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Hardness of Optimal Spaced Seed Design
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161 rue Ada, F-34392 Montpellier Cedex 5, France
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Abstract. Speeding up approximate pattern matching is a line of re-
search in stringology since the 80’s. Practically fast approaches belong
to the class of filtration algorithms, in which text regions dissimilar to
the pattern are excluded (filtered out) in a first step, and remaining re-
gions are compared to the pattern by dynamic programming in a second
step. Among the necessary conditions used to test similarity between
the regions and the pattern, many require a minimum number of com-
mon substrings between them. When only substitutions are taken into
account for measuring dissimilarity, it was shown recently that counting
spaced subwords instead of substrings improve the filtration efficiency.
However, a preprocessing step is required to design one or more patterns,
called gapped seeds, for the subwords, depending on the search param-
eters. The seed design problems proposed up to now differ by the way
the similarities to detect are given: either a set of similarities is given in
extenso (this is a “region specific” problem), or one wishes to detect all
similar regions having at most k substitutions (general detection prob-
lem). Several articles exhibit exponential algorithms for these problems.
In this work, we provide hardness and inapproximability results for both
the region specific and general seed design problems, thereby justifying
the exponential complexity of known algorithms. Moreover, we introduce
a new formulation of the region specific seed design problem, in which
the weight of the seed (i.e., number of characters in the subwords) has to
be maximized, and show it is as difficult to approximate than Maximum
Independent Set.

1 Introduction

A routine task in computational genomics is to search among all known se-
quences those being similar to a sequence of interest. “Similar” means that can
be aligned over reasonably long portions. The similarity in sequence helps in the
annotation of the sequence of interest as it may reveal, e.g., if it is a gene, a
similarity in function, in regulation, in its interaction with other molecules, in
three dimensional structure of the protein product, or a common origin. This
task is known as sequence similarity search. Since the 90’s, heuristic algorithms
[1] are preferred to the direct application of dynamic programming schemes,
which require quadratic time. In practice, as the size of the sequence databases
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grows exponentially, efficiency is achieved by filtration. The underlying principle
of filtration is to exclude in a first step regions of the sequence database that are
surely not similar to the query sequence by testing a simple necessary condition.
The second step performs an alignment procedure by dynamic programming
with the few remaining regions. Application of filtration occurs in software like
FLASH [5] or QUASAR [3].

Usual necessary conditions rely on counting common contiguous subwords
to the query and the database sequence. Recently, several authors research have
emphasized that the shape of the subwords plays a key role in filtration efficiency,
and proposed to use “carefully chosen arbitrary shapes” for the subwords [4, 11–
14]. The shape of the subwords is given by a gapped seed, e.g., a pattern like
##-##--# where the # symbol indicates which position should match between
the query’s and database sequence’s subword, and the - are don’t care positions.
One central problem is to choose such a seed to optimize the filtration efficiency.
Given a set of similarities (alignments) of interest, the goal is to find the best
seed or family of seeds. The problem has been declined in several formulations,
either as a decision or a maximization problem. In the former, one searches
for a seed that detects all similarities, in the latter for a seed that detects all
similarities and maximizes, e.g., the number of # (its weight). Several algorithms
whose complexity depends exponentially on the length of the seed have been
proposed to solve these problems, but it is not known to which complexity class
the simplest forms of the seed design problem belong. Our article answer these
questions by showing these problems are NP-hard, or even worse, difficult to
approximate.

In [12], the case of lossy filtration is investigated. The authors show that
computing the hit probability of set of seeds is NP-hard, but can be approximated
(admits a PTAS). They also prove the NP-hardness and the inapproximability of
a region specific multiple seeds design problem, where both the set of similarities
and the weight of the seeds are constrained (see problem RSOS below).

In this abstract, we consider both lossy and lossless filtrations. We improve on
the results of [12] by showing the inapproximability of RSOS even in the case of a
single seed (Section 4). Moreover, we prove the hardness of a general seed design
problem: Non Detection as defined in [11] (Section 2). In this problem, one
considers the set of all similarities at a given Hamming distance from the query
(this is independent on the query). The problem is more general than RSOS.
As by-product of our proof, we introduce and classify a tiling problem (SSC).
Several works [4, 7, 11] give empirical and theoretical evidences that support the
correlation between the weight of the seed and filtration efficiency. Building on
this idea, we propose an optimization problem MWLS in which the weight of
the designed seed has to be maximized. We provide a proof of NP-hardness and
of inapproximability for MWLS (Section 3).

In the remaining of this section, we introduce a notation, define the investi-
gated problems, and survey known results. Sections 2, 3, and 4 are each dedicated
to a problem as listed above and are independent of each other.
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1.1 Definitions and Problems

Let Z denote the set of all integers and for any a, b ∈ Z, let [a, b] be the set of all
x ∈ Z satisfying a ≤ x ≤ b. For any finite set X , we denote by #X the cardinality
of X . An alphabet Σ is a finite set of letters. A word or string over Σ is a finite
sequence of elements of Σ. The set of all words over Σ is denoted by Σ�. For
a word x, |x| denotes the length of x. Given two words x and y, we denote by
xy the concatenation of x and y. For every 1 ≤ i ≤ j ≤ |x|, x[i] denotes the
i-th letter of x, and x[i ; j] denotes the substring x[i]x[i + 1] . . . x[j]. For every
letter a, |x|a := # {i ∈ [1, |x|] : x[i] = a} denotes the number of occurrences of
the letter a in x. For every integer n ≥ 0, xn denotes the concatenation of n
copies of x.

Definition 1 (Weight, seed). The weight of a word w ∈ {#, -}�, denoted ‖w‖,
is the number of occurrences of the symbol # in w. A seed is a non empty word
over the alphabet {#, -} and whose first and last letter is a # ( i.e., an element
of # {#, -}� # ∪ {#}).
Definition 2 (Similarity). A similarity is a word over {0, 1}. Let m, k be two
integers such that 0 ≤ k ≤ m. An (m, k)-similarity is a similarity of length m
with k occurrences of the symbol 0 and m − k occurrences of the symbol 1 ( i.e.,
an element of {s ∈ {0, 1}m : |s|0 = k}).
Definition 3 (Detection). Let g be a word over {#, -}, Γ a set of words over
{#, -}, and s a similarity. Let i ∈ [0, |s| − |g|]. We say that g detects s at position
i if, for all j ∈ [1, |g|], s[i + j] = 1 whenever g[j] = #. We say that g detects s
whenever there exists i ∈ [0, |s| − |g|] such that g detects s at position i. Moreover,
Γ detects s if there is g ∈ Γ that detects s.

Note that in the previous definition, g (resp. Γ ) may be a seed (resp. a set of
seeds). In the sequel, ε denotes an arbitrarily small positive real number.

We study the complexity of three problems. In Section 2, we consider the
decision problem [11]:

Name: Non Detection
Instance: A seed g, two integers m and k satisfying 0 ≤ k ≤ m.
Question: Does it exist an (m, k)-similarity not detected by g?

We show that Non Detection is NP-complete (Theorem 2). Note that we
assume that any instance (g, m, k) has size O(|g|+ m), i.e., that the integers m
and k are encoded in unary. If encoded in binary (as usual), (g, m, k) would have
size only O(|g|+ log m). In other words, we demonstrate that Non Detection
is strongly NP-complete.

In Section 3, we investigate the difficulty to approximate the maximization
problem:

Name: region specific Maximum Weight Lossless Seed (MWLS)
Instance: A finite set S of similarities.
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Solution: A seed g that detects all similarities of S.
Measure: The weight of g.

Theorem 3 proves it does not exist a polynomial time approximation algorithm
for MWLS with bound (#S)0.25−ε unless P = NP.

In Section 4, we study the maximization problem [12]:

Name: Region Specific Optimal Seeds (RSOS)
Instance: Two integers d and p, a finite set S of similarities.
Solution: A set Γ of seeds satisfying #Γ = d and ‖g‖ = p for any g ∈ Γ .
Measure: The number of similarities in S detected by Γ .

Theorem 4 states that, even when restricted to instances (d, p, S) such that
d = 1, it does not exist a polynomial time approximation algorithm for RSOS
with bound e

e−1 − ε.

We need additional definitions on hypergraphs. A hypergraph is a pair H :=
(V, E) where V is a finite set of vertices and E is a set of subsets of V . The
elements of E are called hyperedges. An independent set I of H is a subset of V
such that for any E ∈ E , one has E �⊆ I. Let r ≥ 2 be an integer. H is said to
be r-uniform when for any E ∈ E , #E = r. A 2-uniform hypergraph is a graph
and its hyperedges are simply called edges.

1.2 Related Works

Concerning Non Detection. Let m and k be two integers such that 0 ≤ k ≤
m. Let us denote by

– U(Γ, m, k) the number of (m, k)-similarities left undetected by the set of
seeds Γ ,

– T(Γ, m, k) the largest integer t ≥ 0 satisfying: for any (m, k)-similarity s,
there are t distinct pairs (i1, g1), (i2, g2), . . . , (it, gt) such that for any
j ∈ [1, t] one has gj ∈ Γ , ij ∈ [0, |s| − |gj|] and gj detects s at position
ij . Informally, T(Γ, m, k) is the minimal number of positions at which any
(m, k)-similarity is detected by Γ .

In [11], one finds dynamic programming algorithms to compute U(Γ, m, k) and
T(Γ, m, k) in time proportional to

m ×
k∑

j=0

(
λ
j

)
(k − j + 1) + (#Γ ) ×

k∑

j=0

(
λ
j

)
with λ := max

g∈Γ
|g| .

A simple bound [4] guarantees that these algorithms have complexities in O
(
2λ×

(mk + #Γ )
)
, and are thus Fixed Parameter Tractable (FPT) for parameter λ

(see [6] for details on parameterized complexity). The algorithm that computes
T(Γ, m, k) described in [11] generalizes to a family of seeds the one for the case
of a single seed given in [4, Section 4].
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Solving Non Detection for an instance (g, m, k) means to decide whether
U({g}, m, k) differs from zero (resp. if T({g}, m, k) equals zero). Theorem 2
implies that, even if we restrict ourselves to the case of a single seed (#Γ =
1), any algorithm computing U(Γ, m, k) (resp. T(Γ, m, k)) requires in the worst
case exponential time. Thus, the algorithms given in [4, 11] have the best time
complexities one can hope.

Concerning MWLS and RSOS. It is shown in [12] that the decision version
of RSOS is NP-hard, even when searching for a single seed instead of a family
of seeds. The authors of [12] also prove that RSOS does not admit a polynomial
time approximation algorithm with bound e

e−1 − ε unless P = NP. Theorems 3
and 4 improve on these results.

2 Hardness of Non Detection

To show the hardness of Non Detection, we introduce an intermediate prob-
lem:

Name: Soapy Set Cover (SSC)
Instance: A finite subset G ⊆ Z, two non-negative integers N and q.
Question: Does it exist a subset T ⊆ Z of cardinality q such that G + T

contains at least N consecutive integers?

It is related to tiling problems. We assume that any instance (G, N, q) of SSC
has size O(max G−min G+N + q). In other words, we assume that the integers
N and q are encoded in unary, and that the set G is encoded by a bit-vector.

First in Theorem 1, we reduce Exact Cover by 3-Sets (X3C) to SSC.
In X3C, we are given a 3-uniform hypergraph (V, E) and search for a subset of
E that partitions V . X3C is NP-hard [9] (it can be seen as a generalization of
3D-Matching). Then, in Theorem 2 we reduce SSC to Non Detection.

Theorem 1. SSC is NP-complete.

Proof. SSC is in NP, since for any positive instance (G, N, q) of SSC, a subset
T ⊆ [1 − maxG, N − min G] of cardinality at most q satisfying [1, N ] ⊆ G+T is
a polynomial certificate for SSC on (G, N, q). Let us now reduce X3C to SSC.

Let (V, E) be an instance of X3C. If 3 does not divide #V then (V, E) is a
negative instance of X3C that we transform into (∅, 1, 0), a negative instance of
SSC. Without loss of generality, we can now suppose that after numbering the
elements of V , V = [q + 1, 4q] where q := #V

3 . Let us also number the elements
of E : set m := #E and write E = {E1, E2, . . . , Em}.

Let N := 2q2 + 4q. For any i ∈ [1, m] and any j ∈ [1, q], let:

Fj := [(j − 1)(2q − 1) + 4q + 1, j(2q − 1) + 4q] ,

Gi,j := {j} ∪ Ei ∪ Fj ∪ {N − j + 1} , τi,j := 2N((i − 1)q + j − 1) ,

and set G :=
m⋃

i=1

q⋃
j=1

(Gi,j + τi,j).
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We obtain an instance (G, N, q) of SSC. One can easily check that this trans-
formation takes polynomial time.

Let us first explain the gadget of the proof. The sets Gi,j (for (i, j) ∈ [1, m]×
[1, q]) are subsets of [1, N ], and the τi,j ’s are the mq multiples of 2N comprised
between 0 and 2N(mq − 1). Thus, G is a subset of [1, 2Nmq]. Moreover, each
of the mq intervals of length 2N partitioning [1, 2Nmq] (that is to say, the
[2N(k − 1) + 1, 2Nk]’s for k ∈ [1, mq]) contain a unique Gi,j + τi,j in their left
half and no element of G in their right half.

Let us now dwell on the Gi,j : the cardinality of Gi,j is 2q +4 since Gi,j is the
disjoint union of the hyperedge Ei whose cardinal is 3, of the segment Fj whose
cardinality equals 2q − 1, and of two singletons.

Let F := [4q + 1, N − q] =
[
4q + 1, 2q2 + 3q

]
. The four segments [1, q],

[q + 1, 4q], F , and [N − q + 1, N ] have length q, 3q, 2q2 − q, and q, respectively.
They form a partition of [1, N ]. Each contributes to Gi,j : the singleton {j} is
included in [1, q], the hyperedge Ej is included in [q + 1, 4q] = V , Fj is included
in F , and the singleton {N − j + 1} in [N − q + 1, N ]. Besides, {F1, F2, . . . , Fq}
is the unique partition of F in segments of length 2q − 1.

Lemma 11. If (V, E) is a positive instance of X3C then (G, N, q) is a positive
instance of SSC.

Proof. Suppose there exists C ⊆ E that is a partition of V . Then, C has car-
dinality #V/3 = q and thus, there are i1, i2, . . . , iq ∈ [1, m] such that C =
{Ei1 , Ei2 , . . . , Eiq}. Let us set T :=

{−τi1,1,−τi2,2, . . . ,−τiq,q

}
.

By construction, T has cardinality q and for any j ∈ [1, q], one has

Gij ,j = (Gij ,j + τij ,j) − τij ,j ⊆ G − τij ,j ⊆ G + T

therefore G + T includes
q⋃

j=1

Gij ,j =
q⋃

j=1

{j} ∪
q⋃

j=1

Eij ∪
q⋃

j=1

Fj ∪
q⋃

j=1

{N − j + 1}

= [1, q] ∪ V ∪ F ∪ [N − q + 1, N ] = [1, N ] .

It follows that (G, N, q) is a positive instance of SSC. 	

It remains to show that whenever (G, N, q) is a positive instance of SSC,

(V, E) is a positive instance of X3C. For this, we need the following lemma.

Lemma 12.

∀t ∈ Z ∃(i, j) ∈ [1, m] × [1, q] (G + t) ∩ [1, N ] ⊆ Gi,j + τi,j + t .

Proof. Let t ∈ Z. G + t can be written as the union of the sets Gi,j + τi,j + t
with (i, j) ∈ [1, m] × [1, q]. Now by construction, the Gi,j + τi,j ’s, and thus, the
Gi,j + τi,j + t’s, are distant from each other of at least N positions. It follows
that the intersection of G + t with [1, N ] cannot contain some elements of two
distinct Gi,j + τi,j + t’s. 	
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Now assume that (G, N, q) is a positive instance of SSC. There is T ⊆ Z satis-
fying #T = q and [1, N ] ⊆ G + T .

Lemma 13. There are (i1, j1, u1), (i2, j2, u2), . . . , (iq, jq, uq) ∈ [1, m]×[1, q]×Z

such that the sets Gi1,j1 + u1, Gi2,j2 + u2, . . . , Giq,jq + uq are pairwise distinct
and form a partition of [1, N ].

Proof. Let us number arbitrarily the elements of T : T := {t1, t2, . . . , tq}.
Lemma 12 guarantees that, for each k ∈ [1, q], there are ik ∈ [1, m] and jk ∈ [1, q]
satisfying (G + tk) ∩ [1, N ] ⊆ Gik,jk

+ τik,jk
+ tk.

Let uk := τik ,jk
+ tk. Since [1, N ] ⊆ G + T =

⋃q
k=1(G + tk), it follows that

[1, N ] ⊆ ⋃q
k=1(G+ tk)∩ [1, N ] ⊆ ⋃q

k=1(Gik ,jk
+uk). So, [1, N ], whose cardinality

is N = q × (2q + 4), is covered by the Gik,jk
+ uk’s (for k ∈ [1, q]), which are at

most q and have each cardinality 2q + 4. This requires that the Gik,jk
+ uk’s are

pairwise distinct and partition [1, N ]. 	

Proving that u1 = u2 = · · · = uq = 0 will enable us to deduce from Lemma 13
that the Gik,jk

’s (for k ∈ [1, q]) are pairwise disjoint, and so will the q hyperedges
Ei1 , Ei2 , . . . , Eiq (be pairwise disjoint). This will mean that

{
Ei1 , Ei2 , . . . , Eiq

}

is a partition of V , and (V, E) a positive instance of X3C.
Let us first show that

∀k ∈ [1, q] − q < uk < q . (1)

The integers j and N − j + 1 are respectively the smallest and largest elements
of Gi,j . Then for any k ∈ [1, q], one has:

min(Gik,jk
+ uk) = jk + uk and max(Gik,jk

+ uk) = N − jk + 1 + uk .

As Gik,jk
+ uk is included in [1, N ] (Lemma 13), it yields 1 ≤ jk + uk and

N − jk + 1 + uk ≤ N , which implies 1 − jk ≤ uk ≤ jk − 1. As jk is at most q,
one gets 1 − q ≤ uk ≤ q − 1, what we wanted.

Second, let us prove
{j1, j2, . . . , jq} = [1, q] . (2)

By definition of jk (Lemma 13), one has {j1, j2, . . . , jq} ⊆ [1, q]. Thus, it suffices
to show that the jk’s (k ∈ [1, q]) are pairwise distinct. The proof relies on the
following claim:

Claim 11. If S is a segment of length 2q − 1 and if u is an integer satisfying
−q < u < q then the center of S ( i.e., (maxS + min S)/2) belongs to S + u.

Assume there are k, l ∈ [1, q] satisfying k �= l and jk = jl. By (1), one has
−q < uk, ul < q, and so, by Claim 11, both Fjk

+ uk and Fjl
+ ul contain the

center of Fjk
= Fjl

. This contradicts the fact that Gik,jk
+uk and Gil,jl

+ul are
disjoint (by Lemma 13) and thus, we have shown (2).
Equation (2) allows to renumber the triples (ik, jk, uk) (for k ∈ [1, q]) in such a
way that jk = k for all k ∈ [1, q].

Now, assume the set K := {k ∈ [1, q] : uk �= 0} is non-empty, and set κ :=
min K. The following claim will lead to a contradiction.
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Claim 12. Let S ⊆ Z and X ⊆ S such that min X = min S and maxX =
maxS. Then X is the unique translate of X included in S ( i.e., for any u ∈ Z,
X + u ⊆ S implies u = 0).

For any j ∈ [1, κ − 1], the set Gij ,j + uj

– contains j and N − j +1 (since j /∈ K requires uj = 0 and Gij ,j = Gij ,j +uj)
– and, has an empty intersection with Giκ,κ + uκ (by Lemma 13).

Thus, none of j and N −j+1 belongs to Giκ,κ +uκ. As by Lemma 13, Giκ,κ +uκ

is a subset of [1, N ], one gets Giκ,κ + uκ ⊆ [κ, N − κ + 1]. Applying Claim 12
with X := Giκ,κ and S := [κ, N − κ + 1] yields uκ = 0, which contradicts κ ∈ K.

We have then demonstrated that K = ∅, i.e., that u1 = u2 = · · · = uk = 0.
This concludes the proof of Theorem 1. 	

Theorem 2. Non Detection is NP-complete.

Proof. Non Detection is in NP, since for any positive instance (g, m, k) of Non
Detection, an (m, k)-similarity not detected by g is a polynomial certificate
for Non Detection on (g, m, k). Hence, to obtain the NP-completeness of Non
Detection, it suffices to reduce SSC to Non Detection (Theorem 1).

Let (G, N, q) be an instance of SSC. If needed, we may translate G such that
min G = 0; from now on we make this assumption. Thus, we have G ⊆ [0, maxG].
Let g be the word over {#, -} of length maxG + 1 defined by: for all j in [1, |g|],
g[j] = # iff |g| − j ∈ G.

One has |g| − 1 = maxG ∈ G and |g| − |g| = 0 ∈ G; thus, g[1] = g[|g|] = #,
i.e., the first and last letters of g are #. Let m := N −1+ |g| and k := min{m, q}.
We obtain an instance (g, m, k) of Non Detection in a time polynomial in
function of (G, N, q).

Additionally, one has N − 1 = m − |g| and thus,

[0, N − 1] = [0, m − |g|] . (3)

• Assume (g, m, k) is a positive instance of Non Detection.
There is an (m, k)-similarity s that is not detected by g. Let us set T :=

{j ∈ [1, m] : s[j] = 0}− |g| . On one hand, T is a translate of a set of cardinality
k (by Definition 2) and has itself cardinality k ≤ q. Let i ∈ [0, N − 1]. On the
other hand by Equation (3), one has i ∈ [0, m − |g|] and then, by hypothesis,
g does not detect s at position i. Therefore, there exists j ∈ [1, |g|] satisfying
g[j] = # and s[i + j] = 0. So, one gets |g| − j ∈ G and i + j − |g| ∈ T , and this
yields i = (|g| − j) + (i + j − |g|) ∈ G + T . We have thus shown that G + T
includes [0, N − 1], from which we deduce that (G, N, q) is a positive instance of
SSC.
• Conversely, let (G, N, q) be a positive instance of SSC.

Then, there exists T ⊆ Z having cardinality q and such that [0, N − 1] ⊆
G + T . Let s ∈ {0, 1}m be defined by: for all i ∈ [1, m], s[i] = 0 iff i ∈ T + |g|.

Let i ∈ [0, m − |g|]. By Equation (3), one has i ∈ [0, N − 1] and then, by
hypothesis, there are γ ∈ G and t ∈ T such that i = γ + t. Setting j := |g| − γ,
one gets g[j] = # since |g| − j = γ ∈ G. It follows that
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i + j = (γ + t) + (|g| − γ) = t + |g| ∈ T + |g|
and thus, that s[i + j] = 0. It implies that g cannot detect s at position i. As i
can be chosen arbitrarily in [0, m− |g|], g does not detect s.

Now, it is true that |s|0 ≤ |s| = m and |s|0 ≤ #(T + |g|) = #T = q, and
so |s|0 ≤ min{m, q} = k. By replacing enough 1 in s by 0’s, one obtains an
(m, k)-similarity that is undetected by g. It follows that (g, m, k) is a positive
instance of Non Detection and this concludes the proof of Theorem 2. 	


3 Hardness and Inapproximability of MWLS

In order to demonstrate the inapproximability of MWLS, we reduce Maximum
Independent Set (MIS) to it. In MIS, given a graph G = (V, E), one searches
for the largest independent set I of G. It is known [10] that MIS cannot be
approximated within bound (#V )0.5−ε unless P = NP.

Let n ≥ 1 be an integer. Let us set δn
i := (i − 1)n2 + i2 for any i ∈ [1, n].

Recall that a Golomb ruler is a set of integers such that the difference between
any two distinct points in this set characterizes these two points [2].

Lemma 1. The set {δn
1 , δn

2 , . . . , δn
n} is a Golomb ruler with n marks computable

in polynomial time in n.

Proof. It is clear that the set {δn
1 , δn

2 , . . . , δn
n} is computable in polynomial time

in n. Let i1, j1, i2, j2 ∈ [1, n] satisfying i1 < j1 and i2 < j2. It remains to show
that our set is a Golomb ruler, i.e., that δn

j1
− δn

i1
= δn

j2
− δn

i2
implies i1 = i2 and

j1 = j2.
For any α ∈ {1, 2}, set Nα := δn

jα
− δn

iα
, qα := jα − iα, and rα := j2

α − i2α.
One has Nα = qαn2 + rα and 0 ≤ rα < n2, and so qα and rα are respectively the
quotient and the remainder of the Euclidean division of Nα by n2. Moreover, iα
and jα can be written in function of qα and rα:

iα =
(
rαq−1

α − qα

)
/2 and jα =

(
rαq−1

α + qα

)
/2 . (4)

Assume δn
i1 − δn

j1 = δn
i2 − δn

j2 . One gets N1 = N2, and by the uniqueness of the
quotient and remainder of a division, one obtains q1 = q2 and r1 = r2. So, one
deduces from (4) that i1 = i2 and j1 = j2. 	

Definition 4 (Gadgets). Let X ⊆ [1, n]. Let wn

X denote the word over {#, -}
satisfying: |wn

X | = n3 +n2, ‖wn
X‖ = #X, and wn

X [δn
x ] = # for any x ∈ X. Let gn

X

denote the seed obtained from wn
X by deleting the leading and trailing - symbols.

Next Lemma means that the gn
X (for X ⊆ [1, n]) are in one-to-one correspon-

dence with the subsets of [1, n]. It builds on Lemma 1.

Lemma 2. Let X1 and X2 be two subsets of [1, n] having cardinality at least 2.
Then, gn

X1
= gn

X2
if and only if X1 = X2.
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Proof. For any α ∈ {1, 2}, let us set gα := gn
Xα

and wα := wn
Xα

. There exists

pα ∈ [
0, n3 + n2 − |gα|

]
such that wα = (-)pαgα(-)n3+n2−|gα|−pα .

Assume g1 = g2 and let us show that X1 = X2. Notice that Xα = {x ∈
[1, n] : wα[δn

x ] = #}, so Xα is completely determined by wα; therefore, it suffices
to show that w1 = w2 or equivalently that p1 = p2.

One has |gα| ≥ ‖gα‖ = #Xα ≥ 2, and for any i ∈ [1, |gα|], wα[pα + i] = gα[i].
Especially, if i = 1, one gets wα[pα + 1] = gα[1] = #; so, there exists iα ∈ Xα

such that pα +1 = δn
iα

. Also, if i = |gα|, one obtains wα[pα + |gα|] = gα[|gα|] = #
and thus, there is jα ∈ Xα satisfying pα + |gα| = δn

jα
.

On one hand, one has δn
jα

= pα + |gα| ≥ pα + 2 > pα + 1 = δn
iα

. On the other
hand, one also has δn

j1 − δn
i1 = |g1| − 1 = |g2| − 1 = δn

j2 − δn
i2 . Then Lemma 1

ensures that δn
i1

= δn
i2

, from which we deduce p1 = δn
i1
− 1 = δn

i2
− 1 = p2. 	


Definition 5 (Some more gadgets). Let v ∈ [1, n]. Let σn
v denote the simi-

larity satisfying: |σn
v | = n3 +n2, |σn

v |1 = n− 1, and σn
v [δn

x ] = 1 for any x ∈ [1, n]
such that x �= v.

Next Lemma explains the role of the σn
v ’s (for v ∈ [1, n]). Combined with

the preceding lemma, it implies that the seeds detecting σn
v are in one-to-one

correspondence with the gn
X ’s (for X ⊆ [1, n], v /∈ X), as well as with the subsets

of [1, n] that do not contain v.

Lemma 3. Let v ∈ [1, n] and let g be a seed. Then, g detects σn
v if and only if

there exists X ⊆ [1, n] such that v /∈ X and g = gn
X .

Proof. • Assume there is X ⊆ [1, n] such that v /∈ X and g = gn
X . As gn

X is
a substring of wn

X , it is enough to show that wn
X detects σn

v at position 0. Let
i ∈ [

1, n3 + n2
]

such that wn
X [i] = #. There exists x ∈ X such that i = δn

x . Since
v /∈ X , one has x �= v so, σn

v [i] = σn
v [δn

x ] = 1, what we wanted.
• Conversely, suppose g detects σn

v . Let p ∈ [0, |σn
v | − |g|] such that g detects

σn
v at position p. Then, w := (-)p

g(-)n3+n2−|g|−p detects σn
v at position 0. Let

us set X := {x ∈ [1, n] : w[δn
x ] = #}. First, note that σn

v [δn
v ] = 0; consequently,

w[δn
v ] = - and thus, v /∈ X . Moreover, since w detects σn

v and has the same
length as σn

v , it is easy to see that w = wn
X and thus, g = gn

X . 	

Theorem 3. MWLS is NP-hard. Moreover, if MWLS admits a polynomial time
approximation algorithm with bound (#S)0.25−ε then P = NP.

Proof. We reduce MIS to MWLS in such a way that it preserves the approx-
imation properties. Let G = (V, E) be a graph; G is an instance of MIS. Let
n := #V . After numbering the vertices of G, we can assume V = [1, n] and
thus, for any edge E ∈ E , we have E = {min E, max E}. We build the set of
similarities SG := {1n3+n2} ∪ {sn

E : E ∈ E} where sn
E := σn

min E0
n3+n2

σn
max E for

any egde E ∈ E . SG is an instance of MWLS that can be constructed from G in
polynomial time. Next two Lemmas guarantee that our reduction preserves the
approximation.
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Lemma 31. For any independent set I of G, there is a seed of weight #I that
detects all similarties in SG.

Proof. Let I be an independent set of G. Clearly, gn
I is a seed of weight #I

detecting 1n3+n2
. Moreover, any edge E ∈ E admits an extremity v such that

v /∈ I. Hence, by Lemma 3, gn
I detects σn

v and, all the more reason for gn
I to

detect its superstring sn
E. 	


Lemma 32. For any seed g of weight at least 2 detecting all similarities in SG,
there is an independent set I of G whose cardinality equals ‖g‖. Moreover, I is
computable in polynomial time in function of g.

Proof. Let E ∈ E . Let fE be a substring of sn
E detected by g with the same length

as g. Since g starts and ends by a #, fE starts and ends by a 1. Moreover, the
presence of 1n3+n2

in SG implies |fE | = |g| ≤ n3 + n2. Hence, the block 0n3+n2

that lies between σn
minE and σn

max E in sn
E is longer than fE. This requires fE to be

fully included in σn
min E or σn

max E . Thus, there exists vE ∈ {min E, maxE} such
that g detects σn

vE
and, by Lemma 3, this garantees the existence of XE ⊆ [1, n]

such that g = gn
XE

and vE /∈ XE .
Since #XE = ‖g‖ ≥ 2, Lemma 2 implies that the XE ’s (with E ∈ E)

are all equal to each other, and thus, their common value, denoted I, is an
independent set of G of cardinality ‖g‖. Besides, it is easy to see that I =
{x ∈ [1, n] : g[δn

x ] = #} can be computed in polynomial time from g. 	

One has #SG = #E + 1 ≤ (#V )2; so, if there exists an approximation

algorithm for MWLS with bound (#S)0.25−ε, Lemmas 31 and 32 would allow
to design an approximation algorithm for MIS whose bound is (#SG)0.25−ε ≤(
(#V )2

)0.25−ε = (#V )0.5−2ε. But, this is possible only if P = NP [10]. This
concludes the proof of Theorem 3. 	


4 Hardness and Inapproximability of RSOS

We obtain the result on the hardness to approximate RSOS by reducing Maxi-
mum Coverage (MC) to RSOS. Our reduction is different than the one in [12]
since it works even for a single seed. We use an alternative formulation of MC:
given a hypergraph (V, E) and an integer k ≥ 0, search for a subset C ⊆ V of car-
dinality k that maximizes the number of hyperedges E ∈ E satisfying C∩E �= ∅.
This problem is not approximable within e

e−1 − ε unless P = NP [8]. Actually,
we obtain a stronger result that is the pendant to the one of Feige [8] for MC:
unless P = NP, it does not exist a polynomial algorithm that, for any instance
of RSOS, returns not a solution, but only an approximate value of the optimal
solution within bound e

e−1 − ε of the optimal.

Theorem 4. Even if restricted to instances (d, p, S) such that d = 1, RSOS
does not admit a polynomial time approximation algorithm with bound e

e−1 − ε
unless P = NP.

Due to lack of space, the proof of Theorem 4 is not included in this extended
abstract.
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