
Unrelated Parallel Machine Scheduling
with Resource Dependent Processing Times�

Alexander Grigoriev1, Maxim Sviridenko2, and Marc Uetz1

1 Maastricht University, Quantitative Economics, P.O.Box 616,
6200 MD Maastricht, The Netherlands
{a.grigoriev, m.uetz}@ke.unimaas.nl

2 IBM T. J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598, USA

sviri@us.ibm.com

Abstract. We consider unrelated parallel machine scheduling problems
with the objective to minimize the schedule makespan. In addition to
its machine-dependence, the processing time of any job is also depen-
dent on the usage of a scarce renewable resource. An amount of k units
of that resource, e.g. workers, can be distributed over the jobs in pro-
cess, and the more of that resource is allocated to a job, the smaller
its processing time. The model generalizes the classical unrelated ma-
chine scheduling problem, adding a resource-time tradeoff. It is also a
natural variant of a generalized assignment problem studied previously
by Shmoys and Tardos, the difference lying in the fact the resource is
renewable and not a total budget constraint. We use a two-phased LP
rounding technique to assign resources to jobs and jobs to machines.
Combined with Graham’s list scheduling, we thus prove the existence of
a (4+2

√
2)-approximation algorithm. We show how our approach can be

adapted to scheduling problems with dedicated machines as well, with
an improvement of the performance bound to (3 + 2

√
2). Moreover, we

derive a lower bound of 2 for the employed LP-based analysis, and we
prove a (3/2)-inapproximability result.

1 Introduction and Related Work

Unrelated parallel machine scheduling to minimize the makespan, R||Cmax in
the three-field notation of Graham et al. [6], is one of the classical problems in
combinatorial optimization. Given are n jobs that have to be scheduled on m
parallel machines, and the processing time of job j on machine i is pij . The
goal is to minimize the latest job completion, the makespan Cmax. If the num-
ber of machines m is not fixed, the best approximation algorithm to date is a

� This work was done while the second author was visiting Maastricht University,
partially supported by METEOR, the Maastricht Research School of Economics of
Technology and Organizations.

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 182–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Scheduling with Resource Dependent Processing Times 183

2-approximation by Lenstra, Shmoys and Tardos [10]. Moreover, the problem
cannot be approximated within a factor smaller than 3/2, unless P=NP [10].

Shmoys and Tardos [12] consider the same problem with the additional fea-
ture of costs λij if job j is processed on machine i. They show that, if a schedule
with total cost Λ and makespan T exists, a schedule with total cost Λ and
makespan at most 2T can be found in polynomial time. The proof relies on
rounding the solution of an LP relaxation. They obtain the same result even
for a more general version of the problem, namely when the processing time pij

of any job-machine pair is not fixed, but may be reduced linearly, in turn for
a linear increase of the associated cost λij [12]. Note that, in both versions of
the problem studied in [12], the costs λij are non-renewable resources, such as
a monetary budget, with a global budget Λ.

In this paper, we consider a different variant of the problem of [12]. Namely,
the processing times pij of any job-machine pair can be reduced by utilizing
a renewable resource, such as additional workers, that can be allocated to the
jobs. In other words, a maximum number of k units of a resource may be used
to speed up the jobs, and the available amount of k units of that resource must
not be exceeded at any time. In contrast to the linearity assumption on the
costs and processing times in [12], the only assumption we make in this paper
is that the processing times pijs, which now depend also on the number s of
allocated resources, are non-increasing in s for each job-machine pair. That is,
we assume that pij0 ≥ · · · ≥ pijk for all jobs j and all machines i. The practical
motivation to study this problem is evident; to give an example, one may think
of production planning where additional (overtime) workers can be allocated
to specific tasks within the production in order to reduce the production cycle
time.

Related Work. In a manuscript by Grigoriev et al. [7], a restricted version of
the problem is addressed. They consider dedicated, parallel machines, thus each
job is dedicated beforehand to be processed on a given machine. Moreover, their
model is restricted to a binary resource, thus the availability of the additional
resource is k = 1. Any job may be processed either with or without using that
resource, with a reduced processing time if the resource is used. Finally, the
number of machines m in their paper is considered fixed, and not part of the
input. For that problem, they derive a (3+ε)–approximation, and for the problem
with m = 2 machines, they derive (weak) NP-hardness and a fully polynomial
time approximation scheme [7].

Jobs with resource dependent processing times also appear in the literature as
malleable or parallelizable tasks, e.g. in [11, 13]. In these models, jobs can be pro-
cessed on one or more parallel processors, and they have non-increasing process-
ing times pjs in the number s of processors used. Any processor can only handle
one job at a time, and the goal is to minimize the schedule makespan. Turek et
al. [13] derive a 2–approximation algorithm for this problem. In fact, the model
considered in [13] is just a special case of the problem considered in this paper.
Interpreting the parallel processors as a generic ‘resource’ that must be allocated
to jobs, the problem of [13] corresponds to the problem considered in this paper,

184 A. Grigoriev, M. Sviridenko, and M. Uetz

letting n jobs, with resource dependent processing times, be processed on m = n
identical parallel machines (instead of unrelated parallel machines). Mounie et
al. [11] consider yet another variant, in that the processor allocations must be
contiguous (for that problem, [13] includes a 2.7–approximation). Moreover, in
[11] it is not only assumed that the processing times pjs are non-increasing in s,
but also the processing ‘areas’ s · pjs are assumed to be non-decreasing in s. For
that problem, a

√
3–approximation is derived in [11].

When we restrict even further, and assume that the decision on the allocation
of resources to jobs is fixed beforehand, we are back at (machine) scheduling
under resource constraints as introduced by Blazewicz et al. [1]. More recently,
such problems with dedicated machines have been discussed by Kellerer and
Strusevich [8, 9]. We refer to these papers for various complexity results, and
note that NP-hardness of the problem with dedicated machines and a binary
resource was established in [8]. More precisely, they show weak NP-hardness for
the case where the number of machines is fixed, and strong NP-hardness for an
arbitrary number of machines [8].

From the more practical viewpoint, a resource-time tradeoff problem has also
been addressed by Chen [2]. He considers parallel, identical machine scheduling
problems. Just like in the paper by Shmoys and Tardos [12], job processing times
can be reduced by utilizing a non-renewable, monetary resource. The objective
considered in [2] is either the total weighted completion times of jobs, or the
weighted number of tardy jobs, incremented by the total resource consumption
of the schedule. The paper describes branch and bound algorithms, together
with computational results.

Results and Methodology. We derive a constant-factor approximation algo-
rithm for the problem at hand. Our approach is based upon an integer linear
program that defines a relaxation of the problem, extending a formulation used
by Grigoriev et al. [7]. The main idea is the utilization of an aggregate ver-
sion of the resource constraints, yielding a formulation that does not require
time-indexed variables. More precisely, we use a formulation that takes as in-
put all possible processing times pijs of jobs. We then consider the linear pro-
gramming relaxation of this integer program. In a first step, the solution of
this LP relaxation is rounded into a (still fractional) solution for another lin-
ear program. We then show that this in fact defines an instance (and solution)
of the linear programming relaxation used by Shmoys and Tardos [12] for the
generalized assignment problem. In a second step, we thus apply their round-
ing procedure to obtain an approximate integral solution for the original inte-
ger programming relaxation. From this solution, we extract both the machine
assignments and the resource allocations for the jobs. We then use Grahams
list scheduling [4] to generate a feasible schedule. Using the LP lower bounds,
we prove that this schedule is not more than a factor (4 + 2

√
2) away from

the optimum. For the special case of dedicated machines, our approach sim-
plifies, because the machine assignments are fixed beforehand, thus the second
rounding step is not required. For that case, we prove a performance bound of
(3 + 2

√
2).

Scheduling with Resource Dependent Processing Times 185

For both problems, unrelated and dedicated machines, we furthermore pro-
vide an instance showing that the linear programming based analysis cannot
yield anything better than a 2 approximation.

Concerning lower bounds on the approximability, note that the problem at
hand is a generalization of the classical unrelated machine scheduling problem
R||Cmax. Therefore it cannot be approximated better than a multiplicative factor
of 3/2, unless P=NP [10]. Restricting to the special case of dedicated machines,
strong NP-hardness follows from Kellerer and Strusevich [8], hence the problem
cannot admit an FPTAS, unless P=NP. This is true even for the case of a binary
resource, i.e., if k = 1. We furthermore show that, for general k, the problem
cannot be approximated better than a multiplicative factor of 3/2, unless P=NP.

2 Problem Definition

Let V = {1, . . . , n} be a set of jobs. Jobs must be processed non-preemptively on
a set of m unrelated machines, and the objective is to find a schedule that mini-
mizes the makespan Cmax, that is, the time of the last job completion. During its
processing, a job j may be assigned an amount s ∈ {0, 1, . . . , k} of an additional
resource, for instance additional workers, that may speed up its processing. If s
resources are allocated to a job j, and the job is processed on machine i, the
processing time of that job is pijs. The only assumption on the processing times
in dependence on the amount of allocated resources is monotonicity, that is, we
assume that

pij0 ≥ pij1 ≥ · · · ≥ pijk

for every machine-job pair (i, j). The allocation of resources to jobs is restricted
as follows. At any time, no more than the available k units of the resource may
be allocated to the set of jobs in process. Moreover, the amount of resources
assigned to any job must be the same along its processing. In other words, if s ≤ k
resources are allocated to some job j, and xj denotes its starting time on some
machine i, only k − s of the resources are available for other jobs between xj

and xj + pijs.
We finally introduce an additional piece of notation. Since we do not assume

that the functions pijs, in dependence on s, are strictly decreasing, the only
information that is effectively required is the breakpoints of pijs, this is, indices s
where pijs < pij,s−1. Hence, define the ‘relevant’ indices for job j on machine i
as

Sij = {0} ∪ {s | s ≤ k, pijs < pij,s−1} ⊆ {0, . . . , k} .

Considering this index set suffices, since in any solution, if s resources are allo-
cated to some job j on machine i, we may as well use s′ = min{r | r ≤ s, pijr =
pijs} ∈ Sij resources for that job, without violating feasibility.

186 A. Grigoriev, M. Sviridenko, and M. Uetz

3 IP Relaxation and LP-Based Rounding

Let xijs denote binary variables, indicating that an amount of s resources is used
for processing job j on machine i. Then the following integer linear program,
referred to as (IP), has a feasible solution if there is a feasible schedule of length
C for the original scheduling problem.

m∑

i=1

∑

s∈Sij

xijs = 1 , ∀ j ∈ V (1)

∑

j∈V

∑

s∈Sij

xijs pijs ≤ C , ∀ i = 1, . . . , m , (2)

∑

j∈V

m∑

i=1

∑

s∈Sij

xijs s pijs ≤ k C , (3)

xijs = 0 , if pijs > C, (4)
xijs ∈ {0, 1} , ∀ i, j, s.

Here, C represents the schedule makespan. Equalities (1) make sure that every
job is assigned to one machine and uses a constant amount of resources during
its processing. Inequalities (2) express the fact that the total processing on each
machine is a lower bound on the makespan. Inequalities (3) represent the aggre-
gated resource constraints: In any feasible schedule, the left-hand side of (3) is
the total resource consumption of the schedule. Because no more than k resources
may be consumed at any time, the total resource consumption cannot exceed
k C. Finally, constraints (4) make sure that we do not use machine-resource pairs
such that the job processing time exceeds the schedule makespan. These con-
straints are obviously redundant for (IP), but they will be used later in rounding
a solution for the linear relaxation of (IP). Notice that this integer program may
have a feasible solution for some integer value of C, although no feasible schedule
with makespan C exists; see Example 1 further below.

LP Relaxation. The integer linear program (IP) with the 0/1-constraints on
x relaxed to

xijs ≥ 0 , j ∈ V , s ∈ Sij , i = 1, . . . , m

also has a solution of value at most C if there is a feasible schedule for the original
scheduling problem with makespan C. We refer to this relaxation as (LP), and
note that it can be solved in polynomial time, because it has a polynomial
number of variables and constraints. Since we assume integrality of data, we are
actually only interested in integral values C. Therefore, by using binary search,
we can find in polynomial time the smallest integral value CLP such that (LP)
has a feasible solution xLP. Then CLP is a lower bound on the makespan of any
feasible schedule.

Scheduling with Resource Dependent Processing Times 187

Rounding the LP Solution. Given a pair (CLP, xLP) we next define an integer
solution x∗ from xLP by the following, 2-phase rounding procedure. In the first
rounding phase, we transform a fractional solution xLP to another fractional
solution x̄, in such a way that for every machine-job pair (i, j) there is exactly
one index s (amount of resource) such that x̄ijs is nonzero. Intuitively, we decide
for every machine-job pair on the amount of resources it may consume. By doing
this, we effectively get rid of the index s. This new fractional solution in fact
defines a fractional solution for an LP relaxation for the generalized assignment
problem discussed by Shmoys and Tardos [12]. Therefore, we will be able to use
their rounding procedure as our second rounding phase, and thus we eventually
obtain an integral solution x∗ from xLP.

First, let us choose an arbitrary ε such that 0 ≤ ε ≤ 1 . Then, for every
machine i and job j individually, define

ỹij =
∑

s∈Sij

xLP
ijs (5)

as the total fractional value allocated by the LP solution xLP to the machine-job
pair (i, j). Then let index tij ∈ Sij be chosen minimal with the property that

∑

s∈Sij ,s≤tij

xLP
ijs ≥ (1 − ε) ỹij . (6)

Then, for every machine i and job j define index sij ≥ tij as the minimizer of
s · pijs, for s ≥ tij ,

sij = arg mins≥tij s · pijs . (7)

By definition, it follows that sij ∈ Sij . We now consider a fractional solution x̄
defined by

x̄ijs =

{
ỹij s = sij ,

0 otherwise .
(8)

By definition, this solution fulfills (1). Moreover, we claim that it is an approxi-
mate solution for inequalities (2) and (3) in the following sense.

Lemma 1. Let (CLP, xLP) be an optimal fractional solution for the linear pro-
gramming relaxation (LP), and let x̄ = (x̄ijs) be the fractional solution obtained
by the above described rounding procedure. Then

∑

j∈V

∑

s∈Sij

x̄ijs pijs ≤ 1
1 − ε

CLP , i = 1, . . . , m , (9)

∑

j∈V

m∑

i=1

∑

s∈Sij

x̄ijs s pijs ≤ k

ε
CLP . (10)

188 A. Grigoriev, M. Sviridenko, and M. Uetz

Proof. The proof of both claims is based on proving the statement for every
machine-job pair. Validity of (9) can be seen as follows. We know that

(1 − ε) x̄ijsij = (1 − ε) ỹij ≤
∑

s∈Sij ,s≤tij

xLP
ijs

by definition of tij in (6). By the fact that pijtij ≤ pijs for all s ≤ tij , we therefore
have

(1 − ε) x̄ijsij pijtij ≤
∑

s∈Sij ,s≤tij

xLP
ijs pijs ≤

∑

s∈Sij

xLP
ijs pijs

for every machine i and job j ∈ V . Again due to monotonicity, pijsij ≤ pijtij for
all j ∈ V and i = 1, . . . , m, and we obtain

∑

s∈Sij

x̄ijs pijs = x̄ijsij pijsij ≤ x̄ijsij pijtij

≤ 1
1 − ε

∑

s∈Sij

xLP
ijs pijs

for all jobs j ∈ V and machines i = 1, . . . , m. Summing over j ∈ V , and using
(2), inequalities (9) follow for any machine i.

To see (10), first observe that ε x̄ijsij = ε ỹij ≤ ∑
s∈Sij ,s≥tij xLP

ijs by definition

of tij , since tij is the minimal index with property (6). Therefore,

ε x̄ijsij sijpijsij ≤
∑

s∈Sij ,s≥tij

xLP
ijs s pijs ≤

∑

s∈Sij

xLP
ijs s pijs

for every machine i and job j ∈ V , where the first inequality follows because sij

was chosen among all s ≥ tij such as to minimize s pijs. Hence, we obtain

∑

s∈Sij

x̄ijs s pijs = x̄ijsij sij pijsij ≤ 1
ε

∑

s∈Sij

xLP
ijs s pijs ,

for all jobs j ∈ V and machines i = 1, . . . , m. Summing over j ∈ V and all
machines i = 1, . . . , m, and using (3), eventually yields (10). �	

Next, we want to use the rounding procedure by Shmoys and Tardos in order
to end up with an integer solution.

Scheduling with Resource Dependent Processing Times 189

Lemma 2 (Shmoys & Tardos [12–Theorem 2.1]). Given a feasible frac-
tional solution ỹ = (ỹij) to the linear program

m∑

i=1

yij = 1 , ∀ j ∈ V (11)

∑

j∈V

yijτij ≤ T , ∀ i = 1, . . . , m , (12)

∑

j∈V

m∑

i=1

yijλij ≤ Λ , (13)

yij ≥ 0 , ∀ i, j. (14)

with nonnegative parameters T,Λ, τ =(τij), and λ=(λij), there is a polynomial
time algorithm which computes an integral solution ȳ to (11), (13), (14), and

∑

j∈V

ȳijτij ≤ T + τmax , ∀ i = 1, . . . , m , (15)

where τmax = maxi,j{τij | ỹij > 0}. �	
The fractional solution ỹ defined in (5), however, is nothing but a feasible

fractional solution for linear program (11)–(14), namely with parameters T =
1/(1 − ε)CLP, Λ = k/ε CLP, τij = pijsij , and λij = sijpijsij for all job-machine
pairs (i, j). Therefore, combining Lemma 1, the above result of Shmoys and
Tardos, and the fact that

τmax = max
i,j

pijsij ≤ max
i,j,s

{pijs | xLP
ijs > 0} ≤ CLP (16)

by constraints (4), we can show the following.

Lemma 3. Let (CLP, xLP) be an optimal fractional solution for the linear pro-
gramming relaxation (LP), then we can find a feasible solution x∗ = (x∗

ijs) for
the following integer linear program in polynomial time.

m∑

i=1

∑

s∈Sij

xijs = 1 , ∀ j ∈ V, (17)

∑

j∈V

∑

s∈Sij

xijs pijs ≤
(

1 +
1

1 − ε

)
CLP , ∀ i , (18)

∑

j∈V

m∑

i=1

∑

s∈Sij

xijs s pijs ≤ k

ε
CLP , (19)

xijs ∈ {0, 1} , ∀ i, j, s . (20)

Proof. We briefly summarize the previously described steps. Using the fractional
solution xLP = (xLP

ijs), define ỹ = (ỹij) as in (5), and apply the rounding defined

190 A. Grigoriev, M. Sviridenko, and M. Uetz

by (8). This yields a fractional solution x̄ = (x̄ijs) that is nonzero only for one
resource index s = sij , for any pair of i and j, as defined in (7). Interpreting
ỹ as fractional solution for the generalized assignment problem (11)–(14), use
Lemma 2 to round it to an integral solution ȳ = (ȳij). Now define the integral
solution x∗ by

x∗
ijs =

{
ȳij s = sij ,

0 otherwise .

With the help of Lemmas 1 and 2, and utilizing (16), it is now straightforward
to verify that x∗ fulfills (17)–(20). �	

4 LP Based Greedy Algorithm

Our approach to obtain a constant factor approximation for the scheduling prob-
lem is now the following. We first use the rounded 0/1-solution from the previous
section in order to decide both, on the amount of resources allocated to every
individual job j, and on the machine where this job must be executed. More
precisely, job j must be processed on machine i and use s additional resources
iff x∗

ijs = 1, where x∗ is the feasible integral solution of (17)–(20) obtained after
the 2-phase rounding. Then the jobs are scheduled according to the greedy list
scheduling algorithm of Graham [4], in arbitrary order.

Algorithm LP-Greedy: With the resource allocations and machine
assignments as determined by the LP based rounding, do until all jobs
are scheduled: Starting at time 0, iterate over completion times of jobs,
and schedule as many jobs as allowed, obeying the machine assignments
and the resource constraints.

Theorem 1. Algorithm LP-Greedy is a (4 + 2
√

2)–approximation algorithm
for unrelated parallel machine scheduling with resource dependent processing
times.

The fact that the algorithm requires only polynomial time follows directly from
the fact that both, solving and rounding the LP relaxation, as well as the list
scheduling, can be implemented in polynomial time.

To verify the performance bound, we first need some additional notation.
Consider some schedule S produced by algorithm LP-Greedy, and denote by
CLPG the corresponding makespan. Denote by COPT the makespan of an optimal
solution. For schedule S, let t(β) denote the earliest point in time after which
only big jobs are processed, big jobs being defined as jobs that have a resource
consumption larger than k/2. Moreover, let β = CLPG − t(β) be the length of
the period in which only big jobs are processed (note that possibly β = 0).

Next, we fix a machine, say machine i, on which some job completes at
time t(β) which is not a big job. Due to the definition of t(β), such a machine

Scheduling with Resource Dependent Processing Times 191

must exist, because otherwise all machines were idle right before t(β), contradict-
ing the definition of the greedy algorithm. Note that, between time 0 and t(β),
periods may exist where machine i is idle. Denote by α the total length of busy
periods on machine i between 0 and t(β), and by γ the total length of idle periods
on machine i between 0 and t(β). We then have that

CLPG = α + β + γ . (21)

Due to (18), we get that for machine i

α ≤
∑

j∈V

∑

s∈Sij

x∗
ijs pijs ≤

(
1 +

1
1 − ε

)
CLP . (22)

The next step is an upper bound on β + γ, the length of the final period
where only big jobs are processed, together with the length of idle periods on
machine i.

Lemma 4. We have that

β + γ ≤ 2
ε

CLP .

Proof. First, observe that the total resource consumption of schedule S is at least
β k

2 + γ k
2 . This because, on the one hand, all jobs after t(β) are big jobs and

require at least k/2 resources, by definition of t(β). On the other hand, during all
idle periods on machine i between 0 and t(β), at least k/2 of the resources must
be in use as well. Assuming the contrary, there was an idle period on machine i
with at least k/2 free resources. But after that idle period, due to the selection
of t(β) and machine i, some job is processed on machine i which is not a big job.
This job could have been processed earlier during the idle period, contradicting
the definition of the greedy algorithm. Next, recall that (k/ε)CLP is an upper
bound on the total resource consumption of the jobs, due to (19). Hence, we
obtain

k

ε
CLP ≥ β

k

2
+ γ

k

2
.

Dividing by 2/k yields the claimed bound on β + γ. �	

Now we are ready to prove the performance bound of Theorem 1.

Proof (of Theorem 1). First, use (21) together with (22) and Lemma 4 to obtain

CLPG ≤
(

1 +
1

1 − ε

)
CLP +

2
ε

CLP ≤
(

1 +
1

1 − ε
+

2
ε

)
COPT .

Solving for the best possible value for ε gives ε = 2−√
2 ≈ 0.5858, which yields

the claimed performance bound of 4 + 2
√

2. �	

192 A. Grigoriev, M. Sviridenko, and M. Uetz

5 Dedicated Machines

As a special case of the unrelated machine scheduling model considered so far,
let us assume that the jobs are assigned to machines beforehand. That is, the
set of jobs V is partitioned into m subsets V1, . . . , Vm a priori, Vi being the jobs
that must be processed on machine i, and pjs, s = 0, . . . , k, denotes the resource
dependent processing time of job j.

By letting all but one machine assignment result in very large processing
times, this is obviously a special case of the unrelated machine scheduling model.
Hence, our above analysis also yields a (4+2

√
2)–approximation for this model.

However, noting that the machine index i can be eliminated from the linear
program, we can use the following LP relaxation instead.

min. C (23)

s. t.
∑

s∈Sj

xjs = 1 , ∀ j ∈ V , (24)

∑

j∈Vi

∑

s∈Sj

xjs pjs ≤ C , ∀ i = 1, . . . , m , (25)

∑

j∈V

∑

s∈Sj

xjs s pjs ≤ k C , (26)

xjs ≥ 0 , ∀j, s . (27)

Here, according to our previous notation, Sj are the breakpoints of the function
pjs, hence

Sj = {0} ∪ {s | s ≤ k, pjs < pj,s−1} ⊆ {0, . . . , k} .

This way, the accordingly adapted first phase rounding of (8) already yields
an integral solution. More precisely, given a fractional solution (CLP, xLP) for
the above LP relaxation, we choose index tj minimal with the property that∑

s∈Sj ,s≤tj xLP
js ≥ 1 − ε and define index sj = arg mins≥tj s · pjs. Again, it

follows that sj ∈ Sj . Then the solution x̄, defined by x̄js = 1 if s = sj and
x̄js = 0 otherwise, is already integral. Hence, Shmoys and Tardos’ rounding is
not required, and instead of using the bounds (18) and (19), we now have an
integral solution x̄ = (x̄js) which fulfills the constraints

∑

j∈Vi

∑

s∈Sj

x̄js pjs ≤ 1
1 − ε

C , ∀ i = 1, . . . , m ,

∑

j∈V

∑

s∈Sj

x̄js s pjs ≤ k

ε
C .

Validity of these bounds is proved along the same lines as Lemma 1. This even-
tually yields an improved performance bound for the dedicated machine model.

Scheduling with Resource Dependent Processing Times 193

Theorem 2. Algorithm LP-Greedy is a (3 + 2
√

2)–approximation algorithm
for dedicated parallel machine scheduling with resource dependent processing
times.

Lower Bound for the (Integer) Linear Program. We next give an instance
to show that the integer linear program we use can be a factor 2 away from the
optimal solution. Hence, our LP-based analysis cannot yield anything better than
a 2-approximation, for both versions, the dedicated and the unrelated machine
case.

Example 1. Consider the problem with m = 2 dedicated machines and k units
of the additional resource, where k is odd. There are 2 jobs, each to be processed
on its own machine, with resource-dependent processing times

pjs =

{
2k + 1 if s < k

2

k if s > k
2

for both jobs j. �	
We have the following, feasible integer solution for the LP-relaxation (23)–(27):
xjs = 1 if s = �k/2�, and xjs = 0 otherwise, for both jobs j. This setting of
variables would yield C ≥ k by (25), and kC ≥ 2k�k/2� = k(k + 1) by (26).
Therefore, with C = (k + 1), there exists a feasible, even integral, solution
for (23)–(27). A fortiori, we know that for the linear programming relaxation
(LP), CLP ≤ k + 1. But in the optimal solution, COPT = 2k. Hence, the gap
between CLP and COPT can be as large as 2− ε, for any ε > 0. The bad quality
of the LP lower bound is obviously a consequence of the fact that we only use an
aggregate formulation of the resource constraints in (26) (or (3), respectively),
whereas any schedule has to respect the resource constraint at any time.

6 Lower Bounds on Approximation

The problem with unrelated machines cannot be approximated within a factor
smaller than 3/2 as a generalization of the classical unrelated machine scheduling
problem [10], as mentioned earlier. We next show that the same inapproxima-
bility result holds for the problem with dedicated machines.

Theorem 3. There is no polynomial time approximation algorithm for dedi-
cated parallel machine scheduling with resource dependent processing times that
has a performance guarantee less than 3/2, unless P=NP.

Proof. The proof relies on a gap-reduction from Partition [3]: Given n inte-
gers aj , with

∑n
j=1 aj = 2k, it is NP-complete to decide if there exists a subset

W ⊆ {1, . . . , n} with
∑

j∈W aj = k. Let us define an instance of the dedicated
machine scheduling problem as follows. Each aj gives rise to one job j with an
individual machine. Hence, we have n jobs and m = n dedicated machines. There

194 A. Grigoriev, M. Sviridenko, and M. Uetz

are k units available of the additional resource. Any job j has a processing time
defined by

pjs =

{
3 if s < aj

1 if s ≥ aj .

Hence, the aj ’s are the only breakpoints in the functions pjs, and the index set
Sj = {0, aj} for all jobs j. In other words, the functions pjs can be encoded
in O(log aj) for all jobs j, and the transformation is indeed polynomial. We
claim that there exists a feasible schedule with makespan Cmax < 3 if and only
if there exists a solution for the Partition problem. Otherwise, the makespan
is at least 3. To this end, observe that in any solution with makespan Cmax < 3,
we may assume that each job j consumes exactly aj units of the resource: If it
was less than aj for some jobs j, the makespan would be at least 3; if it was
more than aj for some job j, letting the resource allocation equal aj does not
violate feasibility, while maintaining the same processing time. Now, if and only
if there is a solution, say W , for the Partition problem, there exists a resource
feasible schedule with makespan 2, namely where jobs j ∈ W start at time 0,
and all jobs j ∈ W start at time 1. �	

Finally, it is not difficult to see that the above proof yields the same inapprox-
imability result for the problem with dedicated machines, even if the resource
consumption of jobs is fixed beforehand.

Corollary 1. There is no polynomial time approximation algorithm for resource
constrained dedicated machine scheduling that has a performance guarantee less
than 3/2, unless P=NP.

References

1. J. Blazewicz, J. K. Lenstra and A. H. G. Rinnooy Kan, Scheduling subject to
resource constraints: Classification and complexity, Discrete Applied Mathematics,
5 (1983), pp. 11–24.

2. Z.-L. Chen, Simultaneous Job Scheduling and Resource Allocation on Parallel
Machines, Annals of Operations Research, 129 (2004), pp. 135-153.

3. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completenes, W. H. Freeman, New York, 1979.

4. R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech-
nical Journal, 45 (1966), pp. 1563–1581. See also [5].

5. R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on
Applied Mathematics, 17 (1969), pp. 416–429.

6. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,
Optimization and approximation in deterministic sequencing and scheduling: A
survey, Annals of Discrete Mathematics, 5 (1979), pp. 287–326.

7. A. Grigoriev, H. Kellerer and V. A. Strusevich, Scheduling parallel ded-
icated machines with the speeding-up resource, manuscript (2003). Extended ab-
stract in: Proceedings of the 6th Workshop on Models and Algorithms for Planning
and Scheduling Problems, Aussois, France, 2003, pp. 131–132.

Scheduling with Resource Dependent Processing Times 195

8. H. Kellerer and V. A. Strusevich, Scheduling parallel dedicated machines
under a single non-shared resource, European Journal of Operational Research,
147 (2003), pp. 345–364.

9. H. Kellerer and V. A. Strusevich, Scheduling problems for parallel dedicated
machines under multiple resource constraints, Discrete Applied Mathematics, 133
(2004), pp. 45–68.

10. J. K. Lenstra, D. B. Shmoys and E. Tardos, Approximation algorithms for
scheduling unrelated parallel machines, Mathematical Programming, Series A, 46
(1990), pp. 259–271.

11. G. Mounie, C. Rapine, and D. Trystram, Efficient Approximation Algorithms
for Scheduling Malleable Tasks, Proceedings of the 11th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1999, pp. 23–32.

12. D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized
assignment problem, Mathematical Programming, Series A, 62 (1993), pp. 461–474.

13. J. Turek, J. L. Wolf, and P. S. Yu, Approximate Algorithms for Scheduling
Parallelizable Tasks, Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1992, pp. 323–332.

	Introduction and Related Work
	Problem Definition
	IP Relaxation and LP-Based Rounding
	LP Based Greedy Algorithm
	Dedicated Machines
	Lower Bounds on Approximation
	References

