Skip to main content

Ultra Low-Power Neural Inspired Addition: When Serial Might Outperform Parallel Architectures

  • Conference paper
Book cover Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

In this paper we analyse a serial (ripple carry) and a parallel (Kogge-Stone) adder when operating in subthreshold at 100nm and 70nm. These are targeted for ultra low power consumption applications. The elementary gates used are threshold logic gates (perceptrons). Simulations have been performed both with and without considering the delay on the wires. These simulations confirm that wires play a significant role, reducing the speed advantage of the parallel adder (over the serial one) from 4.5x to 2.2–2.4x. A promising result is that the speed of both adders improves more than 10x when migrating from 100nm to 70nm. The full adder based on threshold logic gates (used in the ripple carry adder) improves on previously known full adders, achieving 1.6fJ when operated at 200mV in 120nm CMOS. Finally, the speed of the parallel adder can be matched by the serial adder when operating at only 10–20% higher V dd , while still requiring less power and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ITRS: The International Technology Roadmap for Semiconductors (2004), http://public.itrs.net/

  2. Beiu, V., Rückert, U., Roy, S., Nyathi, J.: On nanoelectronic architectural challenges and solutions. In: Proc. IEEE Conference on Nanotechnology, pp. 628–631 (2004)

    Google Scholar 

  3. Burr, J.B., Shott, J.: A 200 mV self-testing encoder/decoder using stanford ultra-low-power CMOS. In: Proc. IEEE International Solid-State Circuits Conference, pp. 84–85 (1994)

    Google Scholar 

  4. Lande, T.S., Wisland, D.T., Sæther, T., Berg, Y.: FLOGIC-floating-gate logic for low-power operation. In: Proc. International Conference on Electronics, Circuits, and Systems, vol. 2, pp. 1041–1044 (1996)

    Google Scholar 

  5. Kim, C.H., Soeleman, H., Roy, K.: Ultra-low-power DLMS adaptive filter for hearing aid applications. IEEE Trans. on VLSI Systems 11, 1058–1067 (2003)

    Article  Google Scholar 

  6. Wentzloff, D.D., Calhoun, B.H., Min, R., Wang, A., Ickes, N., Chandrakasan, A.P.: Design considerations for next generation wireless power-aware microsensor nodes. In: Proc. International Conference on VLSI Design, pp. 361–367 (2004)

    Google Scholar 

  7. Ishibashi, K., Yamashita, T., Y, A., Minematsu, I., Fuji-moto, T.: A 9uW 50MHz 32b adder using a self-adjusted forward body bias in SoCs. In: Proc. International Solid-State Circuits Conference, vol. 1, pp. 116–119 (2003)

    Google Scholar 

  8. Soeleman, H., Roy, K., Paul, B.: Robust subthreshold logic for ultra-low power operation. IEEE Transactions on VLSI Systems 9, 90–99 (2001)

    Article  Google Scholar 

  9. Paul, B.C., Raychowdhury, A., Roy, K.: Device optimization for digital subthreshold logic operation. IEEE Transactions on Electron Devices 52, 237–247 (2005)

    Article  Google Scholar 

  10. Calhoun, B.H., Wang, A., Chandrakasan, A.: Device sizing for minimum energy operation in subthreshold circuits. In: Proc. IEEE Custom Integrated Circuits Conference, pp. 95–98 (2004)

    Google Scholar 

  11. Beiu, V., Quintana, J., Avedillo, M.: VLSI impl. of threshold logic: A comprehensive survey. IEEE Transactions on Neural Networks 14, 1217–1243 (2003)

    Article  Google Scholar 

  12. Beiu, V.: Constructive threshold logic addition: A synopsis of the last decade. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 745–752. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Celinski, P., Al-Sarawi, S., Abbott, D., Cotofana, S., Vassiliadis, S.: Logical effort based design exploration of 64-bit adders using a mixed dynamic-cmos/threshold-logic approach. In: Proc. Annual Symposium on VLSI, pp. 127–132 (2004)

    Google Scholar 

  14. Aunet, S., Berg, Y., Tjore, O., Næss, Ø., Sæther, T.: Four-MOSFET floating-gate UV-programmable elements for multifunction binary logic. In: Proc. Multiconference on Systemics, vol. 3, pp. 141–144 (2001)

    Google Scholar 

  15. Aunet, S., Oelmann, B., Abdalla, S., Berg, Y.: Reconfigurable subthreshold CMOS perceptron. In: Proc. IEEE International Joint Conference on Neural Networks, pp. 1983–1988 (2004)

    Google Scholar 

  16. Sulieman, M., Beiu, V.: Characterization of a 16-bit threshold logic single electron technology adder. In: Proc. International Symposium on Circuits and Systems, pp. 681–684 (2004)

    Google Scholar 

  17. Beiu, V.: A novel highly reliable low-power nano architecture: When von Neumann augments Kolmogorov. In: Proc. Application-specific Systems, Architectures and Processors, pp. 167–178 (2004)

    Google Scholar 

  18. Iwamura, H., Akazawa, M., Amemiya, Y.: Single-electron majority logic circuits. IEICE Transactions on Electronics E18-C, 42–48 (1998)

    Google Scholar 

  19. Kogge, P., Stone, H.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Transactions on Computers, 786–793 (1973)

    Google Scholar 

  20. Cao, Y., Sato, T., Orshansky, M., Sylvester, D., Hu, C.: New paradigm of predictive MOSFET and interconnect modeling for early circuit design. In: Proc. IEEE Custom Integrated Circuits Conference, 201–204 (2000), http://www-device.eecs.berkeley.edu/~ptm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beiu, V., Djupdal, A., Aunet, S. (2005). Ultra Low-Power Neural Inspired Addition: When Serial Might Outperform Parallel Architectures. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_60

Download citation

  • DOI: https://doi.org/10.1007/11494669_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics