
Approximation algorithms for semidefinite packing problems with

applications to Maxcut and graph coloring

G. Iyengar, D. J. Phillips, and C. Stein ∗

November 15, 2004

Abstract

We describe the semidefinite analog of the vector packing problem, and show that the semidefinite
programming relaxations for Maxcut [10] and graph coloring [16] are in this class of problems. We
extend a method of Bienstock and Iyengar [4] which was based on ideas from Nesterov [24] to design an
algorithm for computing ε-approximate solutions for this class of semidefinite programs. Our algorithm
is in the spirit of Klein and Lu [17], and decreases the dependence of the run-time on ε from ε

−2 to ε
−1.

For sparse graphs, our method is faster than the best specialized interior point methods. A significant
feature of our method is that it treats both the Maxcut and the graph coloring problem in a unified
manner.

1 Introduction

Semidefinite programming (SDP) has become a powerful tool for solving optimization problems. Lovász
[21] applied semidefinite programming to model the Shannon-capacity of a graph, which, with the work of
Grötschel, Lovász, and Schrijver [14], led to the first polynomial-time algorithm for finding the largest stable
set in a perfect graph. Beginning with the work of Goemans and Williamson [10], semidefinite programming
has been used as a tool for approximating NP-hard optimization problems. In this case, a semidefinite
relaxation of the original problem is formulated and solved and then a rounding step is used to output a
feasible and approximately optimal solution to the original problem. Since Goemans and Williamson used
this technique to design approximation algorithms for Maxcut, Maxdicut and Max2sat, it has been
used successfully by several other researchers. Karger, Motwani, and Sudan [16] use an SDP relaxation
and rounding strategy to develop an approximation algorithm for the graph coloring problem. Skutella [29]
used SDP to solve a scheduling problem, and recently, Arora, Rao and Vazirani [2] have used semidefinite
programming to approximate graph partitioning problems. In all these problems, using the SDP relaxation
yields better approximation bounds than using a linear programming relaxation or combinatorial techniques.
In this paper we show that several of these and other SDPs appearing in the context of relaxations of
combinatorial optimization problems can be viewed as packing problems over semidefinite matrices.

We will call an SDP
max C •X,
s.t. Ai •X ≤ 1, i = 1, . . . ,m,

X ∈ X ⊆ Rn×n,
(1)

an SDP with packing constraints if it satisfies the following two conditions:

(i) Each Ai º 0 (A º 0 denotes that A is symmetric positive definite);

(ii) Optimizing a linear function over the set X ⊆ {X : X º 0} is “easy.” For example, let X = {X : X º
0,Tr(X) = a > 0}. Then max{C • X : X ∈ X} = amax{λmax(C), 0}, where λmax(C) denotes the
maximum eigenvalue of C.

∗First author partially supported by NSF grants CCR-00-09972, DMS-01-04282 and ONR grant N000140310514. Second

author partially supported by NSF Grants DGE-0086390 and DMI-9970063. Third author partially supported by NSF Grant

DMI-9970063. Department of IEOR, Columbia University, New York, NY. garud@ieor.columbia.edu, djp80@columbia.edu,

cliff@ieor.columbia.edu.

1

The SDP with packing constraints is the natural extension of a vector problem with packing constraints [26]
defined as follows.

max cTx,
s.t. aTi x ≤ 1, i = 1, . . . ,m,

x ∈ X ,
(2)

where X is a polytope over which linear optimization is easy. The vector packing (and corresponding
covering) problem has received a lot of attention in the combinatorial optimization community. Since (2)
is a linear program (LP), an optimal solution can be found in polynomial time. However, in practice, for
common applications such as multicommodity flow, it takes an extremely long time and large amount of
memory to solve these problems to optimality [5]. If, on the other, one solves the problems to within a 1 + ε
factor of optimality (called ε-optimality), the situation is much more encouraging. Leveraging the fact that
LPs over X are “easy,” one designs Lagrangian relaxation algorithms which “dualize” the constraints aTi x

with appropriate multipliers and reduce the packing problem to a series of LPs over X . These ε-optimal
approximation algorithms tend to be faster, both in theory and in practice. There are many factors involved
in the analysis of such algorithms, here we will focus mainly on the dependence of the number of iterations
on ε. Shahrokhi and Matula [28] developed the first approximation algorithm that computes an ε-optimal
solution for an interesting special case of (2) (concurrent flow). The running time’s dependence on ε is O(ε−7),
and each iteration is linear optimization over X . Subsequent research quickly reduced the dependence on
ε to O(ε−2), and many other improvements reduced the number of iterations, the time per iteration, and
expanded the techniques to broader packing and covering problems. See, e.g., [19, 20, 12, 13, 26, 27, 9, 8]
for details. A recent breakthrough by Bienstock and Iyengar [4] employed a result of Nesterov [24] to reduce
the dependence on ε to O(ε−1). Since the basic operation in all of these algorithms is linear optimization
([4] considers a regularized version), all of these methods are useful only when this step is cheap.

In this paper, we continue research into algorithms which have O(ε−1) dependence on ε, and extend the
theory to SDPs with packing constrains. The main contributions in this paper are as follows.

(a) We show that several interesting SDPs, such as the Maxcut SDP, the graph coloring SDP, and the
Lovász Shannon-capacity problem can all be cast as SDPs with packing constraints. This allows us
to design algorithms for all these problems in a unified manner, leveraging the knowledge gained from
designing algorithms for the vector packing problem.

(b) We extend the technique proposed by Nesterov [24] to design an algorithm for the SDP with packing
constraints that computes an ε-optimal solution in O(n logn

ε
) iterations, where each iteration solves a

regularized linear optimization problem over the set X = {X : X º 0,Tr(X) ≤ 1}, i.e. we reduce the
SDP packing problem to a series of simple optimization problems over the set X . As in the case of vector
packing, such an algorithm will be attractive if linear optimization over X is cheap.

(c) Algorithms for vector packing problems, including the one in [4], do not yield a feasible solution (one
notable exception is in [7]); instead, they compute an ε-feasible solution that is close to optimal. In
contrast, the algorithm proposed in this paper computes ε-optimal strictly feasible solution for two
special instances, namely the Maxcut SDP and the graph coloring SDP.

(d) We show that a regularized version of the linear optimization problem max{W • X : X ∈ X}, with
W = WT , can be solved in O

(
n(n+m) log3(1/ε)

)
time, where m denotes the maximum number of

non-zero terms in W.

Klein and Lu [17] (see also [18]) describe ε-approximation algorithms to solve the Maxcut SDP and the
graph coloring SDP that build on an algorithm described in [26]. The number of iterations required to
compute ε-optimal solution to the Maxcut SDP (resp. graph coloring SDP) grows in ε as O(ε−2) (resp.
O(ε−4)), where each iteration computes the maximum eigenvalue of a matrix. Since iterative methods allow
efficient computation of the maximum eigenvalue when the underlying graph is sparse, algorithms in [17] are
especially efficient for such graphs. This work, however, does not utilize the fact that both the Maxcut and

2

the graph coloring SDPs are, in fact, particular instances of a more general problem class that can be
efficiently solved. (Note the large difference in the run times for Maxcut and graph coloring.)

Interior point algorithms can solve SDPs with packing constraints in time polynomial in the input size and
logarithmic in the error ε [1, 25]. Specialized interior point methods [3, 6] for solving the Maxcut SDP have
a worst-case complexity of O(n3.5 log(1

ε
)); in practice, however, the specialized methods perform faster than

this worst-case bound. The theoretical complexity of general interior point methods for solving the graph
coloring problem is O(n6.5 log(1

ε
)). The significant difference in worst-case complexity is a consequence of

the fact that the number of constraints increases from O(n) to O(n2). No specialized interior point methods
have been developed for graph coloring.

In contrast to interior point methods, the iteration count of the algorithm proposed in this paper is
O(n logn

ε
) independent of the number of constraints in the packing problem. Since any linear optimization

problem over X can be solved by computing a spectral decomposition, each iteration in the packing algorithm

is O(n3), yielding a worst case bound of O(n
4 log n
ε

). If the matrix is sparse, i.e., m = O(n), we obtain a

bound of O(ε−1n3 log(n) log3(1
ε
)). Clearly, interior point methods will be superior to our algorithm for very

small ε; thus, these methods will be competitive only for moderately small ε or in the presence of sparsity.
In addition, as is the case with vector packing problem, the algorithms proposed here are interesting only
for large problems with special structure that still allow cheap linear optimization over X but the interior
point methods are not able to leverage the structure to reduce memory requirements.

Our presentation focuses on the Maxcut and coloring problems, and briefly describes the Lovász
Shannon-capacity problem. Our results apply to a broader class of SDPs but we do not pursue the de-
tails in this extended abstract. In Section 2, we give some notation and definitions. In Section 3, we describe
the special case of the Maxcut SDP and how solutions to this SDP can be computed from ε-optimal so-
lutions to a related saddle-point problem. In Section 4, we describe the main algorithm that approximates
the saddle-point problem. In Section 5, we describe how the graph coloring SDP can be approximated in an
analogous fashion. These two instances will clearly imply the algorithm for general SDP packing problems.
We are currently simplifying some of the details of the general algorithm. In Section 6, we describe the Lovász
Shannon-capacity problem as an SDP with packing constraints. In Section 7, we describe how to exploit
sparsity to improve the run-time of a bottleneck subroutine used to optimize over X . The technical details
for the algorithms approximating the Maxcut SDP and graph coloring SDP can be found in Appendices A
and B.

2 Notation and definitions

All vectors will be denoted by lowercase boldfaced letters, and matrices by capital boldfaced letters. Unless
explicitly indicated, we use n dimensional column vectors and n×n matrices. We use I to denote the identity
matrix and 1 for the vector of all ones. For a square matrix, A = [aij], define diag(A) = [a11 a22 . . . ann]

T .
For a vector a, let diag(a) = [dij] where dij = ai when i = j and zero when i 6= j, i.e., diag(a) is the
diagonal matrix with the vector a as the main diagonal. For matrices A and B, we define A •B = Tr(AB),
and use A º 0 to indicate that A is a positive semidefinite matrix.

For a function Φ : Θ×Υ→ R consider the saddle-point problem

max
z∈Θ

min
p∈Υ

Φ(z,p). (3)

For a given ε > 0, we say that the pair (z̄, p̄) ∈ Θ×Υ is an ε-saddle-point if,

0 ≤ min
p∈Υ

Φ(z̄,p)−max
z∈Θ

Φ(z, p̄) ≤ ε. (4)

Given a function h : Θ→ R that we wish to minimize, let z∗ be the minimum-valued solution. We say that
z̄ is ε-optimal in the absolute sense if h(z̄) ≤ h(z∗) + ε, i.e. h(z̄) is within an additive error ε to the optimal
value. Suppose h(z∗) ≥ C. Then h(z̄) ≤ h(z∗) + ε = h(z∗) + C(ε/C) ≤ (1 + ε/C)h(z∗), thus, an ε-optimal
solution in the absolute sense has a relative error at most ε/C. If C is a constant, then an ε-optimal solution

3

in the absolute sense is an ε-optimal solution in the more traditional multiplicative sense. (We will make
analogous definitions for maximization problems.) This relation between the absolute and relative error in
each of these problems was described by Klein and Lu [17]. Our algorithms will actually return an ε-optimal
primal-dual pair, i.e. a pair of primal and dual solutions whose objective values differ by no more than
ε. By standard strong duality arguments, this immediately implies that both the primal and the dual are
ε-optimal.

Let γ ∈ Rn. Then the following linear program has a simple solution.

max
y

{ n∑

i=1

γiyi : y ≥ 0,

n∑

i=1

yi ≤ 1
}

= max
{
0, max

1≤i≤n
{γi}

}
. (5)

For a square matrix A, λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) will denote the ordered set eigenvalues of A,
λmax(A) := λn(A) and λmin := λ1(A). Note that for all square matrices A, the following optimization
problem reduces to a linear program identical to (5) in the space of eigenvalues:

max
X

{
A •X : Tr(X) ≤ 1,X º 0

}
= max

y

{ n∑

i=1

λi(A)yi : y ≥ 0,
∑

i

yi ≤ 1
}

= max
{
0, λmax(A)

}
. (6)

3 The SDP relaxation for Maxcut

In this section we review the well-known SDP relaxation of the exact vector formulation for the Max-

cut problem. We then show the equivalence of this relaxation to a maximin problem. The exact vector
formulation for Maxcut is as follows.

max 1
4W • (11T −X)

subject to X = xxT ,
x ∈ {−1, 1}n,

(7)

where W is the weight matrix. The Laplacian L = [`ij] of a weighted graph with weights W is given by

`ij =

{
−wij , i 6= j,∑n
k=1 wik, i = j.

(8)

The Laplacian L of a graph is a positive semidefinite matrix. From (8) it follows that (7) is equivalent to

max 1
4L •X

subject to X = xxT

x ∈ {−1, 1}n,

(9)

The SDP relaxation of (9) employed by the Goemans-Williamson [10] approximation algorithm is equivalent
to the following

max L •X
subject to diag(X) ≤ 1,

X ∈ X̄ ≡ {X : X º 0,Tr(X) ≤ n}.
(10)

Note that relaxing diag(X) = 1 to diag(X) ≤ 1 does not change the formulation, because increasing the
diagonal of a positive semidefinite matrix keeps it positive semidefinite, and only increases the objective.
The extra constraint Tr(X) ≤ n in the definition of X is implied by diag(X) ≤ 1. Since linear optimization
over X̄ reduces to a problem of the form (6), it follows that (10) is an SDP with packing constraints. We
assume that the edge weights {wij} sum to 1, i.e. L • I = 2. Since I is feasible for (10), it follows that the
optimal value of (10) is at least 2.

4

On dualizing the constraints diag(X)− 1 we get the saddle-point problem

max
{X:Xº0,Tr(X)≤n}

max
{u:u≥0}

{
L •X−

n∑

i=1

ui(xii − 1)
}
. (11)

We want to compute a good solution X̂ for (10) by starting from an initial X(0) º 0 with Tr(X(0)) ≤ n,
and then iterating by choosing the next dual iterate u(k+1) (resp. primal iterate X(k+1)) to be the “best
response” to current primal iterate X(k) (resp. dual iterate u(k)). However, this is impossible unless we are
able to bound the “width” of the set of dual variables. In Theorem 1, we show that it is sufficient to restrict
to dual variables u such that

∑n
i=1 ui ≤ 5n. We will find it more convenient to work with the following

scaled version of the saddle-point problem (11):

max
X∈X

min
u∈U

φ(X,u) = min
u∈U

max
X∈X

φ(X,u),

where

φ(X,u) = nX • L−
n∑

i=1

5nui(nxii − 1), (12)

X =
{
X ∈ Rn×n : X º 0,Tr(X) ≤ 1

}
, (13)

U =
{
u ≥ 0 :

n∑

i=1

ui ≤ 1
}
. (14)

In the proof of the following result we use the fact that the dual of (10) is given by

min
∑n
i=1 ui

subject to diag(u)− L º 0,
u ≥ 0.

(15)

Theorem 1 Fix ε > 0. Suppose (X̄, ū) ∈ X × U is an ε-saddle-point with respect to φ satisfying (4). Let
d̄ = nmax1≤i≤n{x̄ii}, λ̄ = λmax(L− 5ndiag(ū)), and

X̂ =

{
nX̄ d̄ ≤ 1,
nX̄/d̄, otherwise;

û =

{
5nū, λ̄ ≤ 0,
5nū + λ̄1, otherwise.

(16)

Then (X̂, û) are an ε-optimal primal-dual pair for (10) and (15).

Proof: From the definition of d̄, it follows that X̂ is feasible for (10). Since

diag(û)− L = 5ndiag(ū) + max
{
0, λmax(L− diag(5nū))

}
I− L º 0,

it follows that û is feasible for (15). From the definition of X and (6) it follows that

max
X∈X

φ(X, ū) = max
X∈X

{
nX • (L− 5ndiag(ū)) + 5n

n∑

i=1

ūi

}

= 5n

n∑

i=1

ūi + nmax
{
0, λmax

(
L− 5ndiag(ū)

)}
=

n∑

i=1

ûi. (17)

From the definition of U and (5), we have that minu∈U φ(X̄,u) = nX̄•L−maxu∈U

{
5n
∑n
i=1 ui(nx̄ii−1)

}
=

nX̄ • L− 5nmax
{
0, d̄− 1}. We show below that L • X̂ is at least minu∈U φ(X̄,u).

5

(i) d̄ ≤ 1: Then L • X̂ = nL • X̄ = nL • X̄− 5nmax
{
0, d̄− 1

}
= minu∈U φ(X̄,u).

(ii) d̄ > 1: Since Tr(X̄) ≤ 1, we have |x̂ij | ≤
√
x̄iix̄jj ≤ 1, and 0 ≤ L•X̄ ≤

∑n
i,j=1 |`ij ||x̄ij | ≤

∑n
i,j=1 |`ij | ≤

5. For all d > 0, we have 1/d ≥ 1− (d− 1), therefore,

L • X̂ =
nL • X̄
d̄

≥ nL • X̄− n(d̄− 1)(L • X̄) ≥ nL • X̄− 5n(d̄− 1) = min
u∈U

φ(X̄,u). (18)

From (4), (17), and (18) we have that
∑n
i=1 ûi − L • X̂ ≤ ε, i.e. (X̂, û) is an ε-optimal primal-dual pair.

4 Computing the approximate saddle-point (X̄, ū)

In order to “implement” Theorem 1 we need to compute an ε-saddle-point, (X̄, ū), for φ. In this section
we describe how to extend a technique proposed in Nesterov [24], to compute such a point. The technical
details of the method are provided in Appendix A.

We use the shorthand λi = λi(L− 5ndiag(u)), i = 1, . . . , n, and define f : U → R as follows.

f(u) = max
X∈X

φ(X,u) = 5n
n∑

i=1

ui + nmax
{
0, λmax

}
, (19)

where λmax = λn = max1≤i≤n{λi}, and the second equality follows from (6). We compute a pair (X̄, ū)
such that f(ū)−minu∈U φ(X̄,u) ≤ ε, i.e. it is an ε-saddle-point.

Our algorithm is based on a technique developed by Nesterov [24]. Since evaluating f involves solving
an LP (see (6)), it is not differentiable. Therefore, we replace it by a smooth approximation fα (see (20)
below). This approach is very similar to the approach taken in the packing-covering literature (see, e.g.
[26, 12, 4, 7]). In each iteration t, the algorithm computes a primal iterate X(t) ∈ X such that the gradient
∇fα(u(t)) = 5n

(
1 − ndiag(X(t))

)
. This gradient is then used to compute the next dual iterate. The

ε-saddle-point (X̄, ū) is a weighted combination of all the primal-dual iterates generated by the algorithm.
Define fα as follows.

fα(u) = 5n

n∑

i=1

ui +
1

α
ln

(
1 +

n∑

i=1

eαnλi

)
. (20)

Straightforward calculations show that for any α > 0, f(u) ≤ fα(u) ≤ f(u) + ln(n+1)
α

. Therefore, by setting

α = 2 log(n+1)
ε

, our problem reduces to computing an ε
2 -optimal solution for fα.

Let Vdiag(λ)VT = L−5ndiag(u) denote the eigendecomposition of L−5ndiag(u). Then the gradient
∇fα(u) of fα(u) is given by

∇fα(u) = 5n(1− ndiag(Xu)), (21)

where

Xu =
diag

(
Vdiag(enαλ)VT

)
(
1 +

∑n
i=1 e

nαλi

) , (22)

and diag(enαλ) denotes a diagonal matrix with enαλi as the i-th entry. Computing this gradient will be the
subject of Section 7. For now we assume the existence of a procedure SmoothGrad which takes as input
a vector u and returns ∇fα(u) and Xu as defined in equations (21) and (22).

Once the gradient is explicitly known, a Frank-Wolfe-type gradient descent method takes O(ε−2) iter-
ations to compute ε-optimal ū. The method proposed by Klein and Lu [17] can be interpreted as such a
first-order method. In order to develop an algorithm in which the number of iterations grows as O(ε−1)
one has to use a second-order Taylor series expansion and a more involved procedure for the inner loop. In
Appendix A, we prove that for all u,u′ ∈ U

fα(u) ≤ fα(u′) +∇fα(u′)T (u− u′) +
n2α

2
‖u− u′‖21 , (23)

6

SmoothApprox(L, ε)

T ← 4n log(n+ 1)/ε; α← 2n log(n+ 1)/ε; u(0) ← 1
n+11

(g(0),X(0))← SmoothGrad(u(0))

s← 1
2g

(0); X̂← X(0)

y(0) ← SmoothOpt
(
u(0), 1

2n2α
g(0)

)

for k ← 0 to T
do

1 τk ← 2/(k + 3)
2 z(k) ← SmoothOpt

(
u(0), 1

n2α
s
)

3 u(k+1) ← τkz
(k) + (1− τk)y(k).

4 (g(k+1),X(k+1))← SmoothGrad(u(k+1))
5 s← s + k+2

2 g(k+1)

6 X̂← X̂ + (k + 2)X(k+1)

7 û(k+1) ← SmoothOpt
(
z(k), k+2

2n2α
g(k+1)

)

8 y(k+1) ← τkû
(k+1) + (1− τk)y(k)

ū← y(T) X̄← 2
(T+1)(T+2)X̂

return (X̄, ū)

Figure 1: Procedure SmoothApprox(L, ε)

where ‖u‖1 =
∑n
i=1 |ui| denotes the L1-norm. We want to compute the iterates by minimizing the second-

order bound in (23) and, to minimize the cost of each step, we would like to write the iterate in closed form.
Since this is impossible to do when the distance between iterates is measured in terms of the L1-norm, we
replace it by the relative entropy or the Kullback-Leibler (K-L) distance d(u,u′) defined as follows

d(u,u′) =
n+1∑

i=1

ui log

(
ui
u′i

)
(24)

where un+1 = 1 −∑n
i=1 ui and u′n+1 = 1 −∑n

i=1 u
′
i. In Appendix A we show that d(u,u′) ≥ 1

2 ‖u− u′‖21.
Thus, we get the following bound

fα(u) ≤ fα(u′) +∇fα(u′)T (u− u′) + n2αd(u,u′). (25)

By using the Lagrange multipliers, we can show (see Appendix A for details) that
argminu∈U

{
d(u,u′) + gTu

}
is given by

ui =
u′ie

−gi

u′n+1 +
∑n
k=1 u

′
ke
−gk

, i = 1, . . . , n, (26)

where u′n+1 = 1 −
∑n
i=1 u

′
i. We define a procedure SmoothOpt that given vectors u′ and g, returns the

vector u defined by equation (26).
We now have all the ingredients necessary to describe the procedure SmoothApprox displayed in

Figure 1. The algorithm wants to compute iterates that converge to the minimum of fα over U by sequentially
minimizing the approximate second-order Taylors’ series expansion (25). Note that the bound (25) does not
use the Hessian of fα. This is because including the Hessian in the Taylors’ series leads to a complicated
optimization problem that cannot be solved in closed form. On the other hand, without the Hessian term,
(25) is not likely to be a good estimate of the function fα, at least when the iterates are far away from the
minimum.

In SmoothApprox we compensate for the Hessian by using a technique proposed by Nesterov [24]. This
technique computes the estimates y(k) of the minimizer of fα by keeping track of two sets of iterates: one set

7

uses the gradient ∇fα(u(k)) computed at the current iterate, and the other set uses a weighted combination
of all the previous iterates ∇fα(u(i)), i = 0, . . . , k. From Line 5 of SmoothApprox, we have that at the

beginning of iteration k of the variable s = s +
(
k+1
2

)
g(k+1) =

∑k
i=1

(
i+1
2

)
. Therefore, the iterates z(k)

computed in Line 2 depend on a weighted combination of the gradients at all the previous iterates. The
iterate û(k+1) computed in Line 7 “corrects” the iterate z(k) using the “local” gradient information g(k+1)

from the current u(k+1). The new estimate y(k+1) computed in Line 8 is a convex combination of the previous
iterate y(k) and the iterate û(k+1).

Using results from [24] we derive the following complexity bound for SmoothApprox. See Appendix A
for a proof.

Theorem 2 For any ε > 0, the output (X̄, ū) of SmoothApprox is an ε-saddle-point. The running time
is O(ε−1Q(n)n log n), where Q(n) is the running time of SmoothGrad.

Corollary 1 Suppose SmoothGrad computes Xu in (22) via an eigendecomposition. Then the running
time of SmoothGrad is O(ε−1n4 log n).

5 Semidefinite relaxation of graph coloring

The SDP relaxation for graph coloring corresponding to a graph G = (V,E) can be formulated as

max ζ,
s.t. xii ≤ 1, i = 1, . . . , n,

xij + ζ ≤ 0, (i, j) ∈ E,
X ∈ X̄ ≡ {X : X º 0,Tr(X) ≤ n}.

(27)

For k-colorable graphs (k ≥ 2), 1 ≥ ζ∗ ≥ 1
k
, hence, an ε-optimal solution has a relative error of kε [16, 17].

Since, without loss of generality, x∗ii = 1 in any optimal solution of (27), the second constraint in (27) can
be reformulated as 1

2 (xii + xjj) + xij + ζ ≤ 1. With this reformulation, the problem (27) reduces to an SDP
with packing constraints. The dual of this SDP is given by

min
∑n
i=1 ui

s.t.
∑m
j=1 vj = 1,

diag(u) + Av º 0,
u,v ≥ 0,

(28)

where m = |E| denotes the number of edges in the graph, A : Rm 7→ Rn×n is the linear operator Av =
1
2

∑
(i,j)∈E v(i,j)Eij , and Eij ∈ Rn×n with 1’s in the (i, j) and (j, i) position and zeros everywhere else.

As in the case with Maxcut, we dualize both the constraints diag(X) ≤ 1 and max(i,j)∈E{xij}+ ζ ≤ 0
to define a saddle-point problem:

max
X∈X

min
(u,v)∈U×V

φ(X,u,v),

where

φ(X,u,v) = n
m∑

i=1

ui − n(nu + Av) •X, (29)

X = {X : X º 0,Tr(X) ≤ 1} ,
U = {u : u ≥ 0,

∑n
i=1 ui ≤ 1} ,

V =
{
v : v ≥ 0,

∑m
j=1 vj = 1

}
.

(30)

Theorem 3 Fix ε > 0. Suppose (X̄, (ū, v̄)) ∈ X ×(U×V) is an ε-saddle-point. Let ζ̄ = −nmax(i,j)∈E{x̄ij},
d̄ = nmaxi=1,...,n{x̄ii},

û = nū−
(
min{λmin(diag(ū) + Av̄), 0}

)
1, v̂ = v̄, (31)

8

and

x̂ii =

{
nx̄ii, d̄ ≤ 1,
n¯̄xii

d̄
, d̄ > 1,

x̂ij =





nx̄ij , d̄ ≤ 1, ζ̄ > 0,
nx̄ij

d̄
, d̄ > 1, ζ̄ > 0,

0, ζ̄ ≤ 0.

ζ̂ = −max(i,j)∈E{x̂ij}.

(32)

Then (ζ̂ , X̂) and (û, v̂) are an ε-optimal primal-dual pair for (27) and (28).

Proof: One can check that (û, v̂) defined in (31) is feasible for the dual SDP (28). From the definition of
X , it follows that

max
X∈X

φ(X, ū, v̄) = n

m∑

i=1

ūi − n
(
min{λmin(diag(ū) + nAv̄), 0}

)
=

n∑

i=1

ûi. (33)

The pair (ζ̂ , X̂) defined in (32) is feasible for the primal SDP (27). Next, we show that the objective value

ζ̂ is lower bounded by
min

(u,v)∈U×V
φ(X̄,u,v) = ζ̄ − nmax{d̄− 1, 0}. (34)

(a) d̄ ≤ 1, ζ̄ > 0: In this case (ζ̂, X̂) = (ζ̄, X̄), and ζ̂ = ζ̄ = ζ̄ − nmax{d̄− 1, 0}.

(b) d̄ ≥ 1, ζ̄ > 0: In this case, ζ̂ = ζ̄

d̄
≥ ζ̄

(
1 − (d̄ − 1)

)
≥ ζ̄ − n(d̄ − 1), where the first inequality follows

from the fact that 1
d
≥ 1 − (d − 1) for all d > 0, and the second inequality follows from the bound

|x̄ij | ≤
√
x̄iix̄jj ≤ 1.

(c) ζ̄ ≤ 0. In this case, ζ̂ = 0 ≥ ζ̄ + nmax{d̄− 1, 0}.

Thus, we have established the existence of an ε-optimal primal-dual pair (λ̂, X̂) and (û, v̂).
As in Section 3 we work with the function f(u,v) = maxX∈X φ(X,u,v), and smooth it to obtain

fα(u,v) = n

n∑

i=1

ui −
1

α
log
(
1 +

n∑

i=1

e−nαλi

)
,

where λi = λi(ndiag(u) + Av), i = 1, . . . , n. As before,

f(u,v) ≤ fα(u,v) ≤ f(u,v) +
log(n+ 1)

α
,

and [
∇ufα(u,v)
∇vfα(u,v)

]
=

[
n2 diag(Xu)− n1

ATXu

]
, Xu =

e−nα(ndiag(u)+Av)

(
1 +

∑n
i=1 e

−nαλi

) . (35)

The function fα can be optimized using a procedure very similar to SmoothApprox except that each
iteration we solve two optimization problems: one in u and the other in v. The details of the procedure
SmoothApproxColoring are in Appendix B.

Theorem 4 For any ε > 0, the output (X̄, ū, v̄) of SmoothApproxColoring is an ε-saddle-point. The
running time is O(ε−1Q(n)n

√
log(n) log(m)), where Q(n) is the running time of SmoothGrad.

The
√

log(m) factor appears because the number of constraints in the graph coloring problem ism as opposed
to n in the case of the Maxcut problem. Again the bottleneck step is the computation of the smoothed
gradient Xu.

Corollary 2 If Xu computed via eigendecomposition then the running time of SmoothApproxColoring

is O
(
ε−1n4 log n

)
.

9

6 The Lovász Shannon-capacity problem

The Lovász Shannon-capacity problem (see [21], [14]) on a graph with edge set E can be formulated as the
SDP:

max
∑
i,j xij ,

s.t. Tr(X) + xij ≤ 1, (i, j) ∈ E
Tr(X)− xij ≤ 1, (ij) ∈ E
X ∈ {X º 0 : Tr(X) = 1},

(36)

This is an SDP with packing constraints. Our method can be used to solve this problem, which, for space
reasons we do not include in this extended abstract.

7 Computing the matrix exponential

The most expensive step in SmoothApprox and SmoothApproxColoring is SmoothGrad that com-
putes

Xu =
Vdiag(enαλ)VT

(
1 +

∑n
i=1 e

nαλi

) =
enαA

Tr(enαA)
,

where enA denotes the matrix exponential [22, 23] of

A =

[
0 0T

0 L− 5ndiag(u).

]

The direct method for computing enαA involves computing an eigendecomposition of the matrix A and then
using this to compute Xu via (22). In this section we discuss a method that computes an ε-approximation
for enαA without first computing the eigendecomposition.

We use a method which we refer to as SI-Lanczos, or the shift-and-invert Lanczos, developed by van
den Eshof and Hochbruck [30]. The main improvement in [30] results from using Krylov subspaces generated
by (I + γA)−1, where γ > 0 (see also [15]). Therefore, at each iteration, we need to compute a solution
to the linear system yk+1 = (I + γA)yk. SI-Lanczos works best when A Â 0, so we approximate the
exponential of Ā = A + (6n − 2)I (resp. Ā = A + 2nI) for the Maxcut (resp. coloring) SDP. This shift
ensures that Ā Â 0 and the condition number κ(Ā) = λmax(Ā)/λmin(Ā) ≤ 2. Note that this shift does
not change the value of Xu defined in (7). Since the condition number, κ(Ā), is bounded, SI-Lanczos

can use the well-known conjugate gradient method (see, e.g., Golub and Van Loan [11]) to solve the system
of linear equations required at each iteration. The conjugate gradient method computes solutions to linear
systems that, at iteration k, have residual error bounded by [(

√
κ(A) − 1)/(

√
κ(A) + 1)]k, which implies

the convergence is geometric. Thus, this solves systems of linear equations in O((n+m) log(1/ε)) iterations
where ε > 0 is the relative error and m is the number of nonzeros in the matrix A. Overall, Theorem 3.3 of
[30] indicates that O(log2(1/ε)) iterations are required to approximate each column of the exponential. This
results an overall complexity of O(n(n+m) log3(1/ε)). Thus, we have the following corollary.

Corollary 3 The complexity of computing Xu via SI-Lanczos is O
(
n(n+m) log3(1

ε
)
)
. Therefore, using SI-

Lanczos for SmoothGrad in SmoothApprox and SmoothApproxColoring results in a complexity

of O
(
ε−1n2(n+m) log(n) log3(1

ε
)
)
.

References

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization.
SIAM J. Optim., 5(1):13–51, 1995.

[2] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings, and graph partitionings. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, pages 222–231, 2004.

10

[3] S. J. Benson, Yinyu Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial
optimization. SIAM J. Optim., 10(2):443–461 (electronic), 2000.

[4] D. Bienstock and G. Iyengar. Solving fractional packing problems in O
∗(1

ε
) iterations. In Proceedings of the

36th Annual ACM Symposium on Theory of Computing, pages 146–155, 2004.

[5] Daniel Bienstock. Potential function methods for approximately solving linear programming problems: theory and
practice. International Series in Operations Research & Management Science, 53. Kluwer Academic Publishers,
Boston, MA, 2002.

[6] S. Burer and R. D. C. Monteiro. A projected gradient algorithm for solving the maxcut SDP relaxation. Optim.
Methods Softw., 15(3-4):175–200, 2001.

[7] L. Fleischer. Fast approximation algorithms for fractional covering problems with box constraint. In Proceedings
of the 15th ACM-SIAM Symposium on Discrete Algorithms, 2004.

[8] Lisa K. Fleischer. Approximating fractional multicommodity flow independent of the number of commodities.
SIAM J. Discrete Math., 13(4):505–520 (electronic), 2000.

[9] Naveen Garg and Jochen Konemann. Faster and simpler algorithms for multicommodity flow and other fractional
packing problems. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pages
300–309, 1998.

[10] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, 1995.

[11] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3 of Johns Hopkins Series in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 1983.

[12] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex programs with many blocks
and coupling constraints. SIAM Journal on Optimization, 4(1):86–107, February 1994.

[13] M. D. Grigoriadis and L. G. Khachiyan. An exponential-function reduction method for block angular convex
programs. Networks, 26:59–68, 1995.

[14] M. Grötschel, L. Lovász, and A. Schrijver. Polynomial algorithms for perfect graphs. In Topics on perfect graphs,
volume 88 of North-Holland Math. Stud., pages 325–356. North-Holland, Amsterdam, 1984.

[15] Marlis Hochbruck and Christian Lubich. On Krylov subspace approximations to the matrix exponential operator.
SIAM J. Numer. Anal., 34(5):1911–1925, 1997.

[16] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming. J. ACM,
45(2):246–265, 1998.

[17] P. Klein and H-I Lu. Efficient approximation algorithms for semidefinite programs arising from MAX CUT
and COLORING. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996), pages 338–347, New York, 1996. ACM.

[18] P. Klein and H-I Lu. Space-efficient approximation algorithms for MAXCUT and COLORING semidefinite
programs. In Algorithms and computation (Taejon, 1998), volume 1533 of Lecture Notes in Comput. Sci., pages
387–396. Springer, Berlin, 1998.

[19] P. Klein, S. A. Plotkin, C. Stein, and É. Tardos. Faster approximation algorithms for the unit capacity concurrent
flow problem with applications to routing and finding sparse cuts. SIAM Journal on Computing, 23(3):466–487,
June 1994.

[20] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas. Fast approximation algorithms for
multicommodity flow problems. Journal of Computer and System Sciences, 50:228–243, 1995.

[21] László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979.

11

[22] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev.,
20(4):801–836, 1978.

[23] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years
later. SIAM Rev., 45(1):3–49 (electronic), 2003.

[24] Yu. Nesterov. Smooth minimization of nonsmooth functions. Technical report, CORE DP, 2003.

[25] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming, volume 13
of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 1994.

[26] S. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing and covering
problems. Mathematics of Operations Research, 20:257–301, 1995.

[27] T. Radzik. Fast deterministic approximation for the multicommodity flow problem. In Proceedings of the 6th
ACM-SIAM Symposium on Discrete Algorithms, pages 486–496, 1995.

[28] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. Journal of the ACM, 37:318 – 334,
1990.

[29] M. Skutella. Convex quadratic and semidefinite programming relaxations in scheduling,. Journal of the ACM,
48(2):206–242, 2001.

[30] J. van den Eshof and M. Hochbruck. Preconditioning lanczos approximations to the matrix exponential, 2004.

12

A Details of SmoothApprox

We begin with the solution of the optimization problem

min d(u,u′) + gTu,

s. t.
∑n+1
i=1 ui = 1,

u ≥ 0,
(37)

where u′n+1 = 1 −∑n
i=1 ui. Using Lagrange multipliers, the optimal solution (u∗, s∗) can be characterized

as follows:
u∗i = u′ie

−gieβ+ρi , i = 1, . . . , n,
u∗n+1 = u′n+1e

β+ρn+1 ,

where ρ ≥ 0 and satisfies the complementary slackness condition ρiu
∗
i = 0, i = 1, . . . , n + 1. Since u′ ≥ 0

and u′n+1 ≥ 0, it follows that ρ = 0. Since
∑n+1
i=1 u

∗
i = 1, we have that

u∗i =
u′ie

−gi

u′n+1 + u′ie
−gi

, i = 1, . . . , n.

The next step is a new characterization for the smoothed function fα(u).

fα(u) = −n
n∑

i=1

ui + max nA •X− 1
α

(∑n
i=1 µi(X) log(µi(X)) + s log(s)

)
,

s.t. Tr(X) + s = 1,
X º 0, s ≥ 0,

(38)

where A = L − 5ndiag(u), and {µi(X) : 1 ≤ i ≤ n} denote the eigenvalues of X. This result follows from
the following observations.

(i) Let A = VΛVT with {λi : 1 ≤ i ≤ n} arranged in decreasing order. Fix µ ≥ 0 and s ≥ 0 such that
µ1 ≥ µ2 ≥ . . . ≥ µn and

∑n
i=1 µi + s = 1. Let X = Wdiag(µ)WT for some orthonormal matrix W.

Then

nA •X = n

n∑

i=1

µi(w
T
i Awi) ≤ n

n∑

i=1

µiλi, (39)

with equality if and only if each wi is the eigenvector of A corresponding to λi. Thus, for a fixed µ,
the optimal choice W is V, the set of eigenvectors of A.

(ii) Thus, we have that

fα(u) = −n
m∑

i=1

ui + max n
∑n
i=1 µiλi − 1

α

(∑n
i=1 µi log(µi) + s log(s)

)
,

s.t.
∑n
i=1 µi + s = 1,

µ ≥ 0, s ≥ 0,

This is an optimization problem of the form (37). Therefore, the optimal µ∗ is given by

µ∗i =
enαλi

1 +
∑n
k=1 e

nαλk
, i = 1, . . . , n,

and the optimal value Xu is given by

Xu =
diag

(
Vdiag(enαλ)VT

)
(
1 +

∑n
i=1 e

nαλi

) ,

13

¿From the new formulation for fα(u), it follows that ∇fα(u) = 5n(1− ndiag(Xu)).
The next step is to establish the approximate second-order Taylor series expansion

fα(u) ≤ fα(u′) +∇fα(u′)T (u− u′) +
n2α

2
‖u− u′‖21 ,

where ‖·‖1 denotes the L1-norm. This result essentially follows from the Cauchy-Schwartz inequality. See [24]
or [4] for a proof.

Let H(u) =
∑n+1
i=1 ui log(ui), where un+1 = 1 −∑n

i=1 ui. Then H is a convex function of u. Also, for
any vector w ∈ Rn

wT∇2H(u)w =

n∑

i=1

w2
i

ui
,

=
(n∑

i=1

w2
i

ui

)(n∑

i=1

ui

)
,

≥ (

n∑

i=1

|wi|√
ui

√
ui)

2, (40)

= ‖w‖21 , (41)

where (40) follows from the Cauchy-Schwartz inequality |wTv|2 ≤ ‖w‖ ‖v‖. From the second-order Taylor
series expansion we have that for some θ ∈ [0, 1]

H(u)−H(u′) = ∇H(u′)T (u− u′) +
1

2
(u− u′)T∇2H(θu + (1− θ)u′)(u− u′),

≥ ∇H(u′)T (u− u′) +
1

2
‖u− u′‖2 .

Simple algebra shows that the entropy distance

d(u,u′) = H(u)−H(u′)−∇H(u′)T (u− u′) ≥ 1

2
‖u− u′‖2 . (42)

We now have all the ingredients to prove the complexity bound for SmoothApprox. The result of the proof
closely follows [24].

Lemma 1 Fix α = 2 log(n+1)
2 . Suppose that for all k ≥ 0,

(Rk) Γkfα(y(k)) ≤ ψ(k) := min
u∈U

{
n2αd(u,u(0)) +

k∑

i=0

γi[fα(u(i)) +∇fα(δi)
T (u− u(i))]

}
. (43)

where γk = k+1
2 , and Γk =

∑k
i=0 γi = (k+1)(k+2)

4 . Then for all T > 4n log(n+1)
ε

we have f(y(T)) ≤ f∗ + ε.

Proof: Let u∗ = argmin{fα(u)}. From the convexity of fα we have that

fα(u(i)) +∇fα(u(i))T (u∗ − u(i)) ≤ fα(u∗).

Thus, (Rk) implies that

fα(y(k)) ≤ n2αmaxu∈U{d(u,u(0))}
Γk

+
1

Γk

k∑

i=1

γi[fα(u(i)) +∇fα(δi)
T (u∗ − u(i))],

≤ n2α log(n)

Γk
+ f∗α, (44)

14

where (44) follows from that that maxu∈U{d(u,u(0))} is achieved at one of the extreme point of U . From

the bounds f(u) ≤ fα(u) ≤ f(u) + ln(n+1)
α

, we have that

f(y(k)) ≤ fα(y(k)) ≤ n2α log(n)

Γk
+ f∗α ≤

n2α log(n)

Γk
+

log(n+ 1)

α
+ f∗.

The result now follows by substituting α = 2 log(n+1)
ε

.
All that remains to show is that (Rk) holds for all k ≥ 0. The base case (R0) is established as follows. Since
γ0 = 1

2 < 1,

min
u∈U

{
n2αd(u,u(0)) + γ0[fα(u(0)) +∇fα(u(0))T (u− u(0))]

}

≥ γ0 min
u∈U

{
n2α

2

∥∥∥u− u(0)
∥∥∥

2

1
+ fα(u(0)) +∇fα(u(0))T (u− u(0))]

}
, (45)

≥ γ0

(
n2α

2

∥∥∥y(0) − u(0)
∥∥∥

2

1
+ fα(u(0)) +∇fα(u(0))T (y(0) − u(0))]

)
,

≥ γ0fα(y(0)), (46)

where (45) follows from (42) and (46) follows from the approximate Taylor’s series (23).
Assume (Rk) is true. At the beginning of iteration k, the cumulative gradient s computed in Line 5 of

SmoothApprox equals

s = s +
(k + 1

2

)
g(k) =

k∑

i=0

γig
(i)

Therefore, it follows that

z(k) = SmoothOpt
(
u(0), 1/(n2α)s

)
,

= argmin
u∈U

{
d(u,u(0)) + (n2α)−1sTu

}
,

= argmin
u∈U

{
n2αd(u,u(0)) + sTu

}
,

= argmin
u∈U

{
n2αd(u,u(0)) +

k∑

i=0

γi[fα(u(i)) +∇fα(u(i))T (u− u(i))]
}
.

Thus, we have that
ψ(k) = fα(z(k)), (47)

and
(
∇ud(z(k),u(0)) +

k∑

i=1

γi∇fα(u(i))
)T

(u− z(k)) ≥ 0, (48)

where ∇ud(u,u(0)) denotes the gradient with respect to the first argument. Since u(0) = 1
n+11, it follows

that
d(u,u(0)) = d(u, z(k)) + d(z(k),u(0)) +∇ud(z(k),u(0)).

15

Thus, we have that

n2αd(u,u(0)) +
k∑

i=0

γi[fα(u(i)) +∇fα(δi)
T (u− u(i))]

= n2αd(u, z(k)) +
(
∇ud(z(k),u(0)) +

k∑

i=1

γi∇fα(δi)
)T

(u− z(k))

︸ ︷︷ ︸
≥0

+
(
d(z(k),u(0)) +

k∑

i=0

γi[fα(u(i)) +∇fα(δi)
T (z(k) − u(i))]

)

︸ ︷︷ ︸
=ψ(k)

,

≥ Γkfα(y(k)) + n2αd(u, z(k)), (49)

where the last inequality follows from the induction hypothesis.
Thus, we have that

ψ(k+1)

≥ min
u∈U

{
n2αd(u, z(k)) + Γkfα(y(k)) + γk+1[fα(u(k+1)) +∇fα(u(k+1))T (u− u(k+1))]

}
. (50)

¿From the convexity of fα and the rule in Line 3 of SmoothApprox we have that

Γkfα(y(k)) + γk+1[fα(u(k+1)) +∇fα(u(k+1))T (u− u(k+1))]

≥ Γk[fα(u(k+1)) +∇fα(u(k+1))T (y(k) − u(k+1))]

+ γk+1[fα(u(k+1)) +∇fα(u(k+1))T (u− u(k+1))],

= Γk+1fα(u(k+1)) + γk+1∇fα(u(k+1))T (u− z(k)). (51)

¿From Line 7, we get

û(k+1) = SmoothOpt
(
z(k), (k + 2)/(2n2α)g(k+1)

)
,

= argmin
u∈U

{
n2αd(u, z(k)) + γk+1g

(k+1)
}
.

Thus, (50) and (51) imply that

ψ(k+1)

≥ n2αd(û(k+1), z(k)) + Γk+1fα(u(k+1)) + γk+1∇fα(u(k+1))T
(
û(k+1) − z(k)

)
,

≥ n2α

2

∥∥∥û(k+1) − z(k)
∥∥∥

2

1
+ Γk+1fα(u(k+1)) + γk+1∇fα(u(k+1))T

(
û(k+1) − z(k)

)
,

≥ Γk+1

(
fα(u(k+1)) +∇fα(u(k+1))T

(
τk(û

(k+1) − z(k))
)

+
n2α

2

∥∥∥τk(û(k+1) − z(k))
∥∥∥

2

1

)
, (52)

≥ Γk+1

(
fα(u(k+1)) +∇fα(u(k+1))T

(
y(k+1) − u(k+1)

)
+
n2α

2

∥∥∥y(k+1) − u(k+1)
∥∥∥

2

1

)
, (53)

≥ Γk+1fα(y(k+1)), (54)

where (52) follows from the fact that τ 2
k ≤ 1/Γk+1, (53) follows from the rule in Line 8 in SmoothApprox,

and (54) follows from the approximate Taylor’s series bound (23). Thus, we have that (Rk) holds for all
k ≥ 0.

16

Thus, we have established that the dual variable ū produced by SmoothApprox is close to optimal.
All that remains to be shown is that the primal variable X̄ is also close to optimal. ¿From the definition of
fα(u) in (38), we have that

fα(u) = ∇fα(u)Tu− 1

α

(n∑

i=1

µi(Xu) log(µi(Xu)) + su log(su)
)
,

≤ ∇fα(u)Tu + nL •Xu +
log(n+ 1)

α
.

Then, the induction hypothesis, Line 6 and Line 8 of SmoothApprox imply that

Γkfα(y(k)) ≤ n2α log(n) + min
u∈U

{
k∑

i=0

γi[fα(u(i)) +∇fα(u(i))T (u− u(i))]

}
,

≤ n2α log(n) +
Γk log(n+ 1)

α
+ Γk min

u∈U

{
nL • X̄− 5

n∑

i=1

ui(nx̄ii − 1)

}
,

= n2α log(n) +
Γk log(n+ 1)

α
+ Γk min

u∈U
φ(X̄,u).

Thus, we have that for all T ≥ 4
√
n log(n)

ε
, we have that

min
u∈U

φ(X̂,u) + ε ≥ fα(y(T)) ≥ f(y(T)) ≥ f∗.

B Procedure SmoothApproxColoring

The procedure for computing an ε-approximate saddle-point for the coloring problem is as follows.

17

SmoothApproxColoring(G, ε)
SQiters← 4n log n log.5m/ε
α← 2n log(n+ 1)/ε
u(0) ← v(0) ← 1

n
1.

(g
(0)
1 ,g

(0)
2 ,X(0))← SmoothGradColoring(u(0),v(0))

si ← 1
2g

(0)
i , i = 1, 2

X̂← X(0)

y
(0)
1 ← SmoothOpt

(
u(0), 1

2n2α
g

(0)
1

)

y
(0)
2 ← SmoothOpt

(
v(0), 1

2n2α
g

(0)
2

)

for k ← 0 to T
do

1 τk ← 2/(k + 3)

2 z
(k)
1 ← SmoothOpt

(
u(0), 1

n2α
s1

)

3 z
(k)
2 ← SmoothOpt

(
v(0), 1

n2α
s2

)

4 u(k+1) ← τkz
(k)
1 + (1− τk)y(k)

1 .

5 v(k+1) ← τkz
(k)
2 + (1− τk)y(k)

2 .

6 (g
(k+1)
1 ,g

(k+1)
2 ,X(k+1))← SmoothGradColoring(u(k+1),v(k+1))

7 (s1, s2)← k+2
2 (g

(0)
1 ,g

(0)
2)

8 X̂← X̂ + (k + 2)X(k+1)

9 û(k+1) ← SmoothOpt
(
z
(k)
1 , k+2

2n2α
g

(k+1)
1

)

10 v̂k+1 ← SmoothOpt
(
z
(k)
2 , k+2

2n2α
g

(k+1)
2

)

11 y
(k+1)
1 ← τkû

(k+1)
1 + (1− τk)y(k)

1

12 y
(k+1)
2 ← τkv̂

(k+1) + (1− τk)y(k)
2

ū← y
(T)
1 v̄← y

(T)
2 X̄← 2

(T+1)(T+2)X̂

return (X̄, ū, v̄)

The procedure SmoothGradColoring(u,v) returns the gradient ∇fα(u) and the matrix Xu defined in
(35). Note that the dual variables u and v interact only via SmoothGradColoring.

18

