Skip to main content

The Median Problem for the Reversal Distance in Circular Bacterial Genomes

  • Conference paper
Book cover Combinatorial Pattern Matching (CPM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3537))

Included in the following conference series:

Abstract

In the median problem, we are given a distance or dissimilarity measure d, three genomes G 1,G 2, and G 3, and we want to find a genome G (a median) such that the sum ∑\(_{i=1}^{\rm 3}\) d(G,G i ) is minimized. The median problem is a special case of the multiple genome rearrangement problem, where one wants to find a phylogenetic tree describing the most “plausible” rearrangement scenario for multiple species. The median problem is NP-hard for both the breakpoint and the reversal distance [5,14]. To the best of our knowledge, there is no approach yet that takes biological constraints on genome rearrangements into account. In this paper, we make use of the fact that in circular bacterial genomes the predominant mechanism of rearrangement are inversions that are centered around the origin or the terminus of replication [8,10,18]. This constraint simplifies the median problem significantly. More precisely, we show that the median problem for the reversal distance can be solved in linear time for circular bacterial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8, 483–491 (2001)

    Article  Google Scholar 

  2. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Proc. Genome Informatics Workshop, pp. 25–34. Univ. Academy Press, Tokyo (1997)

    Google Scholar 

  4. Bourque, B., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Research 12(1), 26–36 (2002)

    Google Scholar 

  5. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc. 3rd Annual International Conference on Research in Computational Molecular Biology, pp. 84–94. ACM Press, New York (1999)

    Google Scholar 

  6. Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Dobzhansky, T., Sturtevant, A.H.: Inversions in the chromosomes of Drosophila pseudoobscura. Genetics 23, 28–64 (1938)

    Google Scholar 

  8. Eisen, J.A., Heidelberg, J.F., White, O., Salzberg, S.L.: Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biology 1(6), 1–9 (2000)

    Article  Google Scholar 

  9. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). Journal of the ACM 48, 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  10. Hughes, D.: Evaluating genome dynamics: The constraints on rearrangements within bacterial genomes. Genome Biology 1(6), 1–8 (2000)

    Article  Google Scholar 

  11. Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Comput. 29(3), 880–892 (1999)

    Article  MathSciNet  Google Scholar 

  12. Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proceedings of the National Academy of Sciences of the United States of America 81(3), 814–818 (1984)

    Article  Google Scholar 

  14. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Technical Report TR98-071, Electronic Colloquium on Computational Complexity (1998)

    Google Scholar 

  15. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 121–135. Springer, Heidelberg (1992)

    Google Scholar 

  16. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology 5(3), 555–570 (1998)

    Article  Google Scholar 

  17. Siepel, A.C., Moret, B.M.E.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Tiller, E.R.M., Collins, R.: Genome rearrangement by replication-directed translocation. Nature Genetics 26, 195–197 (2000)

    Article  Google Scholar 

  19. Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion problem. Journal of Theoretical Biology 99, 1–7 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohlebusch, E., Abouelhoda, M.I., Hockel, K., Stallkamp, J. (2005). The Median Problem for the Reversal Distance in Circular Bacterial Genomes. In: Apostolico, A., Crochemore, M., Park, K. (eds) Combinatorial Pattern Matching. CPM 2005. Lecture Notes in Computer Science, vol 3537. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496656_11

Download citation

  • DOI: https://doi.org/10.1007/11496656_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26201-5

  • Online ISBN: 978-3-540-31562-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics