Skip to main content

Continuous Semantics for Strong Normalization

  • Conference paper
New Computational Paradigms (CiE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3526))

Included in the following conference series:

Abstract

We prove a general strong normalization theorem for higher type rewrite systems based on Tait’s strong computability predicates and a strictly continuous domain-theoretic semantics. The theorem applies to extensions of Gödel’s system T but also to various forms of bar recursion for which strong normalization was hitherto unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 117–309. Clarendon Press, Oxford (1992)

    Google Scholar 

  2. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom of choice. Journal of Symbolic Logic 63(2), 600–622 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger, U.: A computational interpretation of open induction. In: Titsworth, F. (ed.) Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer Science, pp. 326–334. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  4. Berger, U., Oliva, P.: Modified bar recursion and classical dependent choice. In: Logic Colloquium 2001. Springer, Heidelberg (2001) (to appear)

    Google Scholar 

  5. Bezem, M.: Strong normalization of barrecursive terms without using infinite terms. Archive for Mathematical Logic 25, 175–181 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blanqui, F., Jouannaud, J.-P., Okada, M.: The calculus of algebraic constructions. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 301–316. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Coquand, T.: Une théorie des constructions. PhD thesis, Université Paris VII (1985)

    Google Scholar 

  8. Geuvers, H., Nederhof, M.J.: A modular proof of strong normalization for the calculus of constructions. Journal of Functional Programming 1(2), 155–189 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Girard, J.-Y.: Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium, North–Holland, Amsterdam, pp. 63–92 (1971)

    Google Scholar 

  10. Luckhardt, H.: Extensional Gödel Functional Interpretation – A Consistency Proof of Classical Analysis. Lecture Notes in Mathematics, vol. 306. Springer, Heidelberg (1973)

    MATH  Google Scholar 

  11. Matthes, R.: Monotone inductive and coinductive constructors of rank 2. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 600–615. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Plotkin, G.D.: LCF considered as a programming language. Theoretical Computer Science 5, 223–255 (1977)

    Article  MathSciNet  Google Scholar 

  13. Spector, C.: Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In: Dekker, F.D.E. (ed.) Recursive Function Theory: Proc. Symposia in Pure Mathematics, vol. 5, pp. 1–27. American Mathematical Society, Providence (1962)

    Google Scholar 

  14. Tait, W.W.: Normal form theorem for barrecursive functions of finite type. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium, North–Holland, Amsterdam, pp. 353–367 (1971)

    Google Scholar 

  15. Troelstra, A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Heidelberg (1973)

    Book  MATH  Google Scholar 

  16. van de Pol, J., Schwichtenberg, H.: Strict functionals for termination proofs. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 350–364. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  17. Vogel, H.: Ein starker Normalisationssatz für die barrekursiven Funktionale. Archive for Mathematical Logic 18, 81–84 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, U. (2005). Continuous Semantics for Strong Normalization. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science, vol 3526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494645_4

Download citation

  • DOI: https://doi.org/10.1007/11494645_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26179-7

  • Online ISBN: 978-3-540-32266-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics