
280

An Optimal Algorithm
for Online Square Detection

Gen-Huey Chen, Jin-Ju Hong, and Hsueh-I Lu�

Department of Computer Science and Information Engineering
National Taiwan University

Abstract. A square is the concatenation of two identical non-empty
strings. Let S be the input string which is given character by character.
Let m be the (unknown) smallest integer such that the m-th prefix of S
contains a square. The online square detection problem is to determine
m as soon as the m-th character of S is read. The best previously known
algorithm of the online square detection problem, due to Leung, Peng,
and Ting, runs in O(m log2 m) time. We improve the time complexity
to O(m log β), where β is the number of distinct characters in the m-th
prefix of the input string. It is not difficult to implement our algorithm
to run in expected O(m) time.

1 Introduction

Let X ◦Y denote the concatenation of strings X and Y . A square is a non-empty
string of the form X ◦ X . A string does not contain any square is square free.
Let S[i, j] denote the substring of string S starting from position i and ending at
position j. If string X equals S[i, j], we say that X starts (or occurs) at position
i and ends at position j in S.

Let S be a length-n string. Observe that there could be Ω(n2) squares in S,
e.g., when S is an all-one string. There are several O(n log n)-time algorithms
for finding compact representations of all squares in S [1, 2, 8]. In particular,
each of these algorithms outputs O(n log n) periodic substrings of S such that
any square of S occurs in one or more of those O(n log n) periodic substrings of
S. These algorithms are optimal with respect to the worst-case output size [2].

Whether S is square free or not can be determined in O(n log α) time [3, 4, 9],
where α is the number of distinct characters in S. For example, Crochemore’s
approach [3, 4] is based upon the following f -factorization (also known as s-
factorization [3], which is a variant of LZSS factorization [10]) of S. Let |S|
denote the length of string S. The f -factorization of S, obtainable in O(n log α)
time, is a partition of S into disjoint segments B1, B2, . . . , Bp for some p ≥ 1
such that the following conditions hold for each i = 2, 3, . . . , p, where j = |B1|+
|B2| + · · · + |Bi−1|:
� Corresponding author. Address: 1 Roosevelt Road, Section 4, Taipei 106, Taiwan,

R.O.C. http://www.csie.ntu.edu.tw/∼hil/, hil@csie.ntu.edu.tw

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 280–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

An Optimal Algorithm for Online Square Detection 281

Condition 1 If S[j +1] does not occur in S[1, j] (i.e., B1 ◦B2 ◦ · · · ◦Bi−1), then
Bi = S[j + 1];

Condition 2 Otherwise, Bi is the longest prefix of S[j + 1, n] that occurs in S
before position j + 1.

Suppose that S[1, i] is known to the algorithm in Θ(i) time for each i =
1, 2, . . . , n and the problem is to determine the smallest m such that S[1, m]
contains a square. (Once m is known, one can easily identify all squares of
S[1, m] in O(m) time using longest common extensions.) Although there does
not seem to be any previous work on this problem, it can be solved in O(m log β)
time, where β is the number of distinct characters in S[1, m]. For example, we
can resort to the f ′-factorization of S, whose definition is the same as that of
f -factorization except replacing its Condition 2 with the following.

Condition 2’ Otherwise, Bi is the longest prefix of S[j + 1, n] that occurs in S
and ends before position j + 1.

Let B′
1, B

′
2, . . . , B

′
p be the f ′-factorization of S. Suppose that i is the smallest

index such that |B′
1| + |B′

2| + · · · + |B′
i| ≥ m. It is not difficult to see that the

first i blocks of the f ′-factorization of S as well as a square in S[1, m] can be
obtained in O(m log β) time.

Leung, Peng, and Ting [7] studied the square detection problem in a more
restricted setting. Suppose that S is given to the algorithm character by character
and the algorithm has to recognize m as soon as it reads S[m]. Leung, Peng,
and Ting [7] gave an O(m log2 m)-time algorithm for the online square detection
problem. Our contribution, summarized in Theorem 1, is to improve the running
time to O(m log β). The O(log β) factor comes from the binary search required
by the traversal of a suffix tree. Therefore, the expected running time of our
algorithm can easily be reduced to O(m) using hash tables. Our approach is
inspired by Crochemore’s algorithm [4] using the f -factorization of S.

Theorem 1. The online detection problem for a string S can be solved in deter-
ministic O(m log β) time, where S[1, m] is the shortest prefix of S that contains
a square and β is the number of distinct characters in S[1, m].

The rest of the paper is organized as follows. Section 2 describes our algo-
rithm. Section 3 gives the implementation of our algorithm, whose time complex-
ity is analyzed in Section 3.2. We conclude the paper with some open questions
in Section 4.

2 Our Algorithm

A square X ◦ X is centered at position i in S if

S[i − |X | + 1, i + |X |] = X ◦ X.

Let i1, i2, and i be positions in S with i1 < i2 ≤ i. The following concept is
crucial to our algorithm.

282 Gen-Huey Chen, Jin-Ju Hong, and Hsueh-I Lu

– An L(i1, i2, i)-square of S is a square of S[i1, i] that ends at position i and
is centered at a position between i1 and i2 − 1 in S.

– An R(i1, i2, i)-square of S is a square of S[i1, i] that ends at position i and
is centered at a position between i2 and i in S.

See Figure 1 for an illustration.

j

S Y ZZY

i1 j i2 i

(a) L(i1, i2, i)-square

S Y ZZY

i1 i

(b) R(i1, i2, i)-square

i2

Fig. 1. L(i1, i2, i)-square and R(i1, i2, i)-square.

Our algorithm runs iteratively, where the i-th iteration receives S[i] and
detects whether there are squares in S[1, i]. More specifically, the i-th iteration
obtains the f -factorization of S[1, i] from that of S[1, i − 1]. Suppose that S[i]
belongs to the k-th block of the f -factorization of S[1, i]. The algorithm then
detects whether there are

– L(bk−1, bk, i)-squares,
– R(bk−1, bk, i)-squares, or
– R(1, bk−1, i)-squares,

where for each j = 1, 2, . . . , k, let bj denote the starting position of the j-th
block of the f -factorization of S[1, i]. If no square is detected, then the algorithm
proceeds to the next iteration. Otherwise, the algorithm outputs i and halts.

Lemma 1. If the input string S is not square free, then our algorithm correctly
outputs the smallest index m such that S[1, m] is not square free.

Proof. Since S[1, m−1] is square free, the algorithm does not halt before the m-th
iteration. It suffices to show that a square of S[1, m] has to be an L(bk−1, bk, i)-
square, an R(bk−1, bk, i)-square, or an R(1, bk−1, i)-square, where bj is the start-
ing position of the j-th block Bj in the f -factorization of S[1, m] for each
j = 1, 2, . . . , k.

An Optimal Algorithm for Online Square Detection 283

Since S[bk, m] is in Bk, by definition of f -factorization, S[bk, m] is a substring
of S[1, m−1]. Since S[1, m−1] is square free, so is S[bk, m]. If a square of S[1, m]
occurs before bk−1, then the square has to be an R(1, bk−1, m)-square. If a square
of S[1, m] occurs at a position between bk−1 and bk − 1, then the square has to
be an L(bk−1, bk, m)-square or an R(bk−1, bk, m)-square. ��
Comment : Our proof of Lemma 1 is modified from that of Theorem 8.2 in [4].

3 Implementation

Longest common extensions [8] are crucial to the implementation of our algo-
rithm. For positions i ≤ j ≤ k in S,

– Let XR(i, j, k) denote the longest common right extension of positions i and
j with boundaries k, i.e., the length of the longest common prefix of S[i, k]
and S[j, k].

– Let XL(j, k, i) denote the longest common left extension of positions j and
k with boundaries i, i.e., the length of the longest common suffix of S[i, j]
and S[i, k].

It is not difficult to see the following lemma from Figure 1.

Lemma 2 (Main and Lorentz [8]).

1. S has an L(i1, i2, i)-square if and only if there is an index j with i1 ≤ j < i2
such that XR(j, i2, i) = |S[i2, i]| and XL(j − 1, i2 − 1, i1) + XR(j, i2, i) ≥
|S[j, i2 − 1]|.

2. S has an R(i1, i2, i)-square if and only if there is an index j with i2 < j < i
such that XR(i2, j+1, i) = |S[j+1, i]| and XL(i2−1, j, i1)+XR(i2, j+1, i) ≥
|S[i2, j]|.
Our implementation uses several suffix trees [6, 11]. Let T ′ be the suffix

tree of a string S′. If W ′ is a substring of S′, then there is a unique path,
denoted P (T ′, W ′), in T ′ whose label spells out W ′. Moreover, if S′ contains β′

distinct characters, then, given the ending position of P (T ′, W ′) in T ′, it takes
O(|W ′′| log β′) time to determine whether W ′ ◦ W ′′ is also a substring of S′.

3.1 Detecting L(i1, i2, i)-Squares

Let i1 < i2 ≤ i3 be three given indices. Suppose that the number of distinct
characters in S[i1, i3] is O(β). The following lemma is a key ingredient in the
implementation of our algorithm.

Lemma 3. Let i be the smallest index with i2 ≤ i ≤ i3 such that S has an
L(i1, i2, i)-square. There is an algorithm AL(i1, i2, i3) that

– either determines in O((i3−i1) log β) time that i is undefined without reading
any characters in S[i3 + 1, n]

– or identifies i in O((i− i1) log β) time without reading any character of S[i+
1, n].

The rest of the subsection proves Lemma 3.

284 Gen-Huey Chen, Jin-Ju Hong, and Hsueh-I Lu

The preprocessing. The first step is the O(|S[i1, i2]|)-time preprocessing with
which the value of XL(j, i2 − 1, i1) for any index j with i1 ≤ j < i2 can be
determined in O(1) time [5, 8]. We then build the suffix tree T1 of S[i1, i2−1]◦$,
where $ is a character not in S [11]. One can easily verify that the preprocessing
takes O((i2 − i1) log β) time.

Define z(j) = |S[j, i2 − 1]| − XL(j − 1, i2 − 1, i1) for each index j with i1 ≤
j < i2. Finally, for each node v of T1, we store an index, denoted j(v), at node
v that minimizes z(j) overall all indices j such that P (T1, S[j, i2 − 1]) passes v.
The indices j(v) for all nodes v of T1 can be computed in O(i2 − i1) time in a
bottom-up manner.

The iterative procedure. For i = i2, i2 + 1, . . . , i3, the i-th iteration does the
following. If S[i2, i] occurs in S[i1, i2 − 1] and |S[i2, i]| ≥ z(j(v)), where v is the
highest node in T1 such that the path of T1 between the root of T1 and v contains
P (T1, S[i2, i]), then the procedure reports i and halts. Otherwise, the procedure
proceeds to the next iteration.

Correctness. The condition XR(j, i2, i) = |S[i2, i]| in Lemma 2(1) is equivalent
to the condition that S[i2, i] is a prefix of S[j, i2 − 1], which is also equivalent to
the condition that P (T1, S[j, i2 − 1]) contains P (T1, S[i2, i]). With XR(j, i2, i) =
|S[i2, i]|, the condition XL(j − 1, i2 − 1, i1) + XR(j, i2, i) ≥ |S[j, i2 − 1]| in
Lemma 2(1) is equivalent to the condition

|S[i2, i]| ≥ |S[j, i2 − 1]| − XL(j − 1, i2 − 1, i1).

Let v be the highest node in T1 such that the path of T1 between v and the
root of T1 contains P (T1, S[i2, i]). By definition of z(j(v)), the above condition
is equivalent to the condition

|S[i2, i]| ≥ z(j(v)).

Therefore, by Lemma 2(1), the above iterative procedure does report the smallest
index i, if any, with i2 ≤ i ≤ i3 such that S has an L(i1, i2, i)-square.

Time complexity. Suppose that in the previous iteration we already have the
ending position of P (T1, S[i2, i − 1]) in T1. It takes O(log β) time to determine
whether S[i2, i] is a substring of S[i1, i2−1]. If S[i2, i] does occur in S[i1, i2−1], we
also keep the ending position of P (T1, S[i2, i]) to be used in the next iteration.
As a result, it is not difficult to verify that the time complexity described in
Lemma 3 holds.

3.2 Detecting R(i1, i2, i)-Squares

Let i1 < i2 < i3 be three given indices. Suppose that the number of distinct
characters in S[i1, i3] is O(β). The following lemma is also a key ingredient in
the implementation of our algorithm.

An Optimal Algorithm for Online Square Detection 285

Lemma 4. Let i be the smallest index with i2 < i ≤ i3 such that S has an
R(i1, i2, i)-square. There is an algorithm AR(i1, i2, i3) such that

– if i is undefined, then AR(i1, i2, i3) reports “i is undefined” in O((i3 −
i2) log β) time without reading any character of S[i3 + 1, n];

– otherwise, if S has no L(i1, i2, j)-squares for any j ∈ {i2, i2 + 1, . . . , i}, then
algorithm AR(i1, i2, i3) reports i in O((i− i2) log β) time without reading any
character of S[i + 1, n].

The rest of the subsection proves Lemma 4.

The iterative procedure. For each i = i2 +1, i2 +2, . . . , i3, the i-th iteration does
the following.

– We first compute the index ji in O(1) time such that |S[ji, i2 − 1]| =
min(|S[i1, i2 − 1]|, |S[i2, i]|).

– We then compute the suffix tree T2 of S[ji, i2−1]◦$ from that of S[ji−1, i2−
1] ◦ $ in amortized O(log β) time using, e.g., Inenaga’s algorithm [6].

– We maintain a data structure for S[ji, i2 − 1] from which the value of
XL(j, i2 − 1, ji) for any j with ji ≤ j < i2 can be computed in O(1) time.
According to [5, 8], such a data structure for S[ji, i2 − 1] can be obtained
from that of S[ji−1, i2 − 1] in amortized O(1) time.

– We maintain a data structure for S[i2, i] from which the value of XR(i2, j, i)
for any j with i2 ≤ j ≤ i can be computed in O(1) time. Similarly, according
to [5, 8], such a data structure for S[i2, i] can be obtained from that of
S[i2, i − 1] in amortized O(1) time.

– Let F (i) denote the longest suffix of S[i2, i] that is a substring of S[ji, i2−1].
We obtain the ending position of P (T2, F (i)) in T2 from the ending position
of P (T2, F (i − 1)) in amortized O(log β) time. It then takes O(1) time to
compute an index y(i) ≤ i2−1 such that an occurrence of F (i) in S[i1, i2−1]
ends at position y(i). We determine in O(1) time

XL(i2 − 1, i, i1) =
{ |F (i)| if y(i) = i2 − 1;

min(|F (i)|, XL(y(i), i2 − 1, ji)) otherwise. (1)

– Now we insert in O(1) time the index i to the set K(e(i)), where

e(i) = i + |S[i2, i]| − XL(i2 − 1, i, i1).

– If there is an index j in K(i), if

XR(i2, j + 1, i) = |S[j + 1, i]|,

then our procedure reports i; otherwise, the iterative procedure proceeds to
the next iteration.

286 Gen-Huey Chen, Jin-Ju Hong, and Hsueh-I Lu

Correctness. First of all, one can see the correctness of Equation (1) by verifying
that both sides of the equality are equal to XL(i2 − 1, i, ji). Observe that in
the i-th iteration K(i) has collected all the indices j < i with e(j) = i. If
XR(i2, j + 1, i) = |S[j + 1, i]|, then the condition

XL(i2 − 1, j, i1) + XR(i2, j + 1, i) ≥ |S[i2, j]|
in Lemma 2(2) is equivalent to the condition e(j) ≤ i. Moreover, the condition

XL(i2 − 1, j, i1) + XR(i2, j + 1, i) > |S[i2, j]|,
which is equivalent to the condition e(j) < i, implies that S has a square end-
ing at position i − XL(i2 − 1, j, i1) + XR(i2, j + 1, i) + |S[i2, j]|. Therefore, by
Lemma 2(2), our iterative procedure outputs i if and only if S has an L(i1, i2, i)-
square.

Time complexity. According to the above explanation, it is not difficult to see
that the time complexity of Lemma 4 holds.

3.3 The Implementation

With subroutines AL(i1, i2, i3) and AR(i1, i2, i3), we prove the following lemma.

Lemma 5. Our algorithm described in Section 2 can be implemented to run in
O(m log β) time.

Proof. The implementation proceeds iteratively for i = 1, 2, . . . , n, where the
i-th iteration reads S[i] and performs the following steps.

– We obtain the suffix tree T of S[1, i] from the suffix tree of S[1, i − 1] in
amortized O(log β) time. We then determine the index ki such that S[i] is
in the ki-th block of the f -factorization of S. Observe that with the help of
T , one can compute ki from ki−1 in O(log β) time. If ki = 1, we proceed to
the next iteration.

– Knowing ki ≥ 2, we perform
• the i-th iteration of AL(ki−1, ki, ki+1),
• the i-th iteration of AR(ki−1, ki, ki+1), and
• the i-th iteration of AR(1, ki−1, ki+1)

in the above order. If any of these three i-th iterations reports i and halts,
then our implementation also reports i and halts. Otherwise, our implemen-
tation proceeds to the next iteration.

The description of our implementation ignores on purpose the fact that we
do not know the value of ki+1 in the i-iteration. However, one can verify that
this abuse to the interface of subroutines AL() and AR() is all right, since each
iteration of our implementation calls only the i-th iterations of subroutines AL()
and AR(). It follows from Lemmas 3 and 4 that our implementation correctly
outputs m in O(m log β) time. ��

Now one can easily see that Theorem 1 is immediate from Lemmas 1 and 5.

An Optimal Algorithm for Online Square Detection 287

4 Concluding Remarks

As we mentioned in the introduction, each of those O(log β) terms comes from
the binary search required for choosing the right branch to go while traversing a
suffix tree of a string with O(β) distinct characters. Using hash tables, one can
implement our algorithm to run in expected O(m) time. An immediate open
question is to see if it is possible to further reduce the required running time
to worst-case O(m) time. It would also be of interest to see if the technique of
f -factorization can be extended to detect repeats of the form Xk with k > 2 in
an online manner.

References

1. A. Apostolico and F. P. Preparata. Optimal off-line dection of repetitions in a
string. Theoretical Computer Science, 22:294–315, 1983.

2. M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Information Processing Letters, 12(5):244–250, 1981.

3. M. Crochemore. Recherche linéaire d’un carré dans un mot. Comptes Rendus
des Séances de l’Académie des Sciences. Série I. Mathématique, 296(18):781–784,
1983.

4. M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45(1):63–86, 1986.

5. D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, 1997.

6. S. Inenaga. Bidirectional construction of suffix trees. Nordic Journal of Computing,
10(1):52–67, 2003.

7. H.-F. Leung, Z. Peng, and H.-F. Ting. An efficient online algorithm for square
detection. In K.-Y. Chwa and J. I. Munro, editors, Proceeings of the 10th Annual
International Conference, Lecture Notes in Computer Science 3106, pages 432–439,
Jeju Island, Korea, August 17-20 2004. Springer-Verlag.

8. M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions
in a string. Journal of Algorithms, 5(3):422–432, 1984.

9. M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. In
A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume
F12 of NATO ASI Series, pages 271–278. Springer-Verlag, 1985.

10. J. A. Storer and T. G. Szymanski. Data compression via textual substitution.
Journal of the ACM, 29(4):928–951, 1982.

11. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

	An Optimal Algorithm for Online Square Detection
	1 Introduction
	2 Our Algorithm
	3 Implementation
	3.1 Detecting L(i1,i2,i)-Squares
	3.2 Detecting R(i1,i2,i)-Squares
	3.3 The Implementation

	4 Concluding Remarks
	References

