
Soundness of Resource-Constrained

Workflow Nets

Kees van Hee, Alexander Serebrenik, Natalia Sidorova, and Marc Voorhoeve

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee, a.serebrenik, n.sidorova, m.voorhoeve}@tue.nl

Abstract. We study concurrent processes modelled as workflow Petri
nets extended with resource constraints. We define a behavioural cor-
rectness criterion called soundness: given a sufficient initial number of
resources, all cases in the net are guaranteed to terminate successfully,
no matter which schedule is used. We give a necessary and sufficient con-
dition for soundness and an algorithm that checks it.
Keywords: Petri nets; concurrency; workflow; resources; verification.

1 Introduction

In systems engineering, coordination plays an important role on various levels.
Workflow management systems coordinate the activities of human workers; the
principles underlying them can also be applied to other software systems, like
middleware and web services. Petri nets are well suited for modelling and verifi-
cation of concurrent systems; for that reason they have proven to be a successful
formalism for Workflow systems (see e.g. [1–4]).

Workflow systems can be modelled by so-called Workflow Nets (WF-nets) [1],
i.e. Petri nets with one initial and one final place and every place or transition
being on a directed path from the initial to the final place. The execution of
a case is represented as a firing sequence that starts from the initial marking
consisting of a single token on the initial place. The token on the final place with
no garbage (tokens) left on the other places indicates the proper termination
of the case execution. A model is called sound iff every reachable marking can
terminate properly.

WF-nets are models emphasising the partial ordering of activities in the pro-
cess and abstracting from resources, such as machines, manpower or money,
which may further restrict the occurrence of activities. In this paper we consider
the influence of resources on the processing of cases in Workflow Nets. We con-
sider here only durable resources, i.e. resources that are claimed and released
during the execution, but not created or destroyed. We introduce the notion of
the Resource-Constrained Workflow net (RCWF-net), which is a workflow net
consisting of a production (sub)net — a workflow net where resources are ab-
stracted away, and a number of resource places restricting the functionality of
the production net.

We adapt the notion of generalised soundness introduced for WF-nets [11] to
the nature of RCWF-nets: We say that an RCWF-net with k case tokens (tokens
on the initial place of the production net) and a resource marking R is (k ,R)-
sound iff all cases can terminate properly, whatever choices are made during the
execution, and all resources are returned to their places. We will say that an
RCWF-net is sound iff there exists a resource marking R0 such that the RCWF-
net is (k ,R)-sound for any number of cases k and any resource marking R ≥ R0.
This definition is very natural, especially in the area of business processes, since
we would like to have a system specification such that any number of orders
could be processed correctly, and buying new machines or obtaining additional
financial resources would not require to reconsider the specification, lest the
system become unreliable.

In many practical applications, cases processed in the Workflow net are in-
dependent of each other, which can be modelled by introducing simple colours
for tokens going through the production net. We build a transition system corre-
sponding to the work of the production net with a single initial token, extending
this transition system with the information about consumptions and releases of
resources for every transition in it. Then we represent this transition system as a
state machine, which can be considered as a model of the production net where
the colours of tokens can be removed without influencing the system behaviour,
and finally we extend this state machine up to the RCWF-net by adding resource
places according to information about resource consumptions/releases that we
have for every transition of the net. Thus our task of checking the correctness
of arbitrary RCWF-nets is reduced to checking the correctness of RCWF-nets
whose production nets are state machines.

In this paper we consider only RCWF-nets with one resource type, which is
sufficient for many practical applications (memory and money are typical exam-
ples of such resources). We give a necessary and sufficient condition of soundness
for the nets of this class and give a decision algorithm with a polynomial com-
plexity w.r.t. the number of states of the state machine describing the behaviour
of the production net.

Related work The problem of the correct functioning of parallel processes that
share resources is not new at all. The famous banker’s algorithm of Dijkstra
(cf. [8]) is one of the oldest papers on this topic. The problem of the banker’s
algorithm is different from ours, because in the bankers algorithm a schedule
(i.e. an ordering of processes for granting their resource claims) is designed. It
is a pessimistic approach because it assumes that each process might eventually
claim its maximal need for resources, a number that has to be known in advance.
In our situation the pessimistic scheduling is too restrictive. Another important
difference is that we do not consider a scheduling strategy at all: we look for
conditions such that a workflow engine can execute tasks (i.e. fire transitions)
as soon as all preliminary work has been done, if there are enough resources
available. So the workflow engine may assign resources considering the local

state only. This means that if the processes are designed properly, a standard
workflow engine can be used to execute the process in a sound way.

The problem of resource sharing in flexible manufacturing systems has been
studied extensively, specifically by modelling them as Petri nets (see [14, 13, 10,
6, 9] for an overview of works in this field). In these works the authors focus
on extending a model that represents the production process with a scheduler
in order to avoid deadlocks and to use resources in the most efficient way. As
mentioned above, our goal is to allow the workflow engine to execute processes
without further scheduling. Therefore we concentrate here on fundamental cor-
rectness requirements for RCWF-nets: resource conservation laws (every claimed
resource is freed before the case terminates and no resource is created) and the
absence of deadlocks and livelocks that occur due to the lack of resources.

In [5] the authors consider structural analysis of Workflow nets with shared
resources. Their definition of structural soundness corresponds approximately to
the existence of k cases and R resource tokens such that the net is sound for
this k and R. We consider systems where a number of cases with id’s are going
through the net and the number of available resources can vary; so we require
that the system should work correctly for any number of cases and resources.
Therefore the results of [5] are not applicable to our case.

The rest of the paper is organised as follows. In Section 2, we sketch the basic
definitions related to Petri nets and Workflow nets. In Section 3 we introduce the
notion of Resource-Constrained Workflow Nets and define the notion of sound-
ness for RCWF-nets. In Section 4 we give a necessary and sufficient condition of
soundness and in Section 5 we give a decision algorithm for soundness. We con-
clude in Section 6 with discussing the obtained results and indicating directions
for future work.

2 Preliminaries

N denotes the set of natural numbers and Q the set of rational numbers.
Let P be a set. A bag (multiset) m over P is a mapping m : P → N. The set

of all bags over P is NP . We use + and − for the sum and the difference of two
bags and =, <,>,≤,≥ for comparison of bags, which are defined in a standard
way. We overload the set notation, writing ∅ for the empty bag and ∈ for the
element inclusion. We write e.g. m = 2[p] + [q] for a bag m with m(p) = 2,
m(q) = 1, and m(x) = 0 for all x 6∈ {p, q}. As usual, |m| stands for the number
of elements in bag m.

For (finite) sequences of elements over a set T we use the following notation:
The empty sequence is denoted with ε; a non-empty sequence can be given by
listing its elements. A concatenation of sequences σ1 and σ2 is denoted with
σ1σ2, tσ and σt stand for the concatenation of t and sequence σ and vice versa,
and σn for the concatenation of n sequences σ.

Transition Systems A transition system is a tuple E = 〈S , Act,T 〉 where S
is a set of states, Act is a finite set of action names and T ⊆ S × Act × S is a

transition relation. A process is a pair (E , s0) where E is a transition system and

s0 ∈ S an initial state. We denote (s1, a, s2) ∈ T as s1
a

−→E s2, and we say that

a leads from s1 to s2 in E . We omit E and write s
a

−→ s ′ whenever no ambiguity
can arise. For a sequence of transitions σ = t1 . . . tn we write s1

σ
−→ s2 when

s1 = s0 t1−→ s1 t2−→ . . .
tn−→ sn = s2. In this case we say that σ is a trace of E .

Finally, s1
∗

−→ s2 means that there exists a sequence σ ∈ T ∗ such that s1
σ

−→ s2.
We say that s2 is reachable from s1 iff s1

∗
−→ s2.

Petri nets A Petri net is a tuple N = 〈P ,T ,F+,F−〉, where:

– P and T are two disjoint non-empty finite sets of places and transitions
respectively; we call the elements of the set P ∪ T nodes of N ;

– F+ and F− are mappings (P × T) → N that are flow functions from tran-
sitions to places and from places to transitions respectively.

F = F+ − F− is the incidence matrix of net N .
We present nets with the usual graphical notation.
Given a transition t ∈ T , the preset •t and the postset t• of t are the bags

of places where every p ∈ P occurs F−(p, t) times in •t and F+(p, t) times in
t•. Analogously we write •p, p• for pre- and postsets of places. We will say that
a node n is a source node iff •n = ∅ and n is a sink node iff n• = ∅.

A marking m of N is a bag over P ; markings are states (configurations) of
a net. A pair (N ,m) is called a marked Petri net. A transition t ∈ T is enabled
in marking m iff •t ≤ m. An enabled transition t may fire. This results in a

new marking m ′ defined by m ′ def

= m − •t + t•. We interpret a Petri net N as a
transition system/process where markings play the role of states and firings of

the enabled transitions define the transition relation, namely m + •t
t

−→ m + t•,
for any m ∈ NP . The notion of reachability for Petri nets is inherited from the
transition systems. We denote the set of all markings reachable in net N from
marking m as R(N ,m). We will drop N and write R(m) when no ambiguity
can arise.

Place invariants (see [12]) A place invariant is a row vector I : P → Q such
that I · F = 0. When talking about invariants, we consider markings as vectors.

State machines A subclass of Petri nets that we will heavily use further on is
state machines. State machines can represent conflicts by a place with several
output transitions, but they cannot represent concurrency and synchronisation.
Formally: Let N = 〈S ,T ,F 〉 be a Petri net. N is a state machine (SM) iff
∀ t ∈ T : |•t|= 1∧ |t•|= 1.

Workflow Petri nets In this paper we primarily focus upon the Workflow
Petri nets (WF-nets) [1]. As the name suggests, WF-nets are used to model the
processing of tasks in workflow processes. The initial and final nodes indicate
respectively the initial and final states of processed cases.

Definition 1 (WF-net). A Petri net N is a Workflow net (WF-net) iff:

1. N has two special places: i and f . The initial place i is a source place, i.e.
•i = ∅, and the final place f is a sink place, i.e. f • = ∅.

2. For any node n ∈ (P ∪T) there exists a path from i to n and a path from n
to f .

We consider the processing of multiple tasks in Workflow nets, meaning that
the initial place of a Workflow net may contain an arbitrary number of tokens.
Our goal is to provide correctness criteria for the design of these nets. One natural
correctness requirement is proper termination, which is called soundness in the
WF-net theory. We will use the generalised notion of soundness for WF-nets
introduced in [11]:

Definition 2 (soundness of WF-nets).

N is k -sound for some k ∈ N iff for all m ∈ R(k [i]), m
∗

−→ k [f].
N is sound iff it is k-sound for all k ∈ N.

3 Resource-Constrained Workflow Nets

Workflow nets specify the handling of tasks within the organisation, factory,
etc. without taking into account resources available there for the execution. We
extend here the notion of WF-nets in order to include information about the use
of resources into the model.

A resource belongs to a type; we have one place per resource type in the net
where the resources are located when they are free. We assume that resources are
durable, i.e. they can neither be created nor destroyed, they are claimed during
the handling procedure and then released again. Typical examples of resources
are money, memory, manpower, machinery. By abstracting from the resource
places we obtain the WF-net that we call production net.

Definition 3 (RCWF-net). A WF-net N = 〈Pp ∪Pr ,T ,F+
p ∪F+

r ,F−

p ∪F−

r 〉
with initial and final places i , f ∈ Pp is a Resource-Constrained Workflow net
(RCWF-net) with the set Pp of production places and the set Pr of resource
places iff

– Pp ∩ Pr = ∅,
– F+

p and F−

p are mappings (Pp × T) → N,
– F+

r and F−

r are mappings (Pr × T) → N, and
– Np = 〈Pp ,T ,F+

p ,F−

p 〉 is a WF-net, which we call the production net of N .

Workflow nets with id-tokens Cases processed in the Workflow net are often
independent of each other, i.e. tokens related to different cases cannot interfere
with each other. This can be modelled by assigning a unique id-colour to each
case, and allowing firings only on the tokens of the same colour. Colouring does
not concern the resource tokens: resources are shared by all cases processed in
the net and are colourless.

Therefore, we extend the semantics of Petri nets by introducing id-tokens.
Our RCWF-nets will have tokens of two types: coloured tokens on production
places, which are pairs (p, a), where p is a place and a ∈ Id is an identifier, and
uncoloured tokens on resource places. We assume Id to be a countable set. We
will write xp for the projection of x ∈ NP on production places (coloured part
of the marking) and xr for the projection of x on resource places (uncoloured
part). A transition t ∈ T is enabled in m iff (•t)r ≤ m and there exists a ∈ Id
such that mp contains tokens on (•t)p with identifier a. A firing of t results
in consuming these tokens and producing tokens with identifier a to (t•)p and
uncoloured tokens to (t•)r . Later on, we will use the extended semantics when
working with id-tokens, and the standard semantics for classical tokens.

Though being a very simple sort of coloured nets, WF-nets with id-tokens are
often expressive enough to reflect the essence of a modelled process, separating
different cases which are processed in the net concurrently.

Soundness of RCWF-nets Soundness in WF-nets is the property that says
that every marking reachable from an initial marking with k tokens on the initial
place terminates properly, i.e. it can reach a marking with k tokens on the final
place, for an arbitrary natural number k . In the RCWF-net, the initial marking
of the net is a marking with some tokens on the initial place and a number of
resource tokens on the resource places. With the proper termination for RCWF-
nets we mean that the resource tokens are back to their resource places and all
tasks are processed correctly, i.e. all the places of Np except for f are empty.
Moreover, we want the net to work properly not only with some fixed amount of
resources but also with any greater amount: we want the verified system to work
correctly also when more money, memory, manpower, or machinery is available.
On the other hand, it is clear that there is some minimal amount of resources
needed to guarantee that the system can work at all.

Another correctness requirement that should be reflected by the definition of
soundness is that resource tokens cannot be created during the processing, i.e.
at any moment of time the number of available resources does not exceed the
number of initially given resources. The extended definition of soundness reads
thus as follows:

Definition 4 (soundness of RCWF-nets). Let N be an RCWF-net.
N is (k ,R)-sound for some k ∈ N,R ∈ NPr iff for all m ∈ R(

∑
a∈Id [(i , a)] +R)

with |Id|= k holds: mr ≤ R and m
∗

−→ (
∑

a∈Id [(f , a)] + R).
N is k -sound iff there exists R ∈ NPr such that N is (k ,R′)-sound for all R′ ≥ R.
N is sound iff there exists R ∈ NPr such that N is (k ,R′)-sound for all k ∈
N,R′ ≥ R.

The soundness problem is a parameterised problem formulated on a coloured
Petri net. We will first use the nature of the colouring to reduce this problem to
a problem on an uncoloured net.

Lemma 5. The production net of a sound RCWF-net is 1-sound.

Proof. Since we want to prove 1-soundness, we only have to consider the pro-
cessing of a single case in the net, and therefore all production tokens have the
same colour, which we abstract from. Let N be a sound RCWF-net and assume
that Np is not 1-sound. Then there exist a firing sequence σ and a production

marking mp such that [i]
σ

−→Np
mp and mp 6

∗
−→Np

[f]. Take enough resources
m0 ∈ NPr to enable σ in N , then mp + mr is reachable in (N , [i] + m0) but

mp + mr 6
∗

−→N [f] + m0, which contradicts the soundness of the RCWF-net. ut

1-soundness of the production net is thus a necessary condition of the sound-
ness of the RCWF-net. 1-soundness of a WF-net can be checked by checking
that the closure1 of the WF-net is live and bounded [1]. In the rest of the paper
we assume that the check of 1-soundness of the production net has been done
and its result is positive.

Corollary 6. For any sound RCWF-net N , R(Np , [(i , a)]) is finite for any a ∈
Id.

Proof. All production tokens in (Np , [i , a]) will have colour a and thus the colour
does not influence the behaviour of the net and we can abstract from it. Assume
R(Np , [i]) is infinite. Then there are m1,m2 ∈ R(Np , [i]) such that m2 = m1 + δ

for some δ > ∅. Since N is sound, Np is 1-sound and m1
∗

−→Np
[f]. Thus

m1+δ
∗

−→Np
[f]+δ. Hence [f]+δ ∈ R(Np ,m2) ⊆ R(Np , [i]) and [f]+δ

∗
−→Np

[f],
which is impossible since f is a sink place and any transition of Np has at least
one output place. ut

Given an RCWF-net N with one resource type we construct a resource-
constrained state machine WF-net with the same behaviour as N as follows.
First, let T be a transition system corresponding to (Np , [i]) extended with the
information about resource consumption and production for every transition
of T . Then we build a resource-constrained state machine workflow net N ′ by
creating a place for every state of T and a transition with the corresponding
resource consumption/production for every transition of T . Observe that due to
the use of id-tokens, N ′ is sound iff N is. Hence, we can check soundness of an
RCWF-net by checking soundness of the corresponding state machine workflow
net.

In this paper we restrict our attention to Resource-Constrained Workflow
nets with one type of resources. This is a typical situation in various practical
applications with memory, money or manpower being the considered resource.
Therefore, in the remainder of the paper we consider only state machine workflow
nets with one resource type (SM1WF-nets):

Definition 7. An RCWF-net N = 〈Pp ∪Pr ,T ,F+
p ∪F+

r ,F−

p ∪F−

r 〉 is called a
state machine workflow net with one resource type (SM1WF-net) if Pr = {r}
and the production net Np of N is a state machine.

1 The closure of a WF-net N is the net obtained by adding to N a transition with f
as the input place and i as the output place.

Note that a production token in the SM1WF-net represents a part of a pro-
duction marking of the original RCWF-net related to one case (one id-colour).
Thus all production tokens in the SM1WF-net have different id-colours. Note
that every firing in an SM1WF-net requires only one production token (and a
number of resource tokens) and results in the production of a single production
token (and a number of resource tokens). Therefore we can abstract from colours
when considering soundness of SM1WF-nets.

For SM1WF-nets we write ◦t and t◦ for the input/output place of t in the
production net.

4 Soundness Check for SM1WF-nets

In this section we will give a necessary and sufficient condition for the soundness
of SM1WF-nets. We start by introducing a notion of path that we will use here.
Unlike a trace, a path does not deal with the processing of multiple production
tokens. Formally, given an SM1WF-net N , a path is a sequence t1 . . . tn of tran-
sitions in T such that ∀ k : 1 ≤ k < n : t◦k = ◦tk+1. We write ◦σ and σ◦ for
the input and the output place of a nonempty path σ = t1 . . . tn , i.e. for ◦t1, t

◦

n

respectively. A path σ is called a successor of a path ρ (and ρ a predecessor of
σ) if ρ◦ = ◦σ. Their juxtaposition ρσ then is again a path of N .

With every path we associate three numbers: its resource production, con-
sumption and effect.

Definition 8. Let N be an SM1WF-net. The resource effect E, production P
and consumption C are defined as follows:

– for the empty path ε, E(ε) = P(ε) = C(ε) = 0;
– for a path t, t ∈ T, E(t) = t•(r) − •t(r), P(t) = t•(r), and C(t) = •t(r);
– for a path σt, E(σt) = E(σ)+E(t), P(σt) = max(P(t),P(σ)+E(t)) and for

a path tσ, C(tσ) = max(C(t), C(σ) − E(t)).

The notion of effect allows us to distinguish three kinds of paths. A path σ

is called a C-path (consumption path) if E(σ) < 0, an E-path (equality path) if
E(σ) = 0, and a P-path (production path) if E(σ) > 0.

Example 9. Now we will illustrate the intuitive meaning of E ,P and C on an
example and in the rest of the section we will prove that E ,P and C confirm
this intuition indeed. Consider paths tu and vx of SM1WF-net N in Fig. 1.2

The resource effect of these paths E(tu) = 1 − 4 + 5 − 2 = 0 and E(vx) =
3 − 1 + 3 − 2 = 3, which corresponds to the change of the number of resource
tokens due to the firing of the transitions of the corresponding path. P(tu) =
max(P(u),P(t) + E(u)) = max(5, 1 + 3) = 5 and P(vx) = max(P(x),P(v) +

2 Instead of drawing a resource place and its in- and outgoing arcs, we put the weights
of the arcs from and to the resource place under the corresponding transitions. So
(4, 1) for transition t means that t consumes 4 resource tokens and then releases 1
resource token.

N

 i
 p

s
 q

t

(4,1)

u

(2,5)

 f

v

(1,3)

w

(3,1)

x

(2,3)

y

(6,6)

Fig. 1. Example of an SM1WF-net

E(x)) = max(3, 3 + 1) = 4. Note that P(tu),P(vx) correspond to the minimal
number of resource tokens we are guaranteed to have immediately after the firing
of tu/vx respectively. C(tu) = max(C(t), C(u) − E(t)) = max(4, 2 + 3) = 5 and
C(vx) = max(C(v), C(x)−E(v)) = max(1, 2−2) = 1. C(tu) and C(vx) correspond
to the minimal number of resource tokens needed to make the firings of tu/vx
possible.

4.1 Properties of the resource-effect function

Lemma 10. Let N be a sound SM1WF-net. Then for any place p ∈ Pp and any
two paths σ and ρ such that ◦σ = ◦ρ = i and σ◦ = ρ◦ = p holds E(σ) = E(ρ) ≤ 0.

Proof. Since N is sound, Np is sound as well and there exists a firing sequence

γ such that [p]
γ

−→ [f]. Take R large enough to make both σγ and ργ firable

from [i] + R[r]. Thus [i] + R[r]
σ

−→ [p] + (R + E(σ))[r]
γ

−→ [f] + R[r] and

[i] + R[r]
ρ

−→ [p] + (R + E(ρ))[r]
γ

−→ [f] + R[r], which implies that E(σ) = E(ρ).
Moreover, since N is sound and thus no resource creation happens, R+E(σ) ≤ R,
i.e. E(σ) ≤ 0. ut

Thus, in a sound SM1WF-net, each production place p has a unique weight
defined as −E(σ) for some σ such that ◦σ = i and σ◦ = p, showing how many
resources a production token on place p possesses. (Clearly, the weight can be
equivalently defined as E(ρ) where ρ is some sequence with ◦ρ = p and ρ◦ =
f .) This observation leads to the following place invariant property for sound
SM1WF-nets:

Lemma 11. Let N be a sound SM1WF-net with the initial place i, the final
place f , and the resource place r. Then there exists a unique place invariant W
such that W (i) = W (f) = 0, W (r) = 1. Moreover, for every place p ∈ Pp,
W (p) = −E(σ) for any σ with ◦σ = i and σ◦ = p, and hence W (p) ≥ 0 for all
p ∈ Pp.

Proof. The proof is done in a constructive way. Since N is sound, we have a
unique mapping W : P → N such that for every place p ∈ Pp W (p) = −E(σ)
where σ is some path with ◦σ = i and σ◦ = p, and W (r) = 1. By construction,
for any sound net W (i) = W (f) = 0 and W (p) ≥ 0, for all p ∈ Pp .

Now we will show that W is a place invariant, i.e. W · F = 0. Since Np is a
state machine, a column of F corresponding to a transition t has −1 in the cell
◦t , 1 in t◦ and t•(r)−•t(r) in the resource place r . Hence, the product of W and
the t-column of F can be written as −W (◦t)+W (t◦)+(t•(r)− •t(r)) ·W (r) =
E(σ)−E(σt)+ t•(r)−•t(r) = 0 (σ is some path with ◦σ = i and σ◦ = ◦t). Since
the same reasoning can be applied to any transition t , we have W · F = 0.

By induction on the length of σ with ◦σ = i , σ◦ = p, it is easy to show
that W is unique, i.e. for any invariant W ′ such that W ′(i) = W ′(f) = 0 and
W ′(r) = 1 we have W (p) = −E(σ). ut

Thus the existence of such an invariant is a necessary condition of soundness.
This condition can be easily checked by standard algebraic techniques. For net
N from Fig. 1 the invariant is r +3p +q , i.e. the weights of places are W (p) = 3,
W (q) = 1 and W (s) = 0. We assume further on that N is an SM1WF-net with
a unique place invariant W satisfying W (i) = W (f) = 0 and W (r) = 1, and
moreover, we have W (p) ≥ 0.

4.2 Properties of the consumption and production functions

The following lemma states that at least C(σ) resources are needed to execute σ

and at least P(σ) resources become available after the execution of σ.

Lemma 12. Let σ be a path in N . Then

1. If M
σ

−→ M ′ for some markings M ,M ′, then M ′(r) ≥ P(σ) and M (r) ≥
C(σ).

2. [◦σ] + C(σ)[r]
σ

−→ [σ◦] + P(σ)[r] if σ 6= ε.

Proof. We prove Part 1 by induction on the length of σ. If σ = ε, the lemma

holds. We prove the P-part by setting σ = ρt . Let M ′′ be such that M
ρ

−→

M ′′ t
−→ M ′. By the induction hypothesis, M ′′(r) ≥ P(ρ) and thus M ′(r) ≥

max(P(t),P(ρ) + E(t)), i.e., M ′(r) ≥ P(σ), completing the proof of the P-part
in Part 1. We omit the proof of the C-part since it can be obtained analogously
by taking σ = tρ.

Part 2 follows from the existence of markings M and M ′ such that

M
σ

−→ [σ◦] + P(σ)[r] and [◦σ] + C(σ)[r]
σ

−→ M ′. (1)

We prove (1) by induction on the length of σ. The case σ = t , where t ∈ T ,
is clear. For the P-part, let σ = ρt , with ρ 6= ε. By the induction hypothesis,

there exists M ′′ such that M ′′
ρ

−→ [ρ◦] + P(ρ)[r]. Note that P(σ) = P(ρt) =
max(P(t),P(ρ) + E(t)). We distinguish between two cases:

– If P(σ) = P(ρ) + E(t), then P(ρ) + E(t) ≥ P(t), i.e., P(ρ) ≥ P(t) − E(t) =
•t(r). Hence, P(ρ) ≥ C(t) and [ρ◦] + P(ρ)[r]

t
−→ [σ◦] + (P(ρ) + E(t))[r].

Recall that P(ρ) + E(t) = P(σ), i.e., [ρ◦] + P(ρ)[r]
t

−→ [σ◦] + P(σ), so we

take M = M ′′ and have M
σ

−→ [σ◦] + P(σ)[r].

– If P(σ) = P(t), then P(ρ)+E(t) ≤ P(t), i.e., P(ρ) ≤ P(t)−E(t). Therefore,

P(ρ) ≤ C(t) and we take M = M ′′ + (C(t) − P(ρ))[r]. Thus, M
ρ

−→ [ρ◦] +

C(t)[t]
t

−→ [σ◦] + P(t)[t]. Since σ = ρt , M
σ

−→ [σ◦] + P(σ)[r].

The C-part is analogous, using σ = tρ. Due to Part 1 of the lemma, M and M ′

in (1) satisfy M ≥ [◦σ] + C(σ)[r] and M ′ ≥ [σ◦] +P(σ)[r]. Hence M
σ

−→ M ′ + δ

where δ = M − ([◦σ] + C(σ)[r]) and M + δ′
σ

−→ M ′ where δ′ = M ′ − ([σ◦] +

P(σ)[r]). Thus we conclude that δ = δ′ = ∅ and [◦σ]+C(σ)[r]
σ

−→ [σ◦]+P(σ)[r].
ut

Corollary 13. E(σ) = P(σ) − C(σ) and E(σ) = W (◦σ) − W (σ◦) for all σ.

Proof. Follows directly from Lemma 12.(2) and the definition of W . ut

Corollary 14. Let k > 0 and σ be a path such that E(σ) ≤ 0. Then,

k [◦σ] + (C(σ) − (k − 1) ∗ E(σ))[r]
σk

−→ k [σ◦] + P(σ)[r]

Proof. The proof is done by induction on k with the use of Lemma 12(2) and
Corollary 13. ut

Next we show that under certain conditions two paths can be swapped.

Lemma 15 (Interchange Lemma). Let M ,M ′ be markings and σ, ρ be paths

such that E(σ) ≤ 0 ≤ E(ρ), and ρ is not a successor of σ. If M
σρ
−→ M ′ then

M
ρσ
−→ M ′.

Proof. Let M1 be a marking such that M
σ

−→ M1
ρ

−→ M ′. Since σ◦ 6= ◦ρ,
M1 ≥ [σ◦] + [◦ρ] + max(C(ρ),P(σ))[r]. Hence, M ≥ [◦σ] + [◦ρ] + max(C(ρ) −

E(σ), C(σ))[r]. Since E(σ) ≤ 0, there exists a marking M2 such that M
ρ

−→ M2

and M2 ≥ [◦σ] + [ρ◦] + max(P(ρ) − E(σ), C(σ) + E(ρ))[r]. Therefore, M2 ≥
[◦σ] + [ρ◦] + (C(σ) + E(ρ))[r]. Recall that E(ρ) ≥ 0, so M2 ≥ [◦σ] + C(σ)[r] and

thus M
ρσ
−→ M ′. ut

The next lemma gives implicit lower bounds for the number of resources in
states reachable from the initial marking and states that reach the final marking.

Lemma 16. Let M ,M ′ ∈ NP with M (r) < M ′(r).

If M ′ ∗
−→ M, there exists a C-path ρ such that M ≥ [ρ◦] + P(ρ)[r].

If M
∗

−→ M ′, there exists a P-path σ such that M ≥ [◦σ] + C(σ)[r].

Proof. Let M ′ α
−→ M . We normalise the trace α as follows. We write α as

the concatenation of paths σ1 . . . σn , where no σk+1 is a successor of σk . If α

contains a C-path σk succeeded by a P-path or by an E-path σk+1, we swap

them in α, obtaining α′. By the interchange lemma, M ′ α′

−→ M . We continue
with normalizing α′ further by using the same procedure. The normalisation
process terminates since every swap decreases the number of P- and E-paths
following a C-path.

Thus, there exists a trace β such that M ′
β

−→ M and the division of β into
paths consists of a number of P- and/or E-paths followed by C-paths. Since
M (r) < M ′(r), β contains at least one C-path. Let ρ be the last path of β. Then
ρ is a C-path, M (ρ◦) > 0 and by statement (1) of Lemma 12, M (r) ≥ P(ρ).

Similarly, if M
γ

−→ M ′, there exists a trace δ containing P-paths followed by

C- and/or E-paths such that M
δ

−→ M ′. Since M (r) < R, δ contains at least
one P-path. Let σ be the first P-path. Then by Lemma 121, M (r) ≥ C(σ). ut

We will show that the C-bound in Lemma 16 is sharp. (Sharpness of the
P-bound can be proved but is not needed here.)

Lemma 17. Let k0 > 0 and let σ be a C-path. Then there exist k > k0 and
R ∈ N such that k [i] + R[r]

∗
−→ k [σ◦] + P(σ)[r].

Proof. Let p = ◦σ, q = σ◦. There exists a path ρ with ◦ρ = i , ρ◦ = p. Since we
assume the existence of the place invariant as described in Lemma 11, E(ρ) ≤ 0.

So by Corollary 14, k [i] + (C(ρ) − (k − 1) ∗ E(ρ))[r]
ρk

−→ k [p] + P(ρ)[r] for all
k > 0. Since E(σ) < 0, there exists k > k0 such that C(σ)− (k − 1)E(σ) ≥ P(ρ).
By taking R = C(ρ)− (k − 1) ∗ E(ρ) + (C(σ)− (k − 1)E(σ)−P(ρ)), we obtain by

Corollary 14: k [i]+R(k)[r]
ρk

−→ k [p]+(C(σ)− (k −1)E(σ))[r]
σk

−→ k [q]+P(σ)[r].
ut

The construction described in the proof of Lemma 17 will be later on used
for giving a meaningful verification feedback on unsound nets, namely we will
construct an example of a deadlock/livelock in an unsound net.

Example 18. Consider the consumption path σ = w in net N ′ from Fig. 2 (which
differs from net N from Fig. 1 only in the resource consumption/production of
transition w); ◦σ = q , σ◦ = p, E(σ) = −2, C(σ) = 2. Take tv as ρ; E(ρ) =
−1, C(ρ) = 4,P(ρ) = 3. Pick some k ∈ N satisfying C(σ) − (k − 1)E(σ) ≥ P(ρ),
i.e. k ≥ 1.5, and choose R as C(ρ)− (k −1)∗E(ρ)+(C(σ)− (k −1)E(σ)−P(ρ)) =

4 + (k − 1) + 2 + 2(k − 1)− 3 = 3k . Then k [i] + 3k [r]
(tv)k

−→ k [q] + 2k [r]
wk

−→ k [p].
Note that no resources are left and thus we obtained a deadlock since we need
resources to proceed. We can get R larger than any given number just by taking
a larger k .

Finally, we are ready to state the main theorem, giving a necessary and
sufficient condition for the soundness of SM1WF nets.

N'

 i
 p

s
 q

t

(4,1)

u

(2,5)

 f

v

(1,3)

w

(2,0)

x

(2,3)

y

(6,6)

Fig. 2. Example of an unsound SM1WF-net

Theorem 19. An SM1WF net N is sound iff there exists a unique place in-
variant W such that W (i) = W (f) = 0, W (r) = 1, and moreover W (p) ≥ 0
for all p ∈ Pp, and for each C-path ρ there is a successor P-path σ such that
P(ρ) ≥ C(σ).

Proof. (⇒): Assume there exists a C-path ρ such that all succeeding P-paths
σ satisfy P(ρ) < C(σ). By Lemma 17, there exist k and R > P(ρ) such that

k [i] + R[r]
∗

−→ M = k [ρ◦] + P(ρ)[r]. If M
∗

−→ k [f] + R[r], by Lemma 16
there exists a P-path σ with M (r) ≥ C(σ), contradicting the assumption. So

M 6
∗

−→ k [f] + R[r] and the net is not sound.
(⇐): Let R0 be a maximal C(ρ) over all paths ρ of N with ρ◦ = f . The choice of
R0 ensures that if at least R0 resources are present, one token in the production
net can be successfully transferred from any place to f .

Suppose that R ≥ R0 and k [i] + R[r]
∗

−→ M . We prove by induction on

R−M (r) that there exists a marking M ′ with M ′(r) = R such that M
∗

−→ M ′,
i.e., that for any reachable marking there is a way to continue and to return all
the resources consumed so far. Note that M (r) ≤ R since the number of the
resources consumed is always non-negative, i.e. no resources are created (due to
the existence of the place invariant W). If M (r) = R, the statement clearly holds.

If M (r) < R, by applying Lemma 16 to k [i]+R[r]
∗

−→ M , we conclude that there
exists a C-path ρ such that M ≥ [ρ◦]+P(ρ)[r]. By the condition of the theorem,
there exists a P-path σ and a marking M ′′ = M − [◦σ]+ [σ◦]+E(σ)[r] such that

M
σ

−→ M ′′, so M
∗

−→ M ′′. Since M ′′(r) > M (r), the induction hypothesis is

applicable to M ′′, i.e. finally we obtain that M ′′ ∗
−→ M ′ and M ′(r) = R.

Let p ∈ Pp be such that M ′(p) > 0. Then since R ≥ R0 and by the choice of

R0, we have [p] + R[r]
∗

−→ [f] + R[r]. So M ′ ∗
−→ M ′ − [p] + [f]. We can repeat

this procedure for all p 6= f with M (p) > 0, reaching k [f] + R[r]. ut

Note that the net may be unsound if it contains a deadlock (a nonterminal
marking where there are not enough resources to proceed any further even with
one single step) or a livelock (there are always enough resources to make a

following step, but all possible steps are not “progress”-steps, i.e. we cannot
leave the cycle in order to terminate properly). With a slight modification of
the condition in Theorem 19 we can diagnose whether the net has no deadlock:
along with the invariant requirement we require that for each C-path ρ there
is a successor path σ (no matter whether σ is a P-path or a C-path) such that
P(ρ) ≥ C(σ). This reflects the requirement that there is always some next step
possible. If the net has no deadlock but does not meet the requirements of
Theorem 19, this net has a livelock.

5 Decision algorithm

The necessary and sufficient condition formulated in Theorem 19 allows to char-
acterise soundness of SM1WF-nets. The condition as stated is however not di-
rectly verifiable, since infinitely many different paths should be taken into ac-
count. In this subsection we show that checking finitely many paths is sufficient.
The decision algorithm we give here is polynomial in the size of the SM1WF-net.

We start by the following simple observation.

Lemma 20. Let σ be a cyclic path (i.e. ◦σ = σ◦). Then for any ρ1, ρ2 such that
◦σ = ρ◦1 and σ◦ = ◦ρ2 we have E(ρ1σρ2) = E(ρ1ρ2), P(ρ1σρ2) = P(ρ1ρ2), and
C(ρ1σρ2) = C(ρ1ρ2).

Proof. For E the lemma follows from Lemma 11. Results for P and C can be
obtained analogously. ut

Hence, to check the condition of Theorem 19 it is sufficient to consider acyclic
paths only. Since there are finitely many acyclic paths, soundness of SM1WF-
nets is decidable. As we showed in Section 3, the soundness of RCWF-nets can
be reduced to the soundness of SM1WF-nets, and thus we can conclude the
following:

Corollary 21. Soundness of RCWF-nets with one resource is decidable.

Next we give an efficient decision algorithm for SM1WF-nets. The algorithm
is based on the following property of paths.

Lemma 22. Let ρ, σ be paths such that ρ◦ = ◦σ. Then, P(ρσ) = max(P(ρ) +
E(σ),P(σ)) and C(ρσ) = max(C(ρ), C(σ) − E(ρ)).

Proof. Suppose [◦ρ] + A[r]
ρ

−→ [ρ◦] + B [r] = [◦σ] + B [r]
σ

−→ [σ◦] + C [r]. Then
by Lemma 12.(1) (applied both to ρ and to σ) A ≥ C(ρ) and C ≥ P(σ).
Since B = A + E(ρ) ≥ C(ρ) + E(ρ) = P(ρ) and C = B + E(σ), i.e. B =
C − E(σ) ≥ P(σ) − E(σ) = C(σ), we deduce that B ≥ max(P(ρ), C(σ)). Thus
A ≥ max(C(ρ), C(σ) − E(ρ) and C ≥ max(P(σ),P(ρ) + E(σ)). By applying

Lemma 12.(2) to ρ and σ, we deduce that [◦ρ] + max(C(ρ), C(σ) − E(ρ))[r]
ρ

−→

[ρ◦] + max(P(ρ), C(σ))[r]
σ

−→ [σ◦] + max(P(ρ) + E(σ),P(σ))[r] indeed. Finally,
using Lemma 12.(1) and Lemma 12.(2) on ρσ, we conclude that P(ρσ) =
max(P(ρ) + E(σ),P(σ)) and C(ρσ) = max(C(ρ), C(σ) − E(ρ)). ut

For X = ∅ we assume minX = ω. For p, q ∈ Pp , we define µ(p, q) as
min {P(σ)+W (q) | ◦σ = p ∧ σ◦ = q}. If ◦σ = p and σ◦ = q , then C(σ)+W (p) =
P(σ)+W (q), so µ(p, q) can alternatively be defined as min {C(σ)+W (p) | ◦σ =
p ∧ σ◦ = q}. Then, the condition from Theorem 19 can be now reformulated in
the following way, assuming the existence of the place invariant W :

Corollary 23. N is sound if and only if

∀ x ∈ Pp : min {µ(y , x) | W (y) < W (x)} ≥ min {µ(x , y) | W (y) < W (x)}.

Analogously to Corollary 23, we can show that SM1WF-net has no deadlock
iff

∀ x ∈ Pp : min {µ(y , x) | W (y) < W (x)} ≥ min {µ(x , y)}.

With these conditions we can diagnose SM1WF-nets as sound, non-sound
due to deadlock, or non-sound due to livelock.

Function µ has the following important property:

Lemma 24. For all p and q in Pp we have µ(p, q) = min {max(µ(p, x), µ(x , q)) |
x ∈ Pp}.

Proof. Recall that µ(p, q) is defined as min {P(σ) + W (q) | ◦σ = p ∧ σ◦ = q}.
Every path from p to q can be seen as ρ1ρ2 for some paths ρ1 from p to some x
and ρ2 from x to q . Hence, P(σ)+W (q) = P(ρ1ρ2)+W (q), and by Lemma 22,
P(ρ1ρ2) + W (q) = max(P(ρ1) + E(ρ2),P(ρ2)) + W (q) = max(P(ρ1) + E(ρ2) +
W (q),P(ρ2)+W (q)). Since ρ2 is one of the possible paths from x to q , P(ρ2)+
W (q) ≥ µ(x , q). By Corollary 13, E(ρ2) + W (q) = W (x). Therefore, P(ρ1) +
E(ρ2)+W (q) = P(ρ1)+W (x) and P(ρ1)+E(ρ2)+W (q) ≥ µ(p, x). Summarizing
these two parts we obtain P(σ) + W (q) = max(P(ρ2) + W (q),P(ρ1) + E(ρ2) +
W (q)) ≥ max(µ(x , q), µ(p, x)). Thus, µ(p, q) ≥ min {max(µ(p, x), µ(x , q)) | x ∈
Pp}.

Let s be such that min {max(µ(p, x), µ(x , q)) | x ∈ Pp} = max(µ(p, s), µ(s, q)),
i.e. the minimum is reached on s, and let µ(p, s) = P(σ) + W (s) for some σ

with ◦σ = p and σ◦ = s and µ(s, q) = P(γ) + W (q) for some γ with ◦γ = s
and γ◦ = q . Then, σγ is a path from p to q and it should be taken into account
while computing the minimum for µ(p, q). Hence, µ(p, q) ≤ P(σγ) + W (q) =
max(P(σ) + E(γ),P(γ)) + W (q) = max(P(σ) + E(γ) + W (q),P(γ) + W (q)) =
max(P(σ) + W (s), µ(s, q)) = max(µ(p, s), µ(s, q). It implies that µ(p, q) ≤
min {max(µ(p, x), µ(x , q)) | x ∈ Pp}.

Therefore, µ(p, q) = min {max(µ(p, x), µ(x , q)) | x ∈ Pp}. ut

Lemma 24 leads to the following efficient algorithm for computing µ. For
two matrices A,B : Pp × Pp → N, A = (a(p, q)),B = (b(p, q)), we define A ◦
B = (c(p, q)) where c(p, q) = min {max(a(p, x), b(x , q)) | x ∈ Pp}. The matrix
µ(p, q) is computed by initializing the matrix A = (a(p, q)) by a(p, p) = 0 and
a(p, q) = min {P(t) + W (q) | t ∈ T ∧ ◦t = p ∧ t◦ = q}. We then compute the
subsequent powers of A with respect to ◦. The computation eventually reaches

the fixpoint since the values in the matrix can be changed only to strictly smaller
ones with respect to a well-founded ordering on N ∪ {ω}. Moreover, Ak takes
into account all paths of length up to k . Therefore, the process terminates after
no more steps than the length of the longest acyclic path in the net. Upon
termination the matrix becomes (µ(p, q)).

Example 25. In our example net from Fig. 1, we have only one transition t
leading from i to p and W (i) = 0,W (p) = 3, C(t) = 4,P(t) = 1, giving a(i , p) =
4 initially. Our full initial matrix A and its iterations become

A =

i p q s f
i 0 4 ω ω ω

p ω 0 4 5 ω

q ω 4 0 3 ω

s ω ω ω 0 6
f ω ω ω ω 0

A2 =

i p q s f
i 0 4 4 5 ω

p ω 0 4 4 6
q ω 4 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

A3 =

i p q s f
i 0 4 4 4 6
p ω 0 4 4 6
q ω 4 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

We find A4 = A3, so A3 gives the desired µ(x , y). We now check our condition:
∀ x ∈ Pp : min {µ(y , x) | W (y) < W (x)} ≥ min {µ(x , y) | W (y) < W (x)}.
Now min {µ(y , x) | W (y) < W (x)} = min {µ(x , y) | W (y) < W (x)} = ω for
x ∈ {i , r , f }, since W (i) = W (r) = W (f) = 0 and no place has a smaller weight.
Since W (p) = 3 and all other places have smaller weight, we have min {µ(y , p) |
W (y) < W (p)} = 4 and min {µ(x , y) | W (y) < W (p)} = 4. Finally, for x = q
we have min {µ(y , q) | W (y) < W (q)} = 4 and min {µ(x , y) | W (y) < W (q)} =
3. Our condition holds, so the net is sound.

Now consider net N ′ from Fig. 2. Then the (µ(x , y)) is computed as follows:

A =

i p q s f
i 0 4 ω ω ω

p ω 0 4 5 ω

q ω 3 0 3 ω

s ω ω ω 0 6
f ω ω ω ω 0

A2 =

i p q s f
i 0 4 4 5 ω

p ω 0 4 4 6
q ω 3 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

A3 =

i p q s f
i 0 4 4 4 6
p ω 0 4 4 6
q ω 3 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

A3 is the fixpoint. Now, min {µ(y , p) | W (y) < W (p)} = 3 and min {µ(x , y) |
W (y) < W (p)} = 4, so the net is not sound. Moreover, min {µ(x , y)} = 4, and
thus we can use the construction from the proof of Lemma 17 to reproduce a
deadlock from this net (see Example 18).

Observe that the computation proposed strongly resembles the All-Pairs
Shortest Paths problem (Floyd-Warshal algorithm, see [7]; for a more efficient
algorithm see [15]; also see [16] for a survey). Hence, our computation can ben-
efit from efficient matrix multiplication algorithms. Moreover, to decrease the
number of multiplication steps we can repeatedly square the result of the pre-
vious step, i.e., instead of A,A2,A3, . . . we compute A,A2,A4, The number
of multiplication steps is logarithmic in the length of the longest acyclic path of
the net.

Corollary 26. For an SM1WF-net with P places and T transitions the sound-
ness decision algorithm presented above has complexity of O(P3 log P + T).

6 Conclusion

We have introduced an extension of Workflow nets: Resource-Constrained Work-
flow nets and defined a notion of soundness on this class of nets, which is an
extension of the soundness notion for WF-nets. In addition to the soundness
requirements for WF-nets, soundness for RCWF-nets states that no resources
are created during the processing and all resources are returned to their resource
place when the processing is completed; moreover, no deadlock or livelock can
arise due to the lack of resources. We showed how to reduce the problem of
soundness for a general class of RCWF-nets with one resource type to the prob-
lem of soundness for SM1WF-nets and gave a necessary and sufficient condition
of soundness for SM1WF-nets. The decision algorithm we described has a poly-
nomial complexity w.r.t. the number of states of the production net marked with
a single initial token.

Future work We have considered here the problem of soundness for RCWF-
nets with one resource type. Finding a necessary and sufficient condition of
soundness for RCWF-nets with multiple resource types is left for future work.
Another direction for future research is to find a method to transform a given
unsound RCWF-net into a sound one by applying modifications of one type only:
transitions may claim and release more resources than in the original situation.

Future work includes also the integration of our algorithm into tools working
with this class of nets.

References

1. W. M. P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, ICATPN’1997, volume 1248
of Lecture Notes in Computer Science. Springer-Verlag, 1997.

2. W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W. M. P. van der Aalst. Workflow verification: Finding control-flow errors using
Petri-net-based techniques. In W. M. P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management: Models, Techniques, and Empirical Stud-
ies, volume 1806 of Lecture Notes in Computer Science, pages 161–183. Springer-
Verlag, 1999.

4. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

5. K. Barkaoui and L. Petrucci. Structural analysis of workflow nets with shared
resources. In Workflow management: Net-based Concepts, Models, Techniques and
Tools (WFM’98), volume 98/7 of Computing science reports, pages 82–95. Eind-
hoven University of Technology, 1998.

6. J. Colom. The resource allocation problem in flexible manufacturing systems. In
W. van der Aalst and E. Best, editors, Application and Theory of Petri Nets 2003,
ICATPN’2003, volume 2679 of Lecture Notes in Computer Science, pages 23–35.
Springer-Verlag, 2003.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

8. E. W. Dijkstra. Ewd 623. Selected writings on computing: a personal perspective,
1982.

9. J. Ezpeleta. Flexible manufacturing systems. In C. Girault and R. Valk, editors,
Petri nets for systems engineering. Springer-Verlag, 2003.

10. J. Ezpeleta, J. M. Colom, and J. Mart́ınez. A Petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Robotics and
Automation, 11(2):173–184, 1995.

11. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and separability of work-
flow nets in the stepwise refinement approach. In W. van der Aalst and E. Best,
editors, Application and Theory of Petri Nets 2003, ICATPN’2003, volume 2679
of Lecture Notes in Computer Science, pages 337–356. Springer-Verlag, 2003.

12. K. Lautenbach. Liveness in Petri Nets. Internal Report of the Gesellschaft für
Mathematik und Datenverarbeitung, Bonn, Germany, ISF/75-02-1, 1975.

13. M. Silva and E. Teruel. Petri nets for the design and operation of manufacturing
systems. European Journal of Control, 3(3):182–199, 1997.

14. M. Silva and R. Valette. Petri nets and flexible manufacturing. In G. Rozenberg,
editor, Applications and Theory of Petri Nets, volume 424 of Lecture Notes in
Computer Science, pages 374–417. Springer, 1990.

15. T. Takaoka. Subcubic cost algorithms for the all pairs shortest path problem.
Algorithmica, 3(20):309–318, 1998.

16. U. Zwick. Exact and approximate distances in graphs – a survey. In F. Meyer
auf der Heide, editor, Algorithms – ESA 2001, 9th Annual European Symposium,
Aarhus, Denmark, August 28-31, 2001, Proceedings, Lecture Notes in Computer
Science, pages 33–48. Springer Verlag, 2001.

