
different databases. This class includes services such as GDB [3] (Human genomic
information), OMIM [4] (Catalogue of human genetic disorders), and EMBASE [7]
(Excerpta Medica Database). Their representation is as follows.
<daml:Class rdf:ID="GenomeDatabases">

<rdfs:subClassOf rdf:resource="#Databases"/>

</daml:Class>

<daml:Class rdf:ID="BiliographicDatabases">

<rdfs:subClassOf rdf:resource="#Databases"/>

</daml:Class>

Information about the service classification is stored in the filedatatypes.daml.2 In ad-
dition to the classification of services, this file contains information about the types of
biological entities that are important for the development of our system. As with ser-
vices, these objects are also organized as a class hierarchy to facilitate reasoning about
types of objects. For example, biological sequences are represented as objects of the
Sequences class. The filedatatypes.damlalso includes some predefined instances of
classes. Fig. 3 shows part of these hierarchies.

Fig. 3. Part of Biological Object Classification

These hierarchies help us to reason about the services needed to execute aΦLOG
program, including reasoning about the types and the formats of service parameters.

Let us now describe the DAML-S representation of services through an example—
the representation of theClustalW service, a multiple sequence alignment program
[2]. In DAML-S, each service is characterized by aprofile, representing the capabilities
and parameters of the service, aprocess model, illustrating the workflow of the service,
and agroundingfile, specifying in details how to access the service. The DAML-S
representation of theClustalW service is composed of four files3 described below.

The first file clustalw-service.daml4 stores information about the locations of the
profile, the process model, and the grounding:
<service:Service rdf:ID="Service ClustalW">

2 http://www.cs.nmsu.edu/˜tphan/philog/nondet/datatypes.daml
3 The complete description can be found atwww.cs.nmsu.edu/˜tphan/philog
4 www.cs.nmsu.edu/˜tphan/philog/nondet/clustalw-service.daml

<service:presents rdf:resource="&clw profile;#Profile ClustalW"/>

<service:describedBy rdf:resource="&clw process;#Process ClustalW"/>

<service:supports rdf:resource="&clw grounding;#Grounding ClustalW"/>

</service:Service>

The second file,clustalw-profile.daml5, is the profile for theClustalW service. It
defines the parameters needed for the invocation of this service and specifies the mem-
bership of this service in the service classification hierarchy. For example,ClustalW
is specified as an instance of the classAlign :

<ftypes:Align rdf:ID="Profile ClustalW"> ... </ftypes:Align>

This file also contains input, output, and precondition elements defining the service’s
inputs, outputs, and preconditions, respectively. The type of each parameter (input or
output) is specified by therestrictedTo property, making use of the above biolog-
ical object classification.

The third file, the process model, provides the necessary information for an agent
to use the service, including specifying whether it is an atomic process or a composed
process or what are its inputs, outputs, and preconditions. For example, theClustalW
service is specified as an atomic process in its process model6:
<daml:Class rdf:ID="ClustalWProcess">

<rdfs:subClassOf rdf:resource="&process;#AtomicProcess" />

</daml:Class>

Similarly to the service profile, the process model also makes use of the above biological
classification to define its input and output parameters.

Finally the grounding model forClustalW specifies the details of how to access the
service—details having mainly to do with protocol and message formats, serialization,
transport, and addressing. It consists of two complementary parts (i) a DAML-S file
specifying the mapping between DAML processes/types and WSDL operations/messages,
and (ii) a WSDL file designating the binding of messages to various protocols and
formats. The first file is calledclustalw-grounding.damland the second file is called
clustalw-grounding.wsdl. Both of them can be found athttp://www.cs.nmsu.
edu/˜tphan/philog/ .

Service Management:The services, together with their classification, are registered
with the service broker, which is responsible for providing service descriptions to the
configuration module and fulfilling service execution requests from the execution mon-
itoring module. We employ the OAA system [29] in the development of the service bro-
ker. To facilitate these tasks, alookup agentand severalservice wrappershave been de-
veloped. The lookup agent receives high-level action names from the compiler and will
match these actions with possible available services. For example, a request for a high-
level actionalign will be answered with the set of all available alignment services,
such asservice clustalw andservice dialign . This process will be detailed
in Section 5. Service wrappers have been developed for the purpose of executing the ser-
vices since most of the bioinformatics services are still offered through HTTP-requests
and not as Web services. Agents—playing the role of service wrappers—are ready for
the instantiation and execution of bioinformatics services.

5 www.cs.nmsu.edu/˜tphan/philog/nondet/clustalw-profile.daml
6 www.cs.nmsu.edu/˜tphan/philog/nondet/clustalw-process.daml

4 ΦLOG Compiler

The objective of theΦLOG compiler is to process a program written inΦLOG and
produce as output a high-level sketch of the execution plan (theabstract plan) and
a symbol table, describing the entities involved in the computation, in terms of their
names and types. The main tasks of theΦLOG compiler include: syntax analysis, type
checking, and construction of the abstract plan.
Syntax Analysis: EachΦLOG program contains a sequence of declarations and a
sequence of statements. The declaration part is used to:
• Describe the data items (variables) used by the program;
• Allow users to select the computational components to be used during execution—

e.g., associate high-levelΦLOG operations to specific bioinformatics tools;
• Provide parameters affecting the behavior of the different components.

Each data item used in the program must be properly declared. Declarations are of the
type <variable> : <type> [<properties>] and are used to explicitly describe
data items, by providing a name (<variable>), a description of the nature of the values
that are going to be stored in it (<type>) and properties of the item. For example,
gene1 : Gene (gi | 557882) declares an entity calledgene1 , of typeGene,
and identifies the initial value for this object—the gene with accession number557882
in the GenBank database.

Declarations are also used to identify computational components to be used during
the execution—this allows the user to customize some of the operations performed. For
example, a declaration of the type
align sequences : Operation(CLUSTALW -- alignment = full,

score type = percent, matrix = pam, pairgap = 4);

allows the user to configure the language operationalign sequences —a ΦLOG
operation to perform sequence alignments—by associating this operation with the ClustalW
alignment program, with the given values for the input parameters.

Variable assignments are expressed as:<output variable> is <operation>(<input

variable>). In this prototype, we focused on a subset of the possible classes of
operations—i.e.,<searchOp> , <alignOp> , <buildTreeOp> , and<specifi-
cOp>.

Type Checking: All variables used in aΦLOG program must be declared with spe-
cific types.ΦLOG provides two classes of datatypes. The first class includes generic
(non-domain specific) datatypes, while the second class includes all those datatypes that
are domain-specific, like DNA Sequence, Protein, etc. These domain-specific types are
defined in our type system (see Fig. 3). There are two major types of type checking
• Type checking against attributes of objects;
• Type checking against input and output variables of operations.

Domain specific datatypes contain attributes that are specific to each type. Consider the
following ΦLOG program segment

g1 : Gene (gi | 557882)

se : Sequence

se is sequence(g1)

It assigns to the variableg1 the Gene having accession numberGI | 557882 and
extracts its sequence data, which is stored in the variablese . The compiler must check

the datatype hierarchy to verify thatGI|557882 is a legal value for an object of type
Gene—i.e., it is a well-formed accession number—and an attribute calledsequence
with type Sequence exists for the typeGene. Attribute and type mismatches will
cause compiling error. Type checking is also performed for each operation in the pro-
gram. Datatypes of input and output variables are defined in our services ontology (see
Figure 2). TheΦLOG compiler must check the validity of such parameters; e.g.,s2
is align(s1) performs a multi-sequence alignment operation on the data items1 ,
storing the result in data items2 . To be able to perform the action,s1 must be of type
UnalignedSequences (i.e., a set of unaligned sequences) ands2 must be of type
AlignedSequences .

Operations Identification and Abstract Plan Assembly:As described in the syntax
analysis section, the current preliminary prototype focuses on a limited classes of oper-
ations (explored for feasibility purposes):

<operation> ::= <searchOp> | <alignOp> | <buildTreeOp> | <speci-

ficOp>

<searchOp> ::= <variable> : <variable> is <complexType> and

<attribute>(<variable>) <verb> <literal>

<alignOp> ::= align

<buildTreeOp> ::= build tree

Database search operations are conveniently expressed using intensional sets. E.g.,
p is { x : x is Gene and name(x) contains "fever" }

searches a nucleotide database—automatically inferred from the type of the collected
variablex—for all genes whose name contains the keyword‘‘fever’’ , and the re-
sulting collection of genes is stored in the variablep.

Each syntactic occurrence of an operations leads to the generation of one high-level
action in the abstract plan assembled by the compiler. The identification of the operation
is accomplished by navigating the services hierarchy, with the goal of locating the most
specific class of services corresponding to the specified operation. The operation pro-
vides a link to the most general class of services in the ontology corresponding to such
operation (e.g., thealign operation used in aΦLOG program will link to the general
class of sequence alignment services in service hierarchy); the usage of the operation—
and, in particular, the type of the parameters, inputs, and outputs—will constraint the
focus on appropriate subclasses of services.

The ΦLOG language allows us also to directly refer to specific services (e.g., ei-
ther through a declaration, as illustrated in the previous section, or directly as an op-
eration). For example,s is ClustalW JP(p) identifies theClustalW multi-
sequence alignment service located atclustalw.genome.ad.jp . This operation is
described in the service hierarchy, with input typeUnalignedSequences and out-
put typeAlignedSequences . However, use of specific service is not recommended
in aΦLOG program because user then can not take use of the power of dynamic service
plan composition of theΦLOG framework.

As another example, the service hierarchy offers three subclasses ofbuild tree
operation—used to construct a phylogenetic inference tree—that use different algo-
rithms: ParsimonyAlign , DistanceMatrixAlign , and MaximumLikely-
hoodAlign . These operations are differentiated by their input parameters and the

ΦLOG compiler must be able to find the correct match. For example,
p : UnalignedSequences

m : DistanceMatrix

s is align(p, m)

identifies the operationDistanceMatrixAlign(p, m) because it has two inputs:
a set of unaligned sequences and a distance matrix.

The output produced by the compiler is an abstract plan. The abstract plan is a Con-
Golog program whose actions are high-level actions. Each service is described by a
three elements tuple:〈A, IL,OL〉 whereA is the operation name,IL is the list ofA’s
input parameters andOL is the list ofA’s output parameters respectively. Each input or
output is of the form(name, type, value), wherename, type and value are the name,
type and value of the input/output respectively. The value of an input or output must be
either a constant or a variable.

In addition to the abstract plan, the output of the compiler also contains informa-
tion about all the variables used in theΦLOG program and a list of high-level actions.
Specifically, for each variableX of typeT in the program, there is a corresponding fact
var(X, T) in the output. As an example, consider theΦLOG program fragment:

p : UnalignedSequences;

s : AlignedSequences;

t : PhylogeneticTree;

p is x : x is Gene and name(x) contains "fever";

s is align(p);

t is build tree(s);

This simple program defines a sequence of operations—first search a database finding
all the genes contains the keyword “fever ”, then conduct a multiple sequence align-
ment operation on the returned sequence set, and finally build a evolution tree based on
the aligned sequence set. The output of the compiler is a list of three high-level actions
db search, align , andbuild tree and the Prolog program
plan([(db search, [(db,str,nucleotide),(term,str,fever)],

[(sequence,unalignedsequences,p)]),

(align, [(sequence,unalignedsequences,p)],

[(sequence,alignedsequences,s)]),

(build tree,[(inFile,alignedsequences,s)],

[(outputFile,phylogenetictree,t)])]).

var(t,phylogenetictree). var(s,alignedsequences).

var(p,unalignedsequences).

The factplan(...) represents theΦLOG program and the set of facts of the form
var(.,.) list the variables used in the program.

5 Configuration Component

The configuration component plays an important role in preparing theΦLOG pro-
gram for execution. Its input is an abstract plan from the compiler. Its output is a
ConGolog program with an underlying situation calculus theory, that will be used

by the Planning and Execution
monitoring module to execute
the ΦLOG program. For the
background behind this design
and its advantages, we refer the
reader to [27]. Figure 4 shows
the phases of the configuration
component. We next describe
these phases in more detail.

�����������
	�

��������������

����� �����
!�"$#�"�%
&���'�%

Action Theories
& GOLOG Program

Service BrokerService
Lookup

Abstract Plan

Service Names
& URI

PDDL files

(*)+)-,+.*/
0�1�2$3�4

High-Level
Services

Fig. 4: Configuration Component5.1 DAML-PDDL translator

The DAML-PDDL translator, in concert with the services broker (which maintains the
service registry), is responsible for collecting of DAML-S service descriptions needed
for the execution of theΦLOG program and converting them into PDDL files. The
lookup agent, after receiving the list of high-level actions from the compiler, will request
the broker for a list of bioinformatics services which can be used to realize the high-
level actions. This list of services, which contains information about service names and
their locations (URIs), is then forwarded to the translator. For example, thedb search
service is realized by the bioinformatics servicesncbi andblast athttp://www.
cs.nmsu.edu/˜tphan/philog/ . For each service, the translator will download
the service descriptions from the specified URIs and convert them to PDDL files.7

The DAML-PDDL translator used in this project, called PDDAML, is an automatic
translator between PDDL and DAML from [5]. It is worth noticing that this step could
be eliminated and replaced by a module that translates DAML-S service descriptions
directly into a situation calculus theory. However, we still adopt this path for several
reasons. First of all, the language DAML-S is still under development, and any changes
in its specification would also mean changes to our system. Secondly, the language
PDDL is well-known and accepted as the input language for many planning systems.
Furthermore, the DAML-S parser and analyzer are being developed and updated by the
DAML coalition. By using PDDAML, we make our system less sensitive to changes
in the DAML-S specification and avoid the need of writing programs for processing
DAML-S specifications.

Each DAML-S file (service, profile, process model, or grounding)—as described
in Section 3—is translated into a PDDL file, often referred to as aPDDL domain.
Each PDDL domain consists of several sections specifying the external domains that
are extended by the current domain and defining the domain’s entities and their rela-
tionships such as data types, objects, predicates, axioms, etc. E.g., the PDDL domain
representing the profile of the serviceClustaW ,8 namedclustalw-profile-
ont , uses the external domainsclustalw-service-ont (representing the ser-
vice) andclustalw-process-ont (representing the process model) and defines
objects namedProfile ClustalW , Sequences , OutputSequences , etc.; it
also contains axioms describing the input, output, and precondition of the services.

7 More precisely, the output is in WebPDDL format.
8 Space limitation does not allow us to display the output of the translator here. Readers inter-

ested in the details can find it athtp://www.cs.nmsu.edu/˜tphan/philog/ .

5.2 Generating the Situation Calculus Theory and the ConGolog Program

In the second phase, the configuration component takes the output from the DAML-
PDDL translator (a collection of PDDL files) and from the compiler (the abstract plan)
and generates the situation calculus theory and the ConGolog program for the Planning
and Execution module. This is done in two steps. First, the set of PDDL domains is com-
bined into a single Prolog file whose facts and rules represent the objects and axioms in
the PDDL files. To avoid naming conflicts between entities from different domains, we
associate to each domain a unique string, calledtag, and prefix each entity of the do-
main with the corresponding tag. Consider, for example, the objectSequences , that
represents the input ofClustalW , and is defined in the PDDL domainclustalw-
profile-ont (originated fromclustalw-profile.daml) with the typeUnaligned-
Sequences . Assume that this domain is associated with the tagF17. The object is
translated into a predicateunalignedSequences(F17 Sequences) of the Pro-
log program.

The final step in the configuration component is to generate the situation calculus
theory and to formulate the ConGolog program corresponding to theΦLOG program.
This process involves collecting all the necessary information about a particular service
from the Prolog program produced in the previous step and from the abstract plan—the
output of the compiler (seeSection 4). This step is performed as follows.

Generating the Facts.Each variableX of typeT in theΦLOG program corresponds
to a factT (X) in the action theory. Similarly, a constantC of type T has the corre-
sponding factT (C). For example, for the output of theΦLOG program described in
Section 4, the destination theory contains the following facts:

phylogenetictree(p). alignedsequences(s). unalignedsequences(t).
str(nucleotide). str(fever).

wherep, s andt are variables whilenucleotide andfever are constants.
Generating the Fluents. For each variable X used in theΦLOG program, there is
a corresponding fluentvariable(X) in the destination ConGolog program. In ad-
dition, there is one more fluenthas value(X) to indicate whether that variable has
been assigned some value or not. Initially, no variable has been assigned a value.

prim fluent(variable(p)). primfluent(variable(s)).
prim fluent(variable(t)).
prim fluent(hasvalue(X)) :- primfluent(variable(X)).

Besides, it might be the case in which an input of an action is required to have
some fixed value. For example, the abstract plan in Section 4 requires that all thedb-
search services have”nucleotide” as the value of their first argument and”fever”
as the value of their second argument. To deal with this case, we use a fluent of the
form value(X,V) to say that the value of the inputX must beV . The meaning of this
kind of fluents will become more precise when we discuss the executability condition
of an action in the following parts. E.g., the translator will automatically generate the
following fluents for theΦLOG program output above.

prim fluent(value(f13db,nucleotide)). primfluent(value(f13term,fever)).
prim fluent(value(f0db,nucleotide)). primfluent(value(f0term,fever)).

Furthermore, depending on the service description, the situation calculus might have
some additional fluents. E.g., since the precondition ofClustalW involves the format

property, the theory will contain the fluentformat(X,V) , indicating that the format
of objectX is V.
Generating the Actions. Each service occurring in the previous step corresponds to
an action in the destination theory, whose parameters are the inputs and outputs of the
service. The translator will automatically assign a unique variable name for each input
and output of a service. E.g., the service ClustalW corresponds to the following action
in the action theory:
prim action(serviceclustalw(input(F17sequences),output(F17outputsequences))) :-

unalignedsequences(F17sequences),
alignedsequences(F17outputsequences).

It says that the service ClustalW has an inputF17 sequences and an outputF17 output
sequences , whereF17 sequences andF17 outputsequences are of the types
unalignedsequences andalignedsequences respectively.

In several cases, some services in the local database might be used to formulate
actions in the theory. For instance, we notice that we may need to do some kind of
format conversions for ourΦLOG program. Hence, all the format conversion services
in the local database are looked up and included in the theory. In the future, the search
for related services will be done online, through the service broker.
Generating the Executability Conditions. The following is an example of the exe-
cutability condition for the ClustalW service.

executable(serviceclustalw(input(F17sequences),output(F17outputsequences)),
and(format(F17sequences,sfncbi),or(value(f17sequences,F17sequences),

and(variable(F17sequences),hasvalue(F17sequences))))):-
unalignedsequences(F17sequences),alignedsequences(F17outputsequences).

The intuition behind the above condition is that, for the service ClustalW to be ex-
ecutable, it requires each of its input parameters either to be a variable that is already
assigned to some value or to have some default value. In addition, it also requires that
the format of the inputF17 sequences is sf ncbi .
Generating Effects. One type of effect of an action is that its outputs will be assigned
some value. E.g., the effect of the ClustalW service in the action theory looks like:

causesval(serviceclustalw(input(F17sequences),output(F17outputsequences)),
hasvalue(F17outputsequences),true,true) :-

unalignedsequences(F17sequences), alignedsequences(F17outputsequences).
The other type of effect relates to effects that are explicitly described in the service

description. For example, the BLAST search service has an effect stating that the format
of its output issf blast . This is represented as follows.

causesval(serviceblast(input(F13db,F13term),output(F13outputsequences)),
format(F13outputsequences,sfblast),true,true) :-

str(F13db),str(F13term),unalignedsequences(F13outputsequences).
Generating the Initial State. As mentioned, for theΦLOG program we are consider-
ing, initially no variable has been assigned any value. The ConGolog encoding is:

initially(variable(p),true). initially(variable(s),true).
initially(variable(t),true). initially(hasvalue(t),false).
initially(has value(s),false). initially(hasvalue(p),false).
initially(value(f13 db,nucleotide),true).
initially(value(f13 term,nucleotide),true).

initially(value(f0 db,nucleotide),true).
initially(value(f0 term,fever),true).

Generating ConGolog Programs. Based on the abstract plan and the domain de-
scription, a ConGolog program representing the concrete plan can be constructed. The
following is an example of the ConGolog program for theΦLOG program in Sect. 4.

proc(plan,[servicencbi(input(F0db,F0term),output(F0outputsequences))
makedoable
servicedialign(input(F21sequence),output(F21outputsequences)):
serviceclustalw(input(F17sequence),output(F17outputsequences))
makedoable
servicetreeview(input(F29inputfile),output(F29outputphylogenetictree)):
servicednaml(input(F25inputfile),output(F25outputphylogenetictree))]).

Notice that any pair of consecutive plan steps has a constructmake doable in-between.
This construct, introduced in [23], is a relaxation of ConGolog’s sequence construct.

6 Planning and Execution Monitoring Module

The input of the planning and execution monitoring module consists of a ConGolog
program and a situation calculus theory which represents the originalΦLOG program
and the bioinformatics services, respectively. The module’s job is to execute the Con-
Golog program. To do so, it repeatedly generates traces of the ConGolog program and
then executes them until at least one concrete plan succeeds, or all of them fail (Fig. 5).

6.1 Planning

The main job of this component is to find a possible trace of the ConGolog program
which can be success-
fully executed and then
executes such a trace.
Given a ConGolog pro-
gram and the underly-
ing situation calculus
theory, this problem can
be solved in different
ways by employing dif-
ferent ConGolog inter-
preters [17, 19]. In this
paper, we use an off-

������� ���
	��
��
���
��

������	�������	���	��

���! �"�#�$�%
&('
)�&('�% $�&(*

Action Theories
& GOLOG Program

Execution
Output

Service Broker
Service

Descriptions
Service

Invocations

Concrete Plan

Failure

Fig. 5: Planning and Execution Monitoring Module

line ConGolog interpreter with the insertion constructor ‘makedoable’ from [23] to
generate traces, which we will call hereafterconcrete plans.
We prefer the off-line interpreter over the on-line interpreter for different reasons. First
of all, the effects of the actions in our ConGolog programs do not change over time,
i.e., the execution of a service with the same set of input will yield the same output
regardless of its execution time. In this sense, domains in our application satisfy the
IPR condition of [23], and therefore this model of planning and execution monitoring is
suitable. In addition, there are some services whose runtime is large. As such, a service
should be invoked only if it can lead to a successful execution of the program at hand.

This property cannot be satisfied by an on-line interpreter, since it does not guarantee
completeness [19].
The use of the insertion constructor allowsΦLOG ’s users to writeΦLOG programs
without the need of worrying about the data conversion operator in their programs. This
simplifies the process of writingΦLOG programs considerably since the number of
data formats currently used by bioinformatics services is huge, and each service only
works with certain formats. During the planning phase, the interpreter will automati-
cally insert thedata format conversionoperators into the program, whenever needed.
Due to the frequent use of the format conversion utility, we decided to add the situa-
tion calculus representation of the format conversion service to every situation calculus
theory generated by the configuration component.
To illustrate this process, consider the ConGolog program and the corresponding situa-
tion calculus theory from the last section. A possible trace of this program is:
| ?- do(plan,s0,S).

S = do(service treeview(input(s),output(t)),

do(service clustalw(input(p),output(s)),

do(service ncbi(input(nucleotide,fever),output(p)),s0)))) ?

Suppose that the output format of the service NCBI does not match the input format of
the service ClustalW. In this case, the output of the planning process is
| ?- do(plan,s0,S).

S = do(service treeview(input(s),output(t)),

do(service clustalw(input(p),output(s)),

do(conversion(input(p),output(p)),

do(service blast(input(nucleotide,fever),output(p)),s0)))) ?

The actionconversion(input(p),output(p)) , that converts the output for-
mat ofservice blast into a format suitable toservice clustalw , is the difference
between the traces. It ensures that the sequence of actions is executable froms0 .

In order to deal with conditional and loop statements inΦLOG programs we have
modified the ConGolog interpreter and its output so that it can deal with conditions
whose truth value can only be determined at runtime. We choose to do so instead of
using one of the available modified ConGolog interpreters, such as IndiGolog [18],
for the same reasons that make us favor an off-line over an on-line ConGolog in-
terpreter. Presently, whenever the interpreter cannot evaluate a condition in a condi-
tional/loop statement, the planning process will continue with the guess that the con-
dition is true/false, thus leaving the job of evaluating the condition for the execution
monitoring module. If the evaluation of the condition turns out to be not different than
the guess, the execution monitoring module will report a failure (i.e., a backtrack oc-
curs) and the planning process will continue with the opposite guess that the condi-
tion is false/true, respectively. To illustrate this, let us consider the ConGolog program
s1; ifv = 2 then s2 else s3, which involves three servicess1, s2, s3 wheres1 com-
putes the value of a parameterv, 0 ≤ v ≤ 3. The off-line ConGolog interpreter will
fail to find a trace of this program since it cannot evaluate the conditionv = 2 if the
services1 has not been executed. In our interpreter, the first output iss1; (v = 2)?; s2

(obtained by guessing thatv = 2 is true). If a backtrack occurs, the next output is
s1; (¬(v = 2))?; s3.

6.2 Execution Monitoring

The result of the planning process is a concrete plan which is a sequence of bioinfor-
matics services and test conditions. The execution monitoring component will execute
the concrete plan by sequentially executing each services or test for the correctness of
the condition of the plan. If the service fails or the condition is not satisfied, then the
plan execution fails.

It should be noted that if the low-level services occurring in the concrete plan are web
services, i.e., they are properly constructed and described using a web service markup
language (DAML and WSDL in our case), the invocation of the service is just a matter
of using a standard parser to parse the service grounding information and construct in-
vocation messages accordingly. In the current prototype we have created simple agent
wrappers for the services to support service invocation. Each wrapper agent must reg-
ister their functionalities with the OAA broker—in this case, the functionalities provide
the name of the service and the invocation parameters. E.g.,
oaa Register(parent, ’ClustalW JP’,

[clustalw jp([(sequence, Sequence)], Resp)], [])

registers with OAA a service called ’ClustalWJP’ which takes one input parameter
named ’sequence’. The service invocation is simply a request to the OAA broker for
execution of one particular service:

oaa Solve(clustalw jp([(sequence, Sequence)], Result), [])

The wrapper agent will handle the actual service invocation—i.e., building the connec-
tion between client and server, constructing the message using either HTTP GET or
POST method, parsing the returning message, and storing the result.

In case of execution failure—e.g., a time-out or loss of connection to the remote
provider—the monitor will take appropriate actions. Repair may involve either repeat-
ing the execution of the service or re-entering the configuration agent. The latter case
may lead to exploring alternative ways of instantiating the partial plan, to avoid the fail-
ing service. The replanning process is developed in such a way to attempt to reuse as
much as possible the part of the concrete plan executed before the failure.

7 Conclusions and Future Work

This paper reports the work that has been done so far in ourΦLOG project. It demon-
strates the feasibility of applying agent technologies in phylogenetic inference applica-
tions. The main achievement in this phase is the development of theΦLOG compiler,
the configuration component, the execution monitor, and the integration of these com-
ponents within the OAA system and the ConGolog interpreter. The current system can
be used to work with a small class ofΦLOG programs. Much work is still needed
before we can get a system that can executeΦLOG programs as described in [25],
i.e., most generalΦLOG programs. This will be our concentration in the near future.
Among others, we plan to complete the compiler and the configuration component to
allow for control constructors inΦLOG programs. This will also demand changes in the
planning and execution monitoring module. We would also like to improve the planning
and execution monitoring module so that results that have been computed by a failed
concrete plan can be reused as much as possible in the replanning process.

References
1. Entrez, The Life Sciences Search Engine.www.ncbi.nlm.nih.gov/Entrez .
2. European Bioinformatics Institute.http://www.ebi.ac.uk/clustalw/ .
3. Gene Data Bank.http://gdbwww.gdb.org/ .
4. OMIM, Online Mendelian Inheritance in Man.www.ncbi.nlm.nih.gov/omim .
5. PDDAML – An Automatic Translator Between PDDL and DAML.http://www.cs.

yale.edu/homes/dvm/daml/pddl_daml_translator1.html .
6. The Bioperl Project.www.biperl.org .
7. Human Genome Mapping Project Resource Center.www.hgmp.mrc.ac.uk/MANUAL/ .
8. OmniGene: Standardizing Biological Data Interchange Through Web Services,

omnigene.sourceforge.net , 2001.
9. BioCORBA Project.www.biocorba.org , 2002.

10. The BioMOBY Project.biomoby.org , 2002.
11. P.G. Baker et al. TAMBIS: Transparent Access to Multiple Bioinformatics Information

Sources. InInt. Conf. on Intelligent Systems for Molecular Biology, 1998.
12. T. Ball, editor. Proc. of the 2nd Conference on Domain-specific Languages. ACM Press,

2000.
13. R. Beavis. The Biopolymer Markup Language (BIOML). TR, ProteoMetrics, LLC, 1999.
14. S. Cao et al. Application of Gene Ontology in Bio-data Warehouse. In6th Annual Bio-

Ontologies Meeting. 2003.
15. W. Codenie, K. De Hondt, P. Stayaert, and A. Vercammen. From custom applications to

domain-specific frameworks.Communications of the ACM, 40(10):70–77, 1997.
16. F. Corradini, L. Mariani, and E. Merelli. A Programming Environment for Global Activity-

based Aplications. InWOA, Workshop on Agents, 2003.
17. G. De Giacomo, Y. Lespérance, and H. Levesque.ConGolog, a concurrent programming

language based on the situation calculus.Artificial Intelligence, 121(1-2):109–169, 2000.
18. G. De Giacomo, H. J. Levesque, and S. Sardiña. Incremental execution of guarded theories.

ACM Transactions on Computational Logic, 2(4):495–525, 2001.
19. G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level robot

programs. InKRR’98, pages 453–465. Morgan Kaufmann Publishers, 1998.
20. G. Gupta and E. Pontelli. Specification, Implementation, and Verification of Domain Spe-

cific Languages: a Logic Programming-based Approach. InCL: from LP into the Future.
Springer, 2001.

21. A.H. Karp. Programming for Parallelism.Computer, 20, May 1987.
22. D. R. Maddison, D.L. Swofford, and W.P. Maddison. NEXUS: An Extensible File Format

for Systematic Information.Syst. Biol., 464(4):590–621, 1997.
23. S. McIlraith and T.C. Son. Adapting golog for composition of semantic web services. In

(KR’2002), pages 482–493. Morgan Kaufmann Publisher, 2002.
24. S. Pearson. DAS: Open Source System for Exchanging Annotations of Genomic Sequence

Data. Technical report, Open Bioinformatics Foundation, 2002.
25. E. Pontelli et al. Design and Implementation of a Domain Specific Language for Phyloge-

netic Inference.J. of Bioinformatics and Computational Biology, 2(1):201–230, 2003.
26. R. Reiter.KNOWLEDGE IN ACTION: Logical Foundations for Describing and Implement-

ing Dynamical Systems. MIT Press, 2001.
27. T.C. Son et al. An Agent-based Domain Specific Framework for Rapid Prototyping of Ap-

plications in Evolutionary Biology. In1st Workshop on Declarative Agent Languages and
Technologies, 2003.

28. R. Stevens. Bio-Ontology Reference Collection,cs.man.ac.uk/˜stevens/
onto-publications.html .

29. R. Waldinger. Deductive composition of Web software agents. InProc. NASA Wkshp on
Formal Approaches to Agent-Based Systems, LNCS. Springer-Verlag, 2000.

