Skip to main content

Reentry Anchoring at a Pair of Pulmonary Vein Ostia

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3504))

Included in the following conference series:

Abstract

Recent findings in a sheep model of atrial fibrillation support the hypothesis that an organized micro-reentry could be the maintaining mechanism of the arrhythmia (mother wavelet). According to these studies we constructed a two dimensional computer model of tissue in the region around a pair of pulmonary vein ostia and investigated anchoring of a reentry wave at these ostia. We used the Luo Rudy phase I ionic current model to describe membrane kinetics and generated two different stages of electrical remodelling of the cells by varying the slow inward calcium current. Our attempt to initiate a stable reentry failed for cells with higher action potential duration and higher rate adaption. By simulating a higher stadium of electrical remodelling we finally were successful, and we were able to produce a periodic reentry. This led us to the conclusion that a low rate adaption (high electrical remodelling) facilitates organized activity in the atria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nattel, S.: New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002)

    Article  Google Scholar 

  2. Gray, R., Persov, A., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998)

    Article  Google Scholar 

  3. Schilling, R.: Which patient should be referred to an electrocardiologist: supraventricular tachycardia. Heart 36, 299–304 (2002)

    Article  Google Scholar 

  4. Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., Jalife, J.: Stable microreentrant sources as a mechansism of atrial fibrillation in the isolated sheep heart. Circulation 101, 194–199 (2000)

    Google Scholar 

  5. Chen, J., Mandapati, R., Berenfeld, O., Skanes, A., Gray, R., Jalife, J.: Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc. Res. 48, 220–232 (2000)

    Article  Google Scholar 

  6. Pappone, C., Rosiano, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., Salvati, A., Dicandia, C., Mazzone, P., Santinelli, V., Gulletta, S., Chierchia, S.: Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation 102, 2619–2628 (2000)

    Google Scholar 

  7. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991)

    Google Scholar 

  8. Ten Tusscher, K., Panfilov, A.: Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Am. J. Physiol. Heart Circ. Physiol. 284, H542–H548 (2002)

    Google Scholar 

  9. Blanc, O., Virag, N., Vesin, J., Kappenberger, L.: A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans. Biomed. Eng. 48, 1229–1237 (2001)

    Article  Google Scholar 

  10. Ramirez, R.J., Nattel, S., Courtemanche, M.: Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. Am. J. Physiol. Heart Circ. Physiol. 279, H1767–H1785 (2000)

    Google Scholar 

  11. Ho, S.Y., Cabrera, J., Tran, V., Farre, J., Anderson, R., Sánchez-Quintana, D.: Architecture of the pulmonary veins: relevance to radiofrequency ablation. Heart 86, 265–270 (2001)

    Article  Google Scholar 

  12. Harrild, D.M., Henriquez, C.S.: A Computer Model of Normal Conduction in the Human Atria. Circ. Res. 87, e25–e36 (2000)

    Google Scholar 

  13. Winfree, A.T.: Rotors, fibrilation and dimensionality. In: Panfilov, A.V., Holden, A.V. (eds.) Computational Biology of the Heart, pp. 101–135. John Wiley & Sons, Chichester (1997)

    Google Scholar 

  14. Shaw, R.M., Rudy, Y.: The vulnerable window for unidirectioinal block in cardiac tissue: characterization and dependence on membrane excitability coupling. J. Cardiovasc. Electrophysiol. 6, 115–131 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wieser, L., Fischer, G., Hintringer, F., Ho, S.Y., Tilg, B. (2005). Reentry Anchoring at a Pair of Pulmonary Vein Ostia. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_19

Download citation

  • DOI: https://doi.org/10.1007/11494621_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics