
Provably Secure Double-Block-Length Hash
Functions in a Black-Box Model

言語: eng

出版者:

公開日: 2009-12-16

キーワード (Ja):

キーワード (En):

作成者: HIROSE, Shoichi

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/2310URL

Provably Secure Double-Block-Length Hash

Functions in a Black-Box Model

Shoichi Hirose

Graduate School of Informatics, Kyoto University, Kyoto 606-8501 Japan
hirose@i.kyoto-u.ac.jp

Abstract. In CRYPTO’89, Merkle presented three double-block-length
hash functions based on DES. They are optimally collision resistant in
a black-box model, that is, the time complexity of any collision-finding
algorithm for them is Ω(2�/2) if DES is a random block cipher, where
� is the output length. Their drawback is that their rates are low. In
this article, new double-block-length hash functions with higher rates
are presented which are also optimally collision resistant in the black-
box model. They are composed of block ciphers whose key length is twice
larger than their block length.

keywords: double-block-length hash function, black-box model, block
cipher

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It is one of the most important primitives
in cryptography [14] and should satisfy preimage resistance, second-preimage
resistance and collision resistance. Informally, preimage resistance means that,
given an output, it is infeasible to obtain an input which produces the output.
Second-preimage resistance means that, given an input, it is infeasible to obtain
another input which produces the same output as the given input. Collision
resistance means that it is infeasible to obtain two different inputs which produce
the same output. For simplicity, a cryptographic hash function is called a hash
function in this article.

A hash function usually consists of iteration of a compression function with
fixed input/output length and is called an iterated hash function. Compression-
function constructions are classified into two types: based on block ciphers and
from scratch. The topic of this article is the former. It minimizes design and
implementation effort with secure block ciphers. Its major drawback is slow
processing speed. However, it is compensated by fast block ciphers such as AES.
Furthermore, some recent work has pointed out weakness of SHA families [1,
18]. Thus, block-cipher-based hash functions may become more important.

Block-cipher-based hash functions are classified into two categories: single-
block-length (SBL) and double-block-length (DBL). A SBL hash function is a
hash function whose output length is equal to the block length. The output
length of a DBL hash function is twice larger than the block length.

It is well-known that the birthday attack can find a collision of a hash function
with time complexity O(2�/2), where � is the output length of the hash function.
The block length of widely used block ciphers is 64 or 128. Thus, SBL hash
functions are no longer secure in terms of collision resistance.

For DBL hash functions, many constructions have been presented [4, 7–10,
12, 15]. Among them, three DBL hash functions by Merkle [15] have been shown
to be optimally collision resistant in a black-box model: the time complexity of
any collision-finding algorithm for them is Ω(2�/2), where � is the output length.
However, their rates are at most 0.276 and they are not so efficient.

In this article, DBL hash functions are proposed which are more efficient and
optimally collision resistant in the black-box model. They can be represented in
a simple form. They are of parallel type and their rates are 1/2. They are based
on block ciphers whose key length is twice larger than the block length. Thus,
they can be constructed with AES or other previous AES candidates, which
support 128-bit blocks and 256-bit keys.

The DBL hash functions proposed in this article consist of two different block
ciphers to be provably secure. Though it seems their drawback, a genuine tweak-
able block cipher [13] will help obtain virtually two different block ciphers with
different tweaks. Furthermore, it is possible to transform a DBL hash function
with different block ciphers to the one with only one block cipher with slightly
lower rate by the method used in MDC-2 [4].

Collision resistance as well as preimage resistance of the proposed DBL hash
functions is proved in the black-box model. In this model, for the proposed
DBL hash functions, second-preimage resistance can be regarded as preimage
resistance for the output corresponding to the given input. In the black-box
model, a block cipher is assumed to be an invertible keyed random permutation.
This is an ideal but still proper assumption in that most of the attacks on block-
cipher-based hash functions do not utilize the internal structure of the block
ciphers. The technique in [3] is used in the security proofs in this article. It is
assumed that two block ciphers are independent in our analysis.

The rest of this article is organized as follows. Section 2 includes notations,
definitions and related work. In Section 3, provably secure DBL hash functions
with rate 1/2 consisting of two block ciphers are presented. Security proofs are
also shown. In Section 4, it is mentioned how to construct provably secure DBL
hash functions with one block cipher. A concluding remark is given in Section 5.

2 Preliminaries

2.1 Related Work

Preneel, Govaerts and Vandewalle [16] discussed the security of SBL hash func-
tions against several attacks. They considered SBL hash functions with compres-
sion functions represented by hi = e(k, x)⊕ z, where e is an (n, n) block cipher,
k, x, z ∈ {hi−1, mi, hi−1 ⊕ mi, v} and v is a constant. They concluded that 12
out of 64(= 43) hash functions are secure against the attacks. However, they did
not provide any formal proofs.

Black, Rogaway and Shrimpton [3] presented a detailed investigation of prov-
able security of SBL hash functions given in [16] in the black-box model. The
most important result shown in their paper is that the time complexity of any
collision-finding algorithm against 20 hash functions including the 12 mentioned
above is Ω(2�/2), where � is the output length.

Knudsen, Lai and Preneel [11] discussed the security of DBL hash functions
with rate 1 based on (n, n) block ciphers. Hohl, Lai, Meier and Waldvogel [7]
discussed the security of compression functions of DBL hash functions with rate
1/2. On the other hand, the security of DBL hash functions with rate 1 based
on (n, 2n) block ciphers was discussed by Satoh, Haga and Kurosawa [17] and
by Hattori, Hirose and Yoshida [6].

Many schemes with rate less than 1 were also presented. Merkle [15] presented
three DBL hash functions based on DES with rates at most 0.276. They are
optimally collision resistant in the black-box model. MDC-2 and MDC-4 [4] are
also DBL hash functions based on DES with rates 1/2 and 1/4, respectively. Lai
and Massey proposed the tandem/abreast Davies-Meyer [12]. They consist of a
(n, 2n) block cipher and their rates are 1/2. It is an open question whether the
four schemes are optimally collision resistant or not.

Knudsen and Preneel studied the schemes to construct secure compression
functions with longer outputs from secure ones based on error-correcting codes
[8–10]. It is also an open question whether optimally collision resistant compres-
sion functions are constructed by their schemes.

Recently, Black, Cochran and Shrimpton [2] showed that it is impossible to
construct a highly efficient block-cipher-based hash function provably secure in
the black-box model. A block-cipher-based hash function is highly efficient if it
makes exactly one block-cipher call for each message block and all block-cipher
calls use a single key.

2.2 Cryptographic Hash Functions

A cryptographic hash function H is a function which maps an input of arbitrary
length to an output of fixed length. H should satisfy the following properties.

Preimage resistance For a given output y, it is intractable to find an input x
such that y = H(x).

Second-preimage resistance For a given input x, it is intractable to find an
input x′ such that H(x) = H(x′) and x �= x′.

Collision resistance It is intractable to find a pair of inputs x and x′ such
that H(x) = H(x′) and x �= x′.

A hash function H : {0, 1}∗ → {0, 1}� usually consists of a compression
function f : {0, 1}� × {0, 1}�′ → {0, 1}� and an initial value h0 ∈ {0, 1}�. An
input m is divided into the �′-bit blocks m1, m2, . . . , ml. Then,

hi = f(hi−1, mi)

is computed successively for 1 ≤ i ≤ l and hl = H(m). H is called an iterated
hash function.

Unambiguous padding is applied to m if its length is not a multiple of �′. It
is outside the scope of this article and is not described here.

2.3 Block Ciphers and a Black-Box Model

A block cipher with the block length n and the key length κ, e : {0, 1}κ ×
{0, 1}n → {0, 1}n, is called an (n, κ) block cipher. An (n, κ) block cipher is an
invertible keyed permutation: e(k, ·) is a permutation for every k ∈ {0, 1}κ, and
it is easy to compute both e(k, ·) and e(k, ·)−1. The set of all (n, κ) block ciphers
is denoted by B(n, κ).

Most of the attacks on hash functions based on block ciphers do not utilize
the internal structure of the block ciphers. Thus, the security of hash functions
based on block ciphers is often analyzed in a black-box model, that is, under the
assumption that e(k, ·) is a random invertible permutation for each k.

In the black-box model, an encryption e and a decryption e−1 can be sim-
ulated by the following two oracles. An encryption oracle e returns a randomly
selected ciphertext for a query which is a pair of a key and a plaintext. A de-
cryption oracle e−1 returns a randomly selected plaintext for a query which is a
pair of a key and a ciphertext. The oracles e and e−1 share a table of triplets of
keys, plaintexts and ciphertexts, (ki, xi, yi)’s, which are produced by the queries
and the corresponding answers. Referring to the table, they randomly select an
answer to a new query under the restriction that e(k, ·) is a permutation for
every k. They also add the triplet produced by the query and the answer to the
table.

Without loss of generality, it is assumed that any adversary with the two
oracles e and e−1 asks only once on a triplet of a key, a plaintext and a ciphertext
obtained by a query and a corresponding answer: Once the adversary obtains
(k, x, y) by a query and the answer, he just keeps it and asks neither (k, x) nor
(k, y) afterward.

2.4 DBL Hash Functions

DBL hash functions with two block-cipher calls in their compression functions
are discussed in the article. Let f be a compression function such that

(hi, gi) = f(hi−1, gi−1, mi),

where hi, gi, mi ∈ {0, 1}n and n is the block length. f consists of fU and fL such
that

{
hi = fU (hi−1, gi−1, mi)
gi = fL(hi−1, gi−1, mi).

hi is not fed into fL and this kind of compression function is called the parallel
type. This type of compression function is considered in this article.

Each of fU and fL is composed of a block cipher as follows:
{

hi = eU (kU , xU) ⊕ zU

gi = eL(kL, xL) ⊕ zL,

where kU , xU , zU and kL, xL, zL are uniquely defined by hi−1, gi−1, mi.
The rate r of an iterated hash function of block-cipher-based f is defined by

r =
|mi|

(# of block-cipher calls in f) × n
.

It is a measure of the efficiency of block-cipher-based hash functions.
The major difference should be noticed between the DBL hash functions

previously proposed and ones proposed in the article. eU and eL are identical
for the former, but are different for the latter.

2.5 Definitions of Security

As has been discussed in this section, the security of DBL hash functions is
analyzed in the black-box model. Insecurity is quantified by success probability
of an optimal resource-bounded adversary. In the black-box model, the resource
is the number of the queries to encryption and decryption oracles.

For a set S, z ←R S represents random sampling from S under the uniform
distribution. For a probabilistic algorithm M, z ←R M(x) means that z is an
output of M with an input x and the output distribution is based on the random
choices of M and the input distribution.

Collision Resistance. The following experiment FindColHF(A, H) is introduced
to define the collision resistance of a DBL hash function H with two block
ciphers eU and eL. The adversary A is a collision-finding algorithm of H with
oracles eU , e−1

U and eL, e−1
L . Let e±1

P represent a pair of oracles eP and e−1
P for

P ∈ {U, L}.
FindColHF(A, H)

eU ←R B(n, κ); eL ←R B(n, κ);
(m, m′) ←R Ae±1

U
,e±1

L ;
if m �= m′ ∧ H(m) = H(m′) return 1; else return 0;

FindColHF(A, H) returns 1 iff A finds a collision. Let Advcoll
H (A) be the

probability that FindColHF(A, H) returns 1. The probability is taken over the
uniform distribution on B(n, κ) and coin tosses of A.

Definition 1 (Collision resistance of a hash function). For q ≥ 1, let

Advcoll
H (q) = max

A

{
Advcoll

H (A)
}

,

where A makes at most q queries to each of e±1
U and e±1

L . ♦

The following experiment FindColCF(A, f, h0) is introduced to define the
collision resistance of a compression function f with two block ciphers eU and
eL. h0 is an initial value of an iterated hash function of f .

FindColCF(A, f, h0)
eU ←R B(n, κ); eL ←R B(n, κ);
((h, m), (h′, m′)) ←R Ae±1

U
,e±1

L ;
if ((h, m) �= (h′, m′) ∧ f(h, m) = f(h′, m′)) ∨ f(h, m) = h0 return 1;
else return 0;

FindColCF(A, f, h0) returns 1 iff A finds a collision of f or a preimage of h0.
Let Advcomp

f (A) be the probability that FindColCF(A, f, h0) returns 1.

Definition 2 (Collision resistance of a compression function). For q ≥ 1,
let

Advcomp
f (q) = max

A

{
Advcomp

f (A)
}

,

where A asks at most q queries to each of e±1
U and e±1

L . ♦

Preimage Resistance. The following experiment FindPreImg(A, G) is introduced
to define the preimage resistance of G with two block ciphers eU and eL. G is a
hash function or a compression function.

FindPreImg(A, G)
eU ←R B(n, κ); eL ←R B(n, κ); y ←R {0, 1}�;

x ←R A(y)e±1
U

,e±1
L ;

if G(x) = y return 1; else return 0;

FindPreImg(A, G) returns 1 iff A finds a preimage of G for an output y chosen
randomly. Let Advimg

G (A) be the probability that FindPreImg(A, G) returns 1.

Definition 3 (Preimage resistance). For q ≥ 1, let

Advimg
G (q) = max

A

{
Advimg

G (A)
}

,

where A makes at most q queries to each of e±1
U and e±1

L . ♦
Generally speaking, second-preimage resistance is stronger security require-

ment than preimage resistance. A preimage may have some information of an-
other preimage which produces the same output. However, in the black-box
model, for the hash functions or the compression functions considered in the sub-
sequent sections, a preimage has no information useful to find another preimage.
Thus, only preimage resistance is discussed in this article.

3 Provably Secure DBL Hash Functions with Two Block
Ciphers

In this section, the security of DBL hash functions with compression functions
shown in Fig. 1 is analyzed. Let f be a compression function such that (hi, gi) =

gi−1

hi−1 hi

mi

fU

fL

eL

eUxU

kU2

zU

gixL

kL2 zL
kL1

kU1

Fig. 1. A Diagram of Compression Functions with Two Block Ciphers and with Rate
1/2

f(hi−1, gi−1, mi) and
{

hi = fU (hi−1, gi−1, mi)
gi = fL(hi−1, gi−1, mi).

fU and fL consist of (n, 2n) block ciphers eU and eL, respectively, and are
represented as follows:

{
hi = eU (kU1||kU2, xU) ⊕ zU

gi = eL(kL1||kL2, xL) ⊕ zL,

where ‘‖’ is the concatenation and kU1, kU2, xU , zU , kL1, kL2, xL, zL ∈ {0, 1}n

are represented by linear combinations of hi−1, gi−1, mi ∈ {0, 1}n. Namely,
⎛
⎜⎜⎝

kU1

kU2

xU

zU

⎞
⎟⎟⎠ = U

⎛
⎝hi−1

gi−1

mi

⎞
⎠ ,

⎛
⎜⎜⎝

kL1

kL2

xL

zL

⎞
⎟⎟⎠ = L

⎛
⎝hi−1

gi−1

mi

⎞
⎠

and both U and L are 4 × 3 {0, 1}-matrices.

3.1 Collision Resistance

In this subsection, a sufficient and simple condition of U and L is presented for
an iterated hash function of f to be collision resistant.

The collision resistance of compression functions is focused on in the remain-
ing part. It has been shown in [5, 15] that an iterated hash function is collision
resistant if its compression function is. The following lemma states the fact in
the black-box model.

Lemma 1. [3] Let H be an iterated hash function of f . Then, for q ≥ 1,
Advcoll

H (q) ≤ Advcomp
f (q). ♦

First, a notation and a simple lemma are given for later use. For 1 ≤ r ≤ 4,
let U(r) and L(r) denote 3× 3 {0, 1}-matrices obtained by deleting the r-th row
of U and L, respectively.

Lemma 2. If both U(3) and U(4) are non-singular, then

zU ∈ {xU , xU ⊕ kU1, xU ⊕ kU2, xU ⊕ kU1 ⊕ kU2}.

♦

Proof. Since U(4) is non-singular, zU can be represented by a linear combination
of xU , kU1, kU2. On the other hand, since U(3) is non-singular, zU cannot be
represented by any linear combinations of kU1, kU2. �

A sufficient condition is given for a compression function to be collision re-
sistant in the following lemma.

Lemma 3. Suppose that all of U(3), U(4), L(3), L(4) are non-singular. Then,
for every 1 ≤ q ≤ 2n−1 + 1,

Advcomp
f (q) ≤ q(q + 1)/22n−1.

♦

Proof. Let A be a collision-finding algorithm of f with oracles e±1
U and e±1

L . A
asks q queries to each of e±1

U and e±1
L .

Since both U(4) and L(4) are non-singular and
⎛
⎝kU1

kU2

xU

⎞
⎠ = U(4)

⎛
⎝hi−1

gi−1

mi

⎞
⎠ ,

⎛
⎝kL1

kL2

xL

⎞
⎠ = L(4)

⎛
⎝hi−1

gi−1

mi

⎞
⎠ ,

the correspondence between (kU1, kU2, xU) and (kL1, kL2, xL) is 1-to-1. Thus,
once a pair of an input and an output of eU , (kU1, kU2, xU , yU), is fixed by A’s
query to eU or e−1

U and its reply, an input to eL, (kL1, kL2, xL), is uniquely de-
termined. Similarly, A’s query to eL or e−1

L and its reply also uniquely determine
an input to eU .

On the other hand, it is necessary to ask a query to each of e±1
U and e±1

L in
order to obtain a pair of an input and an output of f . The fact mentioned above
implies that the correspondence between a pair of a query and a reply of e±1

U

and that of e±1
L is 1-to-1. Hence, without loss of generality, it is assumed that A

asks a query to an oracle and the corresponding query to the other oracle at a
time.

Since hi = eU (kU1||kU2, xU) ⊕ zU = yU ⊕ zU and

zU ∈ {xU , xU ⊕ kU1, xU ⊕ kU2, xU ⊕ kU1 ⊕ kU2}

from Lemma 2, hi depends both on xU and on yU and one of xU and yU is
determined randomly by a reply of the oracle. Thus, hi is randomly determined
by the oracle. gi is also randomly determined by the other oracle.

It is assumed that zU = xU and zL = xL in the rest of the proof. The proof
is similar for the other cases.

For every 1 ≤ j ≤ q, let Cj be the event such that

(xUj ⊕ yUj = h0 ∧ xLj ⊕ yLj = g0)∨
∃j′ < j (xUj ⊕ yUj = xUj′ ⊕ yUj′ ∧ xLj ⊕ yLj = xLj′ ⊕ yLj′),

where xUj , yUj and xLj , yLj correspond to the pairs of the j-th query and its
reply of e±1

U and e±1
L , respectively. Then,

Pr[Cj] ≤ j

(2n − (j − 1))2
.

Thus, if q ≤ 2n−1 + 1, then

Advcomp
f (A) ≤ Pr[C1 ∨ · · · ∨ Cq] ≤

q∑
j=1

Pr[Cj]

≤
q∑

j=1

j

(2n − (j − 1))2
≤

q∑
j=1

j

(2n − 2n−1)2

=
q(q + 1)
22n−1

.

�

The following theorem is led immediately from Lemmas 1 and 3.

Theorem 1. Let H be an iterated hash function of f . Suppose that all of U(3), U(4),
L(3), L(4) are non-singular for f . Then,

Advcoll
H (q) ≤ q(q + 1)/22n−1

for every 1 ≤ q ≤ 2n−1 + 1. ♦
From this theorem, any constant probability of success in finding a collision
implies that q = Ω(2n).

There are many compression functions satisfying the condition given in The-
orem 1. The number of U ’s such that U(3) and U(4) are non-singular is 672.
Thus, the number of compression functions satisfying the condition in Theorem 1
is 6722 = 451584.

3.2 Preimage Resistance

Preimage resistance of iterated hash functions presented in the previous subsec-
tion is discussed here.

The following lemma shows the relationship between preimage resistance of
an iterated hash function and that of its compression function. This lemma is
also implicit in [19].

Lemma 4. [3] Let H be an iterated hash function of f . Then, for q ≥ 1,
Advimg

H (q) ≤ Advimg
f (q). ♦

The preimage resistance of compression functions given in the previous sub-
section is presented in the following lemma.

Lemma 5. Suppose that all of U(3), U(4), L(3), L(4) are non-singular. Then,
for every g ≥ 1,

Advimg
f (q) ≤ q/(2n − q)2.

♦

Proof. Let A be a preimage-finding algorithm of f with oracles e±1
U and e±1

L . A
asks q queries to each of e±1

U and e±1
L . Let w be the input of A and w = (wU , wL),

where wU , wL ∈ {0, 1}n.
It is necessary to ask a query to each of e±1

U and e±1
L in order to obtain a pair

of an input and an output of f . As in the proof of Lemma 3, the correspondence
between a pair of a query and a reply of e±1

U and that of e±1
L is 1-to-1. Hence,

without loss of generality, it is assumed that A asks a query to an oracle and
the corresponding query to the other oracle at a time.

Since hi = yU ⊕ zU and

zU ∈ {xU , xU ⊕ kU1, xU ⊕ kU2, xU ⊕ kU1 ⊕ kU2}

from Lemma 2, hi depends both on xU and on yU and one of xU and yU is
determined randomly by a reply of the oracle. Thus, hi is randomly determined
by the oracle. gi is also randomly determined by the other oracle.

It is assumed that zU = xU and zL = xL in the rest of the proof. The proof
is similar for the other cases.

For every 1 ≤ j ≤ q, let Ij be the event such that

xUj ⊕ yUj = wU ∧ xLj ⊕ yLj = wL

where xUj , yUj and xLj , yLj correspond to the pairs of the j-th query and its
reply of e±1

U and e±1
L , respectively. Then,

Pr[Ij] ≤ 1
(2n − (j − 1))2

.

Thus,

Advimg
f (A) ≤ Pr[I1 ∨ · · · ∨ Iq] ≤

q∑
j=1

Pr[Ij] ≤
q∑

j=1

1
(2n − (j − 1))2

≤ q

(2n − q)2
.

�

The following theorem is led immediately from Lemmas 4 and 5.

Theorem 2. Let H be an iterated hash function of f . Suppose that all of U(3), U(4),
L(3), L(4) are non-singular for f . Then, for every q ≥ 1,

Advimg
H (q) ≤ q

(2n − q)2
.

♦

Theorem 2 implies nothing about the preimage resistance for q ≥ 2n−2n/2+1.
It states, however, that the success probability is (asymptotically) negligible as
long as q = c 2n for any positive constant c < 1:

Advimg
H (c 2n) ≤ c

(1 − c)2
1
2n

.

For example, if c = 1/2, then Advimg
H (2n−1) ≤ 1/2n−1.

4 Provably Secure DBL Hash Functions with One Block
Cipher

Let e be an (n, κ) block cipher and n + 2 ≤ κ. In this section, the security of
DBL hash functions with compression functions shown in Fig. 2 is analyzed. The
left-side function is focused on. Let us call it f .

The compression function f is represented as follows:
{

hi = e(gi−1||mi||vU , hi−1) ⊕ hi−1

gi = e(hi−1||mi||vL, gi−1) ⊕ gi−1,

where mi ∈ {0, 1}� for some 1 ≤ � < κ − n, and vU and vL are constants in
{0, 1}κ−n−� such that vU �= vL.

Since vU �= vL, in the black-box model, e with vU and e with vL can be
regarded as two independent random block ciphers. Furthermore, there exists
1-to-1 correspondence between a pair of an input and an output of e with vU

and that of e with vL.
From these observations, it is clear that the following lemma can be proved

in the similar way as Lemma 3.

Lemma 6. For the compression function f , if 1 ≤ q ≤ 2n−1 + 1, then

Advcomp
f (q) ≤ q(q + 1)/22n−1.

♦

The following theorem states the collision resistance of an iterated hash function
of f . This is immediately lead from Lemmas 1 and 6.

Theorem 3. Let H be an iterated hash function of f . Then,

Advcoll
H (q) ≤ q(q + 1)/22n−1

for every 1 ≤ q ≤ 2n−1 + 1. ♦
For preimage resistance, similarly, the following theorem is obtained.

Theorem 4. Let H be an iterated hash function of f . Then, for q ≥ 1,

Advimg
H (q) ≤ q

(2n − q)2
.

♦
In the black-box model, it is sufficient that vU , vL ∈ {0, 1} and vU �= vL.

However, in practice, vU , vL should be longer in order to avoid weak keys and to
increase independence. Suppose that �con be the length of vU or vL and κ = 2 n.
Then, the rate of H is (1−�con/n)/2. For example, the rate is 7/16 if �con = n/8.

The idea that two block ciphers are obtained from one block cipher by fixing
a part of the key with different constants is found in the design of MDC-2 [4].
However, the security proof as shown above does not seem to be applied to
MDC-2.

hihi−1

gigi−1

mi

�

�

vU
vL

hihi−1

gi

gi−1
mi

�

�

vU
vL

Fig. 2. Compression Functions with One Block Cipher

5 Conclusion

In this article, DBL hash functions provably secure in the black-box model have
been presented. They are based on (n, 2n) block ciphers and can be represented
in a simple form. Future work is to explore more efficient DBL hash functions
optimally collision resistant.

References

1. E. Biham and R. Chen. Near-collisions of SHA-0. Cryptology ePrint Archive,
Report 2004/146, 2004. http://eprint.iacr.org/.

2. J. Black, M. Cochran, and T. Shrimpton. On the impossibility of highly efficient
blockcipher-based hash functions. Cryptology ePrint Archive, Report 2004/062,
2004. http://eprint.iacr.org/.

3. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In CRYPTO 2002 Proceedings, pages
320–335, 2002. Lecture Notes in Computer Science 2442.

4. B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas Jr., C. H. W. Meyer,
J. Oseas, S. Pilpel, and M. Schilling. Data authentication using modification detec-
tion codes based on a public one-way encryption function, mar 1990. U. S. Patent
4,908,861.

5. I. Damg̊ard. A design principle for hash functions. In CRYPTO’89 Proceedings,
pages 416–427, 1990. Lecture Notes in Computer Science 435.

6. M. Hattori, S. Hirose, and S. Yoshida. Analysis of double block length hash func-
tions. In 9th IMA International Conference on Cryptography and Coding, pages
290–302, 2003. Lecture Notes in Computer Science 2898.

7. W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security of iterated hash functions
based on block ciphers. In CRYPTO’93 Proceedings, pages 379–390, 1994. Lecture
Notes in Computer Science 773.

8. L. Knudsen and B. Preneel. Hash functions based on block ciphers and quater-
nary codes. In ASIACRYPT’96 Proceedings, pages 77–90, 1996. Lecture Notes in
Computer Science 1163.

9. L. Knudsen and B. Preneel. Fast and secure hashing based on codes. In
CRYPTO’97 Proceedings, pages 485–498, 1997. Lecture Notes in Computer Science
1294.

10. L. Knudsen and B. Preneel. Construction of secure and fast hash functions us-
ing nonbinary error-correcting codes. IEEE Transactions on Information Theory,
48(9):2524–2539, 2002.

11. L. R. Knudsen, X. Lai, and B. Preneel. Attacks on fast double block length hash
functions. Journal of Cryptology, 11(1):59–72, 1998.

12. X. Lai and J. L. Massey. Hash function based on block ciphers. In EUROCRYPT’92
Proceedings, pages 55–70, 1993. Lecture Notes in Computer Science 658.

13. M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In CRYPTO
2002 Proceedings, pages 31–46, 2002. Lecture Notes in Computer Science 2442.

14. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

15. R. C. Merkle. One way hash functions and DES. In CRYPTO’89 Proceedings,
pages 428–446, 1990. Lecture Notes in Computer Science 435.

16. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In CRYPTO’93 Proceedings, pages 368–378, 1994. Lecture
Notes in Computer Science 773.

17. T. Satoh, M. Haga, and K. Kurosawa. Towards secure and fast hash functions.
IEICE Transactions on Fundamentals, E82-A(1):55–62, 1999.

18. X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, 2004.
http://eprint.iacr.org/.

19. R. S. Winternitz. A secure one-way hash function built from DES. In IEEE
Symposium on Security and Privacy, pages 88–90, 1984.

