Skip to main content

Dissipation of Excitation Fronts as a Mechanism of Conduction Block in Re-entrant Waves

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3504))

Abstract

Numerical simulations of re-entrant waves in detailed ionic models reveal a phenomenon that is impossible in traditional simplified mathematical models of FitzHugh-Nagumo type: dissipation of the excitation front (DEF). We have analysed the structure of three selected ionic models, identified the small parameters that appear in non-standard ways, and developed an asymptotic approach based on those. Contrary to a common belief, the fast Na current inactivation gate h is not necessarily much slower than the transmembrane voltage E during the upstroke of the action potential. Interplay between E and h is responsible for the DEF. A new simplified model emerges from the asymptotic analysis and considers E and h as equally fast variables. This model reproduces DEF and admits analytical study. In particular, it yields conditions for the DEF. Predictions of the model agree with the results of direct numerical simulations of spiral wave break-up in a detailed model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krinsky, V.I.: Fibrillation in excitable media. Cybernetics problems 20, 59–80 (1968)

    Google Scholar 

  2. Panfilov, A.V., Holden, A.V.: Self-generation of turbulent vortices in a 2-dimensional model of cardiac tissue. Phys. Lett. A 151, 23–26 (1990)

    Article  Google Scholar 

  3. Krinsky, V.I., Efimov, I.R.: Vortices with linear cores in mathematical-models of excitable media. Physica A 188, 55–60 (1992)

    Article  Google Scholar 

  4. Biktashev, V.N., Holden, A.V.: Re-entrant waves and their elimination in a model of mammalian ventricular tissue. Chaos 8, 48–56 (1998)

    Article  MATH  Google Scholar 

  5. Biktasheva, I.V., Biktashev, V.N., Dawes, W.N., Holden, A.V., Saumarez, R.C., Savill, A.M.: Dissipation of the excitation front as a mechanism of self-terminating arrhythmias. IJBC 13(12), 3645–3656 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Biktasheva, I.V., Biktashev, V.N., Holden, A.V.: Wavebreaks and self-termination of spiral waves in a model of human atrial tissue. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 293–303. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Gray, R.A., Jalife, J.: Spiral waves and the heart. Int. J. of Bifurcation and Chaos 6, 415–435 (1996)

    Article  Google Scholar 

  8. Weiss, J.N., Chen, P.S., Qu, Z., Karagueuzian, H.S., Garfinkel, A.: Ventricular fibrillation: How do we stop the waves from breaking? Circ. Res. 87, 1103–1107 (2000)

    Google Scholar 

  9. Panfilov, A., Pertsov, A.: Ventricular fibrillation: evolution of the multuple-wavelet hypothesis. Phil. Trans. Roy. Soc. Lond. ser. A 359, 1315–1325 (2001)

    Article  Google Scholar 

  10. Nolasco, J.B., Dahlen, R.W.: A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25, 191–196 (1968)

    Article  Google Scholar 

  11. Karma, A., Levine, H., Zou, X.Q.: Theory of pulse instabilities in electrophysiological models of excitable tissues. Physica D 73, 113–127 (1994)

    Article  MATH  Google Scholar 

  12. Cherry, E.M., Fenton, F.H.: Suppression of alternans and conduction blocks despite steep APD restitution: Electrotonic, memory, and conduction velocity restitution effects. Am. J. Physiol. - Heart C 286, H2332–H2341 (2004)

    Article  Google Scholar 

  13. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–456 (1961)

    Article  Google Scholar 

  14. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. In: Proc. IRE, vol. 50, pp. 2061–2070 (1962)

    Google Scholar 

  15. McKean, H.P.: Nagumo’s equation. Adv. Appl. Math. 4, 209–223 (1970)

    MATH  MathSciNet  Google Scholar 

  16. Tyson, J.J., Keener, J.P.: Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327–361 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)

    Google Scholar 

  18. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  19. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. 160, 317–352 (1962)

    Google Scholar 

  20. Biktashev, V.N.: Dissipation of the excitation wavefronts. Phys. Rev. Lett. 89(16), 168102 (2002)

    Article  Google Scholar 

  21. Biktashev, V.N.: A simplified model of propagation and dissipation of excitation fronts. Int. J. of Bifurcation and Chaos 13(12), 3605–3620 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hinch, R.: Stability of cardiac waves. Bull. Math. Biol. 66(6), 1887–1908 (2004)

    Article  MathSciNet  Google Scholar 

  23. Biktashev, V.N., Suckley, R.: Non-Tikhonov asymptotic properties of cardiac excitability. Phys. Rev. Letters 93, 168103 (2004)

    Article  Google Scholar 

  24. Biktasheva, I.V., Simitev, R.S., Suckley, R., Biktashev, V.N.: Asymptotic properties of mathematical models of excitability (2005); Submitted to Phil. Trans. Roy. Soc. A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biktashev, V.N., Biktasheva, I.V. (2005). Dissipation of Excitation Fronts as a Mechanism of Conduction Block in Re-entrant Waves. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_29

Download citation

  • DOI: https://doi.org/10.1007/11494621_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics