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Abstract. e We produce a classification of the pointclasses of sets of
reals produced by infinite time turing machines with 1-tape. The reason
for choosing this formalism is that it apparently yields a smoother clas-
sification of classes defined by algorithms that halt at limit ordinals.

e We consider some relations of such classes with other similar notions,
such as arithmetical quasi-inductive definitions.

e It is noted that the action of w many steps of such a machine can cor-
respond to the double jump operator (in the usual Turing sense): a—
a”.

e The ordinals beginning gaps in the “clockable” ordinals are admissi-
ble ordinals, and the length of such gaps corresponds to the degree of
reflection those ordinals enjoy.

1 Introduction

This paper is concerned with exploring the actions of certain models of transfinite
time Turing machines. The idea of formulating such a model is due to Hamkins
and Kidder, and [4] is the standard reference here. We refer the reader to this
article for basic description of these machines. There is some discussion there on
relating these machines to other types of “supertasks” (thus computations in-
volving Rapidly Accelerating Machines, Zeno machines, and computations done
in Malament-Hogarth spacetimes). We take the view that the infinite time Tur-
ing machines are an idealised laboratory for discussing notions of computation
involving the transfinite, much as ordinary Turing machines do for ordinary
forms of algorithmic computation. The advantage of these infinite time Turing
machines is that they may simulate these others, whilst coming uncluttered with
any “Thompson-Lamp” like worries about what state the machine is in after a
limit number of steps: we simply define a behaviour for them at limit stages of
time.

There have been suggestions of other models: a 1-tape version ([4] had three
tapes, one for input, one for scratch work, and one for output.) The one defining
feature of such machines is that, of course, if they can take transfinite time,
they can read and out put infinite strings of {0,1} bits. Such a string we shall



identify with a subset of N or equivalently with a member of Cantor space
“2. Such devices work acording to an ordinary Turing program at “ordinary”
successor stages of time, but of course one must specify what these machines do
at limit stages of ordinal time. A limit rule is needed to specify what a cell on
the tape contains at limit time A if it has altered unboundedly in A. The class
of “computable” functions is surprisingly robust if one alters these limit rules
within reason, but the pointclasses of what kinds of real numbers is on the tape
at particular times can and does vary.

We can relate these “infinite time Turing Machines” (ITTM’s) to some other no-
tions that have appeared: the arithmetical quasi-inductive definitions (Burgess)[3];
distilled from the notion of sets of integers defined by Herzberger revision se-
quences ([8],[7); the partial fized point semantics of Kreutzer [10]. In one sense
these definitions are all different facets of the same many sided coin: any one
such notion can be replicated or simulated by another, and proofs and techniques
formulated with one notion are usually translatable to another.

Pointclasses can be defined by functions delimiting the number of steps that
an infinite time Turing machine was allowed to take before converging. We in-
vestigate these, so to speak, “TIME” classes a little here. The questions these
pointclasses raise are really in turn unanswered questions about the action of
such machines. [4] mentions the existence of “gaps” in the order types of halting
times of machines on integer inputs. The issue of what those gaps were was not
resolved. It was also at that time an open question as to whether a machine on
an integer input could require longer time, meaning more ordinal stages, to run,
than could be coded by any other nachine’s output.

There is a further issue of what are these “machine” processes really? In [13] we
looked at the “global” set-theoretical properties of these machines and analysed
the relationships between halting times and ordinals produced by such machines,
and determined exactly what were the decidable sets of integers etc. However the
actual detailed analysis of what the machines were producing was passed over.
What a machine can produce in w many steps can be concretely given (see
Theorem 4 below). One could thus view a universal such machine as a “double
jump” operator, (Corollary 1), which can be iterated through the ordinals, with
a specific non-monotone limit operation of “eventual value”.

Instead of the 3-tape machines of [4], we shall use instead the 1-tape machine
model that we proposed in [15]. We feel that the results here about classifying
these classes support the use of this model.

There already has been an analysis of 1-tape machines (in [5]) where it was
surprisingly shown that 1-tape machines could not replicate all the features of
the standard 3-tape machines for functions f : “2 — “2 (although they could
for f:“2 — N.)



The difference between the machine of [5] and that of [15] is the use of a third
symbol besides 0,1 a blank (denoted “B”) to be interpreted as “undetermined”.
We enumerate the cells of the tape by (C;|i < w) with Cy being the leftmost one.
We let the contents of the i’th cell at time v be denoted by C;(v). At successor
stages of time, the cells’ contents are specified according to the usual Turing
machine program finitary rules.

We need to introduce a limit rule to specify cell values at limit times. We declare
that a cell of the machine C; at a limit time p should have contents C;(u)
determined by the contents C;(«) for a < u, according to a scheme where C;(u)
is a symbol (i.e.a 0 or 1 or B) if C;(«) was 0 (or 1 or B) for all sufficiently large
ordinals o < p; if there has been cofinally in p a value change, then C;(u) is set
to the blank symbol B.

One Tape machine limit rule: If p is a limit ordinal, then the contents
of the i’th cell on the (single) tape at time p, C;(n), is given by:

v < p)W < (v < v — Ci(v) = Ci(v)) — Ci(p) = C;(v); other-
wise set C;(u) to be a blank.

Thus if a cell’s value has varied cofinally often below p, we set the value to the
“non-determined” value of a blank. The formalism is otherwise similar to that
of [4]: at limit times, by fiat, it is in a special limit state g7, viewing cell Cy. At
successor steps of time, the action is just as for an ordinary Turing machine: it
acts according to its finite program, reading/writing and moving one cell to the
left or right.

If we identify the reals R with Cantor space 2* one then has:

Theorem 1. (cf. [15] Theorem 1 ) Let C be the class of functions F : R — R
computable by the Hamkins-Lewis machines of [4], and C' those of the one-tape
machine just specified. Then C = C’.

In general we feel that the 1-tape model has conceptual advantages, not just
that it provides a smoother theory of the classes Pf as below. The model

— has a “physical” construction that of a normal Turing machine: namely one
infinite tape

— it treats 0’s and 1’s symmetrically at limits;

— the use of a blank to assign truth values at a limit indicating “undetermined”
accords with one’s perceptions of a process that going through time vacillates
cofinally in that limit ordinal;

— allows a “clean” halting process at limits: algorithms that produce an output
only can use the “bit” in the single cell Cy at the beginning of the tape.



The latter may seem somewhat obscure, but it is the feature of the standard
model that there are 3 cells observable that creates an “odd” class of sets of
reals computable in exactly certain limit times. It should be emphasised that
for the vast majority of results, especially those of a more “global” nature, it
makes no difference whatsoever which model one uses. It is only in the mechanics
of halting, and the results pertaining thereto that can be affected. (See also a
discussion in [5] as to which ordinals are “clockable”! on 1-tape machines: there
are possibly minor variations here, but the overall picture of the machines, the
functions they compute etc, is no different if one takes the [4] or the [15] model.)

We shall define these classes as follows:

Definition 1. Let A C ¥2.
We say that A is semi-decidable if there is an (infinite time) Turing machine

computable functional p. so that
(i) x € A if and only if pe(x)|1
(ii) A is decidable if both A and its complement are semi-decidable.

By “pe(x)]1” we mean that the machine has halted with the first cell of the
tape containing a 1; similarly O etc.

We recall a definition from [4]:
Definition 2. \* =4 sup{a | Jepc(z)ly Ay € WO Ark(y) = a} .

Equivalently (and the reader may take this as a definition):

Fact 11 ([14] Theorem 1.1) A" is the supremum of halting times of any Turing
computable function on input x.

Prior to the last Fact’s proof it was thought possible that halting times might
have outrun the ordinals producible by such machines. Without the last Fact
one could not have proven:

Theorem 2. (Normal form theorem) Ve3de'Vz € “2 :
[pe(z)] — e (x)ly € “2 where y is a code for a wellordered computation

sequence for pe(z)].
The map e — €' can be made effective (in the usual sense).

Implicit in Fact 11 - when taken with the definition of decidable sets of reals [4]
- (see the discussion in [15]) is the following characterisation of such sets.

! They call an ordinal clockable if it is the length of a halting computation on 0 input



Fact 12 A € “2 is decidable if and only if there are Xy formulae in the language
of set theory wo(vo), p1(vo) so that

x € A<= Ly2[z] F @olz] <= Ly«[z] F —1]2]

We shall be concerned with classifying certain pointclasses of sets of reals that
fall strictly within AZ.

Suppose we are given any function f : D — w; of ordinary Turing degrees to
countable ordinals that is definable via a Xy formula ¢ (vg,v1), so that for any
(ordinary) Turing degree [y]7 we have f([y]r) = « iff Lly] E ¢¥(y, @); then we
may define a slice through A} defining a lightface pointclass I as follows: A € I
if and only if for some formula 6(vy) we have z € A «— Lyy[z] F 0(x). (A
boldface definition would add in a real parameter here to ¢ and 0.) How high
a rank f has in PR; modulo the Martin measure (cf [1] p386), determines the
complexity of the pointclass.

In [6] we were initially motivated by certain questions of Schindler [12] where
certain pointclasses P/ were defined that can be seen to fit into the above general
scheme. The pointclasses are strictly within a proper initial segment of Al
bounded by the function f(x) = A* (recalled below.)

We shall define these classes as follows:

Definition 3. Let f : D — wq be (standard) Turing invariant. Let A C “2.
We say that A € PY if there is a total (infinite time) Turing machine computable
functional ¢, so that

(i) A is decidable by @., that is x € A if and only if pe(x)|1

(ii) V2 € “2  @.(2)| in < f(2) steps.

By “Turing invariant” we mean that the value of f(z) is the same irrespective
of which choice of x from a degree d € D is made. Here, in this phrase, we
mean the standard notion of Turing recursion, and degree; hereafter we shall use
the notions of infinite time Turing recursion only, and shall always mean these,
unless otherwise specified.

If the value of f(x) is some constant a then the classes P/ lie strictly within the
Borel hierarchy ([12] Lemma 2.7). Recall that wi denotes the first ordinal not
recursive in x and (see [2]) that w{ is also the first z-admissible ordinal, beyond
w, where « is z-admissible, if it is the ordinal height of a transitive model of
Kripke-Platek set theory containing x. (It is admissible if it is @-admissible.)
Thus the smallest transitive set model of K P4+ Axiom of Infinity, containing x
is Lz []. The ordinals A” are z-admissible, and enjoy strong reflecting properties

(cfl4])-



If we now define f(z) = w¥ then P/ coincides with hyperarithmetic (and so we
are really still within the realms of Kleene recursion e.g. see [9]). When f(z) > wf
for all  we then truly enter for the first time the world of sets that are essentially
computed by infinite time Turing machines.

Clearly then:

Lemma 1. If f dominates the function x — \* then P? equals the class of
decidable sets.

Let fi be defined as fi(z) = wi+w+k. As [w},w+w) is a gap in the z-clockable
ordinals (in either formulation of machine: ¢f. [4] 3.4 and [5] 3.3) thus f is the
first one to interest us beyond g(z) = wf. (In [12] P% is denoted P*.)

We classify Pfo as follows. We take I" to be the pointclass of sets of reals A so
that there are formulae g (vo), ¢1(vg), which are

2y in the language L¢ ;3, with the property that
Ve € A<= Ly [] E po(x) «— —p1(x).

In other words A is in “Ay(Lyz[x])”.

By the above comments then P9 is the pointclass of sets of reals that are
“A1(Lysz[2])”. Here we have:

Theorem 3. Plo =T,

The theme from the above analysis is that w many steps of the ITTM can add
two levels of definability (in the arithmetical hierarchy) to the tape’s contents,
and hence the double Turing jump nature of this operation. As a corollary to
the method of proof of I" C P/ in the above, we may state this as: that:

Theorem 4. There is an infinite time program P. so that on 0 input (0,0,0,...),
after w many steps the tape contains a code for Fin =g {n|W, is finite } (where
W, = dom,, for ¢, a standard Turing computable function.)

Fin is complete Xy whence follows our remarks on the double jump of the
abstract. To be more precise, as the tape works in 3* (rather than 2¢), for the
program P, under discussion, Fin = {n|Cs,(w) = 1}. Fin is thus recursive in
(Cr(w)k < w).

This is result is best possible. More formally put:

Theorem 5. Let g = (Ci(w)|k < w) code the contents of the tape after some
program on 0 input has run for w steps. Then g <1 0".



Corollary 1. If, then, g is the tape’s contents after running the program P. of
Theorem 4, then g =7 Fin =1 0".

It is also not hard to see from the form of I" above that if A € Diff(< w{*, X1)
the Hausdorff difference hierarchy for levels below the first non-recursive ordinal,
then A € P%o. (Here w$* is the first non-recursive ordinal.)

Theorem 3 generalises:

Theorem 6. Let f(x) be an x-admissible ordinal which is uniformly not Ils3-
reflecting. (That is, we suppose there is a IIs formula (&) so that for all x €
“2 L] F (&) whilst for all o« < f(z) Lylz] E —p(&).) Then P/ =
Ay(Ly(z)l])-

Let Bool(I) be the class of sets of reals that are Boolean combinations of I}
where I7 is the class of similarly defined Xy (L. [x]) sets of reals.

Our methods show:

Theorem 7. J,_,, P/* = Bool(I1).
Let Iy be the Ag(L,z=[z]) definable sets.
Theorem 8. [, = P/«

The reader can imagine further extensions. It is to be emphasised that these
results on the classes P/ hold only for the one tape model described in some
more detail below. For the model from [4], one has that the class P/ would turn
out to be the class of sets A that are differences of two sets in X4 (Lyz [2]), and
their complements. It is inadequate in the sense of Moschovakis [11] p.158, not
being closed under finite unions or intersections. For the comments on the double
jump operation, either model will do. In [5] a comparison of the halting times of
2-valued 1-tape machines and the 2-valued 3-tape machines was made. It was left
open (Question 3.3 of [5]) whether clockables that were not 1-tape clockable (in
the 2-valued sense) were those of compound limit length. The following (using
the methods here) provides a counterexample, and so the answer is negative (for
either type of 1-tape machine).

Theorem 9. Let ~y be the least ordinal that is I3 reflecting. Then y+w is 3-tape
clockable but not 1-tape clockable. However v+ w + 1 is 1-tape clockable.

In [4] it is proven that no admissible ordinal is clockable: thus every admissible
ordinal either starts a gap, or lies within a gap, in the clockable ordinals. We
show:



Theorem 10. If a is an ordinal starting a gap in the clockables, then « is
admissible.

Again, this is for any machine formulation.
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