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Abstract. We use molecular computation to solve pattern classification
problems. DNA molecules encode data items and the DNA library rep-
resents the empirical probability distribution of data. Molecular bio-lab
operations are used to compute conditional probabilities that decide the
class label. This probabilistic computational model distinguishes itself
from the conventional DNA computing models in that the entire molec-
ular population constitutes the solution to the problem as an ensemble.
One important issue in this approach is how to automatically learn the
probability distribution of the DN A-based classifier from observed data.
Here we develop a molecular evolutionary algorithm inspired by directed
evolution, and derive its molecular learning rule from Bayesian decision
theory. We investigate through simulation the convergence behaviors of
the molecular Bayesian evolutionary algorithm on a concrete problem
from statistical pattern classification.

1 Introduction

Pattern classification is a classical and fundamental problem in artificial intel-
ligence and machine learning with a wide range of applications including com-
puter vision, data mining, information retrieval, and bioinformatics. The task of
a pattern classifier is to assign a class to an input pattern. A variety of pattern
classification techniques have been developed so far (see, for example, [4]).

This paper explores the potential of molecular computing to solve the com-
putational problems involved with pattern classification. We focus on the prob-
abilistic formulation of the pattern classification problem. The objective is to
build a joint probability P(X,Y’) of input pattern X and output class Y. Once
this model is constructed, class decisions can be made by computing the condi-
tional probabilities, such as P(Y|X). In doing so, we make use of DNA-based
molecular computation.

We use a library (as test tube or in some other format) of DNA molecules to
represent the probability distribution of data. Each molecule encodes an instance
of training data and the frequency of molecules is proportional to the probability



of observing the patterns stored in the library. This makes the whole library of
molecules a probabilistic pattern classification device.

In this paper we develop a molecular algorithm for learning probabilistic
pattern classifiers. It is motivated by in vitro evolution [15] and we derive from
Bayesian decision theory a rule for setting the learning parameters for evolving
the classifier using a probabilistic DNA-library.

The paper is organized as follows. In Section 2 we describe the probabilistic
approach to pattern classification and provide the probability-theoretical basis
of using DNA molecules for solving this problem. Section 3 discusses molecular
computation of probability functions related with pattern classification. Section
4 addresses the learning problem and presents a molecular algorithm inspired by
in vitro evolution. Section 5 shows the mathematical background of the molec-
ular algorithm by deriving its learning rule. Section 6 presents and discusses
simulation results. Section 7 draws conclusions.

2 Pattern Classification and DNA Molecules

The aim is to build a pattern classification system f that outputs a label y
given an input pattern x = (z1,...,2,), i.e. f(x) = y. In this paper we restrict
ourselves to the case of binary variables. It is convenient to assume there exists
a (unknown) target system f* as an ideal model for f. We also assume f*
behaves according to the probability distribution P*(Y'|x), but the exact form
of probability model is unknown. The only information we have is data collected
from the input-output pairs of f*.

DNA computing provides a promising approach to realizing the pattern clas-
sifier. We can represent each input pattern as a sequence of A, T, G, and C.
The output label can also be encoded as a DNA sequence. For example, if we
use 10-mer to encode each binary variable and if there are 30 variables for input
pattern and one variable for class label, then DNA molecules of length 310-mer
can represent an instance of the training example. The training patterns can be
stored as a DNA library and given a query pattern x,, the molecular pattern
classifier compares every library element against x, to make class-label decisions.
The use of DNA molecules as a memory device and the use of biochemical tech-
niques for memory storage and retrieval provides interesting properties, such as
massive parallelism, associative search, fault-tolerance, and miniaturization [2,
3,6].

The method we present here is in some sense an extension of the memory-
based learning (MBL) approach [8]. In MBL, the training examples are stored
one copy for each instance. Here, we use many copies for each training example.
The number of copies of library elements is updated as new training examples
are observed so that their frequency is proportional to their probability of ob-
servation. MBL does rote-learning and thus very fast in storage, but very slow
in recall since classification computation is done from scratch. Here we update
the probabilistic library on learning. On recall our method works like a look-up
table, but the probabilistic distribution of the data in the library facilitates clas-



sification computation. Keeping multiple copies of data items can also contribute
to the robustness and fault-tolerance of the molecular computing system [9, 13]
The frequentist interpretation of probability builds the theoretical basis of our
probabilistic molecular pattern classification model. The basic event in molecu-
lar pattern classification involves DNA-hybridization reactions. If n is the total
number of DNA strands in the library and n,4 is the number of strands with
pattern (or hybridization event) A, then the probability of A is defined as the
limit
P(A) = lim "4 (1)
n—oo n
In molecular computation, the accuracy and reliability of the probability values
are supported by the Avogadro-scale number of molecules for representing the
population. This offers a novel way of representing the probability distribution
of data.

3 Molecular Computing for Pattern Classification

In the previous section we described how to represent the probability distribution
using DNA molecules. Essentially, the DNA library represents the joint proba-
bility P(X,Y") of the input pattern X and the output class Y. In this section we
discuss how the class label can be computed.

One criterion to determine the class label is the maximum a posterior (MAP)
decision rule. Here, the classifier computes the probability of each class condi-
tional on the input pattern x, and decides as output the class whose conditional
probability is the highest, i.e.

* P(Y 2
y" = arg max (Yx) (2)

where yo and y; are the candidate classes (for simplicity, we deal with here
the case of binary classes, however, the method is generalizable to an arbitrary
number of classes). Specific techniques differ in the methods how to model the
probability distribution P(Y,x) and how efficiently to compute the necessary
probability values.

Here we use a molecular computational method for pattern classification
using the probabilistic DNA-library. Given a query pattern x we extract from
the library all the molecules that match the query. These molecules will have class
labels from which we decide the majority label as the class of the query pattern.
A class label is a sequence appended to denote the class to which the pattern
belongs. The extraction may involve some mismatches due to the potential for
formation of double-stranded DNA duplexes. There are a lot of work going on
to design the sequences and codeword sets (see, for example, [11] and references
therein). From the machine learning point of view, the small error occurred by
DNA mismatches offers the possibility of generalization by allowing unobserved
patterns to be classified. The decision-making can still be robust because it is
based on the statistics of the huge number of molecular samples.



The molecular algorithm for computing the class labels can be summerized
as follows.

— 1. Let the library L represent the current empirical distribution P(X,Y").
— 2. Present an input (query) pattern x.
— 3. Classify x using L as follows:
e 3.1 Extract all molecules matching x into M.
e 3.2 From M separate the molecules into classes:
* Extract the molecules with label Y = gy = 0 into M°.
* Extract the molecules with label Y = y; = 1 into M.
e 3.3 Compute y* = argmaxy¢ o1} | M |/|M].

In Step 3.1, note that the count ¢(x) of x in M approximates the probability of
observing the pattern which is called evidence:

c(x)/|L| = [M|/|L| = P(x). 3)

Step 3.2 essentially computes the frequencies ¢(Y |x) of molecules belonging to
different classes Y. These are an approximation of the conditional probabilities
given the pattern, i.e. a posteriori probabilities:

c(Y|x)/|M| = |MY|/|M] = P(Y]x). (4)

Thus, in effect, the protocol computes the maximum a posteriori (MAP) crite-
rion:

* = Yx)/| M| = Yx) ~ P(Y 5
y argyren{%ﬁ}d x)/| M| argyren{%fcl}C( %) arg max Ylx) (5)

It is worth noting that for classification purposes only the relative frequency or
concentration of the molecular labels are important.

4 Molecular Computing for Pattern Learning

In the previous section we assumed the library represents the proper joint-
probability distribution P(X,Y") of patterns X and their class Y. Here we de-
scribe how the library is revised from observed data. Our update procedure is
motivated from in vitro evolution [15, 12]. In vitro evolution starts with a library
of molecules and evaluates their goodness. Then, the fitter ones are selected as
the basis for generating mutants that build the next generation of library. The
iteration of the selection-amplification cycle can come up with the identification
of molecules that best fits to the target function. In vitro evolution has been
used to identify active compounds from composite mixtures [7]. In recent years,
a number of methods have been developed to isolate molecules with desired func-
tions from libraries of small organic molecules, nucleic acids, proteins, peptides,
antibodies or single-chain antibody fragments, or other polymers [5]. In vitro
evolution has also been used to design genetic circuits [16], finite state machines
[10], and game programs [14].



We start with a random collection of DNA strands. Each DNA sequence
represents an instance (x,y) of a vector (X,Y’) of random variables of interest
in the problem domain. Without any prior knowledge the DNA sequences are
generated to represent uniform distribution of the data variables. As a new
training example (x,y) is observed, we extract from the library the patterns
matching x. The class y* of x is determined by the classification procedure
described in the previous section. Then, the matching patterns are modified
in their frequency depending on their contribution to the correct or incorrect
classification of x. If the label v of the library pattern (u,v) matching x is
correct, i.e. v =y, it is duplicated: L «— L+ {(u,v)}. Optionally, if the label v is
incorrect, i.e. v # y, the matching library pattern is removed from the library:
L — L—{(u,v)}. The update of library in this way more or less like evolutionary
computation [1,17] with the additional feature that the presentation of a training
example proceeds one generation of the library (as a population). This is also
a learning procedure since the library improves its classification performance as
new examples are presented.

The molecular algorithm for the whole evolutionary learning procedure is
summarized as follows.

1. Let the library L represent the current empirical distribution P(X,Y).

2. Get a training example (x,y).

— 3. Classify x using L as described in the previous section. Let this class be
y*.

4. Update L

o If y* = y, then L, «— L,_1 + {Ac(u,v)} for u = x and v = y for
(U,U) € Ln—l )

o If y* # y, then L, — L,_1 — {Ac(u,v)} for u = x and v # y for
(u,v) € Lp_1.

5. Goto step 2 if not terminated.

In Step 4, Ac(u,v) denotes the number of copies of (u,v). It should be noted that
here we make use of the fact that the addition or removal operation can be per-
formed in parallel in DNA computing. Addition operation can be implemented
by PCR and removal can be done by extraction of the corresponding molecules.
The update process relies upon the reliability of DNA extraction technology.
For effective implementation of the learning procedure, experimental protocols
should consider advanced techniques for improving extraction efficiencies, such
as the refinery or super-extract model. Note also that the learning rule has a
parameter Ac that reflects the strength of learning for each training example.
How to set this parameter will be addressed in the next section.

5 Derivation of Bayesian Update Rule

What is the theoretical basis of the molecular evolutionary learning algorithm
described in the previous section? We consider the evolution of the probability



distribution in the library L. Let Ly denote the initial library and let its proba-
bility distribution be Py(X,Y’). As the nth training example (x,y) is observed,
L, _1 is updated to L,,. Thus, the general form of the learning rule is written as
L, — L1 +{Ac(x,y)},

where all the class-dependent updates are integrated into one term {Ac(x, y)}.
This update entails the revision of the distribution P,_;(X,Y|x,y) of L, into
P,(X,Y|x,y) of L,,. Thus, in terms of probability the learning rule is rewritten
as

P (X, Y|x,y) = (1 + ) P1(X,Y|x,y), (6)

where d is a learning parameter determining the strength of update.
Using the Bayes rule we can write P(X,Y|x,y) = W. Note that
P(X,Y|x,y) = P,(X,Y|x,y) and P(X,Y) = P,_1(X,Y|x,y). Thus, inserting

Eqn. (6) into the Bayes rule we get

P(X7 y‘Xa Y)Pn—l(Xv Y|X7 y)
P(x,y)

(1+6)PTL—1(X7Y|Xay) = : (7>

Therefore,

P(X,y|X7Y) — P(X,y)
P(x,y)

This indicates that the molecular algorithm follows the Bayesian evolutionary
update rule [17].

Setting the parameter J is important to balance the adaptability and stability
of the molecular library as a probabilistic model for the data. The larger the
value of ¢ is, the larger gets the change of the distribution. An alternative way
to control ¢ is via the number of copies Ac which dictates how many copies
of the current example should be amplified. To see the influence of d-value on
learning effect in terms of Ac, we use the frequentist interpretation to express
the probability:

§= . (8)

P (X Y[x,y) = cna(x,9) /| L] Pa(X,Yx,y) = en(x,9)/IL] - (9)

where ¢,,_1(x,y) and ¢, (x,y) are the number of copies of x before and after the
example (x,y) is presented, respectively. The size |L| of the library is assumed
to remain constant. The difference in probability is expressed as

Cn X, Y) — Cp—1\X, Y
(6,9) — cacr ey

0P, 1(X,Y|x,y) = Po(X,Y|x,y) — Poo1 (X, Yx,y) = )

and from this we have
Ac(x,y)

§ = 2A%Y)
Cpn—1 (Xa y)

(11)

The above equation shows the relationship of the probability amplification factor
0 to the number Ac(x,y) of additional copies of molecules. It is interesting that



0 is expressed as the amplification ratio of current copies ¢,—1(x,y) since this
is equivalent to the number of PCR cycles for signal amplification. Thus, the
learning parameter § can be set indirectly by controlling the number of PCR
cycles or its fraction.

6 Simulation Results and Discussion

We performed simulations to study the properties of the molecular algorithms
before we realize them with wet DNA. The questions we are interested in are:

— Does the evolutionary learning process converge to the best solution available
by the training data?

— If yes, how fast is the convergence? And how to control the learning rate?

— To what extent is the molecular algorithm robust against external pertur-
bation?

We use the majority function of input size n = 13. This binary function
returns 1 if the input pattern contains 6 or more 1s, otherwise it returns 0. The
size of the DNA library was 2'4. Theoretically, this covers the entire space of
examples for this problem (13 inputs plus 1 output). However we generated the
library randomly, so the example space is covered only statistically. We simulate
this setting considering the case where DNA computation can not cover the
whole problem space, which is true in practice.

Initially, an average of K copies of each instance are generated in the library.
We experimented on various K values, ranging from 10 to 10%. Then, learning
proceeds by presenting training patterns. We use a training set of N examples
and an independent set of N examples for testing the performance of the molec-
ular pattern classifiers. Typically, N ranged from 500 to 1500. It is important
to note that though the training set of size N is given, the learning process is
on-line, i.e., the probability distribution of the DNA library is updated before
the next example is presented.

To answer the questions mentioned above, we ran the experiments by chang-
ing the learning-rate parameter §. We also changed the example presentation
sequences. In one set of runs we presented the positive training example and the
negative example alternatingly. This is more reasonable procedure since there is
the same number of positive examples and negative examples in the majority
function. In another set of runs we presented two positive examples and then one
negative example alternatingly. This is to test for the robustness of the molec-
ular learning process against some external, statistical perturbation. These sets
of experiments were combined with the varying values of 4.

Figure 1 shows the learning behavior of the algorithm. For this simulation
experiment, the learning rate was 6 = 0.1 and the DNA library maintained 1000
copies of molecules for each training instance. The examples were presented
randomly, alternating a positive and a negative example. The training set size
was 800, thus this graph shows the learning curve for the first two (random)
sweeps through the training set. We observe a monotonic increase in classification



rate which was evaluated on a test set of the same size but independent of the
training set.

To see the effect of the learning rate on the convergence we ran the same
experiment by changing § = 1.0. The result is shown in Figure 2. It is observed
that the classification performance steadily increases until the completion of the
first sweep of the training set, after which the performance degrades. This indi-
cates that the learning rate was set too big. Since we maintained 1000 copies of
DNA molecules for each example pattern in this experiment, this means making
1000 copies to learn a single training example may lead to overfitting.
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We varied the example presentation order to see the effect of statistically per-
turbed training sequence. Figures 3 and 4 depict the results which replace the
experiments for Figures 1 and 2 by presenting two positive examples and then



one negative example alternatingly (and randomly). We observe lower classifica-
tion performance for these cases than the cases for presenting one positive and
one negative example alternatingly. However, when the learning rate is small, the
performance still increases steadily, showing robustness against external statis-
tical perturbation. We see some overfitting or instability when the learning rate
is too big. For instance, in this run the performance starts to get lower earlier
than when the training set correctly reflects the probabilistic distribution of the
data space.

To summarize, the simulation results show the learning behavior is rela-
tively stable against the learning rate parameter ¢ in the range of 0 < 46 < 1.0
for the experimental settings we studied. Generally, when § is set too big, the
performance may degrade after a sweep through the training set or later. The
system was also relatively robust against the statistical perturbation of example
presentation sequences. This seems due to the fact that our learning algorithm
has an error-correction component (matched wrong-answering molecules are not
copied). Finally, it should also be noted that removing incorrect-answering ex-
amples from the library can speed up the learning process, but may lead to
instability of the convergence behavior (results not shown). Thus, it should be
used with care and only if necessary.

7 Conclusion

We presented a DNA computing algorithm that evolves probabilistic pattern
classifiers from training data. Based on Bayesian theory we derived the rule
for determining the learning-rate parameter and showed this is related to the
number of copies of matched molecules in the DNA library.

We performed simulations to evaluate the performance and stability of the
molecular Bayesian evolutionary algorithm. The convergence of the algorithm
was quite stable, considering the statistical bias coming from the small number
of training examples in our experimental setting. This seems attributed to the
probabilistic nature of our molecular computing based on the huge number of
molecules to represent the statistical distributions of data. It was also observed
that the convergence was relatively stable against external perturbations such
as the presentation sequence of training examples.

Our work shows that molecular computation provides several interesting
properties for probabilistic computation in general and for pattern classifica-
tion in specific. The most important property the present work is exploiting,
and thus our simulated molecular pattern classifiers are to be useful, is the huge
number of molecular-scale data items combined with the highly-parallel molecu-
lar recognition mechanism which provides the theoretical and technological basis
for the probabilistic DNA library.
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