
Math. Program., Ser. A (2009) 119:109–136
DOI 10.1007/s10107-007-0204-7

FULL LENGTH PAPER

LP-based online scheduling: from single to parallel
machines

José R. Correa · Michael R. Wagner

Received: 16 May 2007 / Accepted: 28 November 2007 / Published online: 4 January 2008
© Springer-Verlag 2007

Abstract We study classic machine sequencing problems in an online setting.
Specifically, we look at deterministic and randomized algorithms for the problem
of scheduling jobs with release dates on identical parallel machines, to minimize
the sum of weighted completion times: Both preemptive and non-preemptive ver-
sions of the problem are analyzed. Using linear programming techniques, borrowed
from the single machine case, we are able to design a 2.62-competitive deterministic
algorithm for the non-preemptive version of the problem, improving upon the 3.28-
competitive algorithm of Megow and Schulz. Additionally, we show how to combine
randomization techniques with the linear programming approach to obtain random-
ized algorithms for both versions of the problem with competitive ratio strictly smaller
than 2 for any number of machines (but approaching two as the number of machines
grows). Our algorithms naturally extend several approaches for single and parallel
machine scheduling. We also present a brief computational study, for randomly gen-
erated problem instances, which suggests that our algorithms perform very well in
practice.

Keywords Online algorithms · Machine scheduling

A preliminary version of this work appears in the Proceedings of the 11th conference on integer
programming and combinatorial optimization (IPCO), Berlin, 8–10 June 2005.

J. R. Correa
School of Business, Universidad Adolfo Ibáñez, Santiago, Chile
e-mail: correa@uai.cl

M. R. Wagner (B)
Department of Management,
California State University East Bay, Hayward, CA 94542, USA
e-mail: michael.wagner@csueastbay.edu

123

110 J. R. Correa, M. R. Wagner

1 Introduction

We study online versions of classic parallel machine scheduling problems. Given
a set of jobs N = {1, . . . , n}, where each job j has a processing time p j > 0, a
weight w j > 0 and a release date r j ≥ 0, we want to process these jobs on m identical
machines. We consider both non-preemptive and preemptive versions; in the latter case,
a job being processed may be interrupted and resumed later, possibly on a different
machine. Letting C j be the completion time of job j in a given schedule, we are
interested in minimizing the weighted sum of completion times:

∑
j∈N w j C j . As

we only consider online problems, jobs are not known until their respective release
date. In the scheduling notation of Graham et al. [12], we consider online versions of
P|r j |∑ j w j C j and P|r j , pmtn|∑ j w j C j .

In online optimization we are dealing with limitations on information, in con-
trast with the limitations on computational power in classic approximation algorithm
design. The standard measure of quality of online algorithms is the so-called competi-
tive ratio. Analogous to the approximation guarantee of an algorithm, the competitive
ratio is defined to be the worst-case ratio, over all instances, of the cost output by the
online algorithm to the optimal offline cost. We shall also say that an online algo-
rithm is c-competitive if, for any instance, the cost output by the online algorithm is
at most c times the optimal offline cost. We may alternatively define the competitive
ratio of an online algorithm as the infimum of all values c, for which the algorithm
is c-competitive. In some situations randomization is a powerful tool to obtain algo-
rithms with better performance ratios. The competitive ratio of a randomized online
algorithm is defined as above, except that we replace “the cost output by the online
algorithm” by “the expected cost output by the online algorithm.”

1.1 Previous Work

There has been an enormous amount of work on parallel machine scheduling. We do
not intend to do a complete review of results in the area and restrict our attention to
some of the most relevant literature on online scheduling problems directly related to
the matter of this paper.

To the best of our knowledge, the first deterministic online algorithm for
P|r j |∑ j w j C j was given by Hall et al. [13]. They design a (4 + ε)-competitive
algorithm. Prior to this paper, the best-known deterministic algorithms for both
P|r j |∑ j w j C j and P|r j , pmtn|∑ j w j C j were recently given by Megow and Schulz
[17] and are 3.28 and 2-competitive, respectively. They also show that the former al-
gorithm has a competitive ratio between 2.78 and 3.28 while the latter analysis is
tight.

Considering randomized algorithms, a (2.89 + ε)-competitive algorithm for
P|r j |∑w j C j was obtained by Chakrabarti et al. [4]. Schulz and Skutella [21]
give randomized strategies that are 2-competitive for both P|r j , pmtn|∑ j w j C j and
P|r j |∑ j w j C j . Related results have been obtained by Chekuri et al. [5] and Phillips
et al. [18], when the objective is to minimize the average completion time of the sched-
ule. In a more restricted setting, Chou et al. [6] consider the online P|r j |∑ j w j C j

123

LP-based online scheduling: from single to parallel machines 111

with lower and upper bounds on jobs’ weights and processing times; the authors prove
that the online weighted shortest processing time heuristic is asymptotically optimal.
They even extend this to the problem Q|r j |∑ j w j C j .

We also mention some single machine scheduling results, as our work essen-
tially extends these analyses to the parallel machine case. Using the idea of α-points
and mean-busy-time relaxations, Goemans et al. [11] designed a deterministic
2.4143-competitive and a randomized 1.6853-competitive algorithm for the online
1|r j |∑ j w j C j . A similar approach was taken by Schulz and Skutella [22] to give

a randomized 4
3 -competitive algorithm for 1|r j , pmtn|∑ j w j C j ; Sitters [24] gave a

1.56-competitive deterministic algorithm for the same problem. On the other hand,
Anderson and Potts [3] provide a best possible deterministic online algorithm for
1|r j |∑ j w j C j which has a competitive ratio of 2. Additionally, Savelsbergh et al. [19]
perform an extensive computational study of a number of heuristics and approximation
algorithms for the offline single machine problem 1|r j |∑ j w j C j . They conclude that
LP-based approximation algorithms for this problem perform very well.

A crucial tool for our paper is list scheduling, where the order in which jobs are
processed (on one or many machines) is determined by their priority order in a given
list. Perhaps the most well-known list-scheduling rule is Smith’s ratio rule [26], which
schedules jobs on a single machine in non-decreasing order of the ratios p j/w j and is
optimal for 1||∑w j C j . The incorporation of release dates into scheduling problems
suggests the potential of preemptive list scheduling. For example, in an environment
where preemption is allowed, if the highest priority job in a list is unavailable due
to a release date constraint, it makes sense to process a lower priority job until the
higher priority job is available. Therefore, a preemptive list schedule, where the highest
priority available jobs are processed, can be appropriate in many cases. We utilize both
non-preemptive and preemptive list schedules in this paper. In particular, the idea of
creating a parallel machine list schedule by considering a single-machine relaxation is
central to our analysis. This idea is implicitly contained in the work of Eastman et al.
[8], and lately has been used extensively as an algorithmic tool [5,6,13,21].

We next discuss the development of the α-point concept, which we utilize to create
preemptive and non-preemptive list schedules for assigning jobs to parallel identical
machines. The α-point of a job is the first point in time that a fraction α ∈ (0, 1] of the
job’s processing requirement has been completed. The idea to list-schedule in the order
of jobs’ α-points has proven to be a powerful tool. The first heuristic application of
α-points is found in de Sousa [7]. The idea of applying α-points to construct provably
good schedules (in the offline setting) was introduced by Phillips et al. [18] and by Hall
et al. [13]. Subsequently, the idea to choose α randomly was investigated by Goemans
[10] and Chekuri et al. [5]. Additionally, the idea to randomly choose different values
of α for each job was successfully applied in Goemans et al. [11]. A thorough survey
of α-points in single machine scheduling is found in Skutella [25].

Another concept relevant to our analysis is the mean busy time of a job, which
is defined as the average point in time that a job is processed. This idea was first
introduced by Goemans [10] (see also [11]). Jobs’ mean busy times were utilized
extensively in Chou et al. [6]. The application of mean busy times also appears in
Schulz [20], which extends the analysis in this paper to stochastic parallel machine

123

112 J. R. Correa, M. R. Wagner

scheduling (in both offline and online settings). Kovács and Beck [16] also apply the
mean-busy-time concept.

Let us now discuss some lower bounds on the competitive ratios for certain prob-
lems. Hoogeveen and Vestjens [15] showed that there is no deterministic algorithm
with competitive ratio strictly better than 2 for 1|r j |∑ j w j C j . On the other hand
Stougie and Vestjens [27] showed that e

e−1 is a lower bound on the competitive ratio of
online randomized algorithms for the same problem. In the parallel machine case, Vest-
jens [28] proved that any deterministic algorithm for P|r j |∑ j w j C j (respectively,

P|r j , pmtn|∑ j w j C j) has a competitive ratio of at least 1.309 (resp. 22
21). Seiden [23]

proved that any randomized algorithm for P|r j |∑ j w j C j has a competitive ratio of
at least 1.157. To the best of our knowledge, there are no specific lower bounds for
randomized algorithms for P|r j , pmtn|∑ j w j C j .

It is worth mentioning that many of the results cited above have their origin in the
analysis of offline algorithms. In some cases offline algorithms can be modified to
function online and several offline approximation ratios can be transferred to online
competitive ratios. Finally, we remark that all the problems considered in this paper
admit polynomial time approximation schemes in the offline setting; see the paper by
Afrati et al. [1].

1.2 Overview and structure of the paper

We begin in Sect. 2 by giving notation and existing results that are utilized throughout
the paper. Sections 3–5 present our main results, which are detailed in the follow-
ing paragraphs. Finally, although this is essentially a theoretical paper, Sect. 6 pro-
vides a brief computational study of the algorithms presented, under randomly chosen
instances.

In Sect. 3, we generalize the ideas given by Goemans et al. [11] for the single
machine case to the parallel machine problem P|r j |∑ j w j C j . As in that paper, our
algorithm simulates a preemptive single machine scheduling problem on a virtual
machine that is m times faster (where m is the number of machines). As soon as a
fraction α of a given job has been processed in the fast machine, the algorithm will
put such a job in a FIFO queue and will schedule it in the parallel machines at the first
point in time at which a machine is idle and all jobs with higher priority have been
assigned. By choosing an appropriate value of α, namely α = (

√
5 − 1)/2, we can

prove that our algorithm is 2.618-competitive, improving upon the 3.28-competitive
algorithm of Megow and Schulz [17]. Our algorithm is deterministic and works online.

As in Goemans et al. [11] we will show that the algorithm just described can be
improved with the help of randomization. Basically, instead of taking a fixed value of α

for all jobs, we can choose different α j ’s for different jobs, and moreover, choose these
values at random according to a given distribution. This is shown in Sect. 4, where we
give a randomized �m-competitive online algorithm for P|r j |∑ j w j C j , where �m < 2
for all m ≥ 1. Here, m denotes the number of machines and �m is obtained implicitly.
Our result improves upon the 2-competitive randomized algorithm by Schulz and
Skutella [21]. In contrast to their work, our algorithm has the desirable property of
being a list-scheduling algorithm that uses only one step of randomization for each

123

LP-based online scheduling: from single to parallel machines 113

Table 1 Best known
competitive ratios for a variety
of problems

Problem Deterministic Randomized

1|r j |
∑

j w j C j 2 [3] 1.69 [11]

1|r j , pmtn|∑ j w j C j 1.56 [24] 1.33 [22]

P|r j |
∑

j w j C j 3.28 [17] 2 [21]

P|r j , pmtn|∑ j w j C j 2 [17] 2 [21]

Table 2 Competitive ratios given in this paper

Problem Deterministic Randomized

P|r j |
∑

j w j C j 2.62 �m < 2, ∀m ≥ 1

P|r j , pmtn|∑ j w j C j – 2 − 1/m, m ≥ 3; 1.5225, m = 2

job (in [21], each job is randomly assigned a value of α and is randomly assigned to
a machine). The algorithm we present can be seen as the parallel machine extension
of the algorithm of Goemans et al. [11] for a single machine. Indeed, the competitive
ratio that it achieves is 1.6853 for m = 1 (as in Goemans et al.); for m = 2, 3 and 4 it
is 1.8382, 1.8915 and 1.9184, respectively (Table 1).

Following the algorithmic idea above, in Sect. 5 we present a randomized
ρm-competitive online algorithm for P|r j , pmtn|∑ j w j C j , where ρm = 2 − 1/m
for m ≥ 3 and ρ2 < 1.5225. The reader may wish to compare our result with the cur-
rent best algorithm to date: the deterministic algorithm by Megow and Schulz [17],
which has a competitive ratio of 2 (and not better than 2) for any number of machines.
Additionally, our algorithm can be simultaneously seen as an extension of Megow and
Schulz’s result and of Schulz and Skutella’s [22] single machine algorithm. Indeed
for a single machine, the competitive ratio of our algorithm is 4/3, as in [22], and
approaches 2 as the number of machines grows to infinity (Table 2).

Finally, in Sect. 6, we present a brief computational study. Interestingly, these
computational results suggest that, in practice, the schedules output by our algorithms
will be much better than what the previous theoretical bounds predict.

2 Preliminaries

According to Phillips et al. [18] the α-point t j (α), 0 < α ≤ 1, of job j in a given
schedule is defined as the first time an α-fraction of job j has been completed (i.e., the
first time when αp j units have been processed). The general idea of our subsequent
algorithms is to schedule jobs on the m machines by list-scheduling the jobs in the
order of their α-points on a virtual machine, which is “m-times faster”. Additionally,
these algorithms may use job-dependent α’s to guide the schedule; in this latter case,
we shall denote job j’s alpha value as α j . The concept of a single fast virtual machine
was apparently first considered by Eastman et al. [8]. Recently, Chekuri et al. [5]
considered a “preemptive one-machine relaxation” where jobs are list-scheduled on
parallel machines in order of their completion times on a single virtual machine.

123

114 J. R. Correa, M. R. Wagner

Another important ingredient in what follows is related to mean-busy-time
relaxations of 1|r j |∑w j C j . The mean busy time M j of job j is defined as the average
point in time at which job j is being processed; see Goemans [10] and Goemans et al.
[11]. Letting 1 j (t) = 1 if the machine is processing job j at time t and 1 j (t) = 0
otherwise, the mean busy time M j can be calculated as

M j = 1

p j

∞∫

0

t1 j (t)dt.

Alternatively, it can be computed as M j = ∫ 1
0 t j (α)dα. Let p(S) = ∑

j∈S p j , w(S) =∑
j∈S w j and rmin(S) = min j∈S{r j }. Following Goemans et al. [11], for a scheduling

instance I = {(pi , ri , wi), i ∈ N } we define Z R(I) to be the value of the mean-busy-
time relaxation for 1|r j , pmtn|∑ j w j C j :

Z R(I)
�= min

∑

j∈N

w j M j

subject to
∑

j∈S

p j M j ≥ p(S)

(

rmin(S) + 1

2
p(S)

)

, S ⊆ N .

It was shown in [10] that Z R(I) can be obtained online by scheduling, at any point
in time, the available job j with the highest ratio w j/p j (with p j being the original
processing time requirement). This schedule is called the LP schedule.

Now, for an instance I = {(pi , ri , wi), i ∈ N } of P|r j , pmtn|∑w j C j with
m parallel machines, let Zm(I) be the value of the optimal schedule. Consider the
instance Im = {(pi

m , ri , wi), i ∈ N } and let Zm
R (I) = Z R(Im), i.e., the value of

the mean-busy-time relaxation on Im (note that this is equivalent to the value of the
mean-busy-time relaxation on instance I in a machine that is m times faster). Thus,
Zm

R (I) can be evaluated as

Zm
R (I) = min

∑

j∈N

w j M j

subject to
∑

j∈S

p j M j ≥ p(S)

(

rmin(S) + 1

2m
p(S)

)

, S ⊆ N .

The following lemma provides a simple, yet powerful, lower bound for P|r j , pmtn|∑
w j C j . It is a particular case of a bound obtained by Chou et al. [6] in a more general

framework. It was also obtained by Schulz and Skutella [21], expressed in terms of
an equivalent time-indexed relaxation.

Lemma 2.1 ([6,21]) For any scheduling instance I , Zm
R (I)+ 1

2

∑
j∈N w j p j ≤ Zm(I).

To finish this section let us review the concept of canonical decomposition as
introduced by Goemans [9] and a useful formula to rewrite

∑
w j M j [10] (see also

123

LP-based online scheduling: from single to parallel machines 115

[11]). For a set of jobs S, consider a single machine schedule that processes jobs
in S as early as possible. This induces a partition of jobs in S into S1, . . . , Sk such
that the machine is busy exactly in the disjoint intervals [rmin(Sl), rmin(Sl) + p(Sl)],
for l = 1, . . . , k. This partition is the canonical decomposition of S. Also, a set
S is called canonical if its canonical decomposition consists of the single set S.
Assume that w1/p1 ≥ · · · ≥ wn/pn ≥ wn+1/pn+1 = 0 and let [i] = {1, . . . , i}.
Consider Si

1, . . . , Si
k(i), the canonical decomposition of [i]; then for any vector

M = (M1, . . . , Mn),

∑

j∈N

w j M j =
n∑

i=1

(
wi

pi
− wi+1

pi+1

) ∑

j∈[i]
p j M j =

n∑

i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑

l=1

∑

j∈Si
l

p j M j .

(1)

3 A deterministic online algorithm for P |rj |∑ wjCj

Consider the following online algorithm Non-preemptive α scheduling (NAS), where
each job j is assigned a deterministic value of α j .

Algorithm NAS:

Input: A scheduling instance I = {(pi , ri , wi), i ∈ N } that is revealed online,
and a vector α = {α1, . . . , αn}.

(1) Construct the preemptive LP-schedule on a single virtual machine m-times faster
(I �→ Im).

(2) At job j’s α j -point t j (α j) in the virtual machine, it enters into a FIFO queue for
the m machines (job j is then scheduled the first time a machine is available after
all preceding jobs in the queue have started).

From now on, whenever we refer to the LP-schedule of instance I , we mean the
LP-schedule in a machine that is m times faster (or the LP-schedule of Im). Consider
job j and let ηk(α j) denote the fraction of job k that has been completed in the LP-
schedule by time t j (α j). Letting Cα

j denote the completion time of job j in algorithm
NAS when the vector α = {α1, . . . , αn} is applied, we can show the following bound.
Bounds of similar flavor have been frequently used in the scheduling literature (e.g.
[11,13,18]).

Lemma 3.1

Cα
j ≤ t j (α j) +

∑

k:αk≤ηk (α j)

pk

m
+

(

1 − 1

m

)

p j .

Proof The completion time of job j equals the time to enter the queue for the parallel
machines plus the waiting time in queue plus the processing time of job j .

The time to enter the queue is t j (α j), which is the α j -point of job j in the single
virtual machine that is m-times faster.

The wait time in the queue can be bounded as follows: Consider all jobs that entered
the queue before job j , i.e., jobs belonging to the set {k
= j : αk ≤ ηk(α j)} (which

123

116 J. R. Correa, M. R. Wagner

are all available for processing at time t j (α j) or earlier). Then the total work that needs
to be processed before job j in the m machines is at most

∑
k
= j :αk≤ηk (α j)

pk . Thus
the first time that a machine will free up is at most

t j (α j) +
∑

k
= j :αk≤ηk (α j)
pk

m
= t j (α j) − p j

m
+

∑

k:αk≤ηk (α j)

pk

m
,

which is obtained by averaging the processing times of all jobs before j . Adding up
the previous term with the processing time p j gives the result. ��

Our deterministic algorithm will perform best by taking a fixed value of α for all jobs:
α j = α, ∀ j . The following theorem is the main result of this section. Its proof is an
extension of the proof of Theorem 3.3 in [11] to the parallel machine case.

Theorem 3.2 Algorithm NAS is max{1 + 1
α
, 2 + α}-competitive. In particular, for

α =
√

5−1
2 , the schedule is

(
3+√

5
2

)
-competitive

(
3+√

5
2 < 2.6181

)
.

Proof Consider a canonical set S = {1, . . . , l} for the fast single machine. Fix a job
j ∈ S and let ηk = ηk(α) represent the fraction of job k processed before t j (α). By
reordering the elements in S such that t1(α) ≤ · · · ≤ tl(α), we have that

t j (α) − rmin(S) =
∑

k∈S

ηk
pk

m
≤

l∑

k= j

α
pk

m
+

j−1∑

k=1

pk

m
= α

m
p(S) + (1 − α)

m

j−1∑

k=1

pk .

(2)

Let Cα
j be the completion time of job j output by algorithm NAS. Define R to be

the set of jobs k such that tk(α) < rmin(S); note that R
⋂

S = ∅ and R
⋃{1, . . . , j} =

{k : α ≤ ηk}. Thus, combining Lemma 3.1 with Eq. (2) and then noting that α
p(R)

m ≤
rmin(S), we get

Cα
j ≤ rmin(S) + α

m
p(S) + (1 − α)

m

j−1∑

k=1

pk + 1

m
p(R) + 1

m

j−1∑

k=1

pk + p j

≤
(

1 + 1

α

)

rmin(S) + α

m
p(S) + (2 − α)

m

j−1∑

k=1

pk + p j .

Multiplying by p j and summing over S we get

∑

j∈S

p j C
α
j ≤

(

1 + 1

α

)

rmin(S)p(S) + α

m
p(S)2 + (2 − α)

m

∑

j∈S

j−1∑

k=1

p j pk +
∑

j∈S

p2
j .

123

LP-based online scheduling: from single to parallel machines 117

Using the identity
∑

j∈S
∑ j−1

k=1 p j pk = 1
2 p(S)2 − 1

2

∑
j∈S p2

j we obtain that for any
canonical set S,

∑

j∈S

p j C
α
j ≤

(

1 + 1

α

)

rmin(S)p(S) + (2 + α)
p(S)2

2m
+

∑

j∈S

p2
j

≤ max

{

1 + 1

α
, 2 + α

}
⎛

⎝p(S)

(

rmin(S) + p(S)

2m

)

+ 1

2

∑

j∈S

p2
j

⎞

⎠ .

Assume now that the jobs are ordered such that w1/p1 ≥ · · · ≥ wn/pn ≥
wn+1/pn+1 = 0. Let us now bound the overall cost of the schedule using Eq. (1)
applied to instance Im and the feasibility of the vector M = (M1, . . . , Mn) for Zm

R (I):

∑

j∈N

w j C
α
j =

n∑

i=1

(
wi
pi
m

− wi+1
pi+1
m

) k(i)∑

l=1

∑

j∈Si
l

p j

m
Cα

j

≤ max

{

1 + 1

α
, 2 + α

} n∑

i=1

(
wi
pi
m

− wi+1
pi+1
m

)

×
k(i)∑

l=1

⎛

⎜
⎝

p(Si
l)

m

(

rmin(Si
l) + p(Si

l)

2m

)

+ 1

2m

∑

j∈Si
l

p2
j

⎞

⎟
⎠

≤ max

{

1 + 1

α
, 2 + α

} n∑

i=1

(
wi
pi
m

− wi+1
pi+1
m

)

×
k(i)∑

l=1

⎛

⎜
⎝

∑

j∈Si
l

p j

m
M j + 1

2m

∑

j∈Si
l

p2
j

⎞

⎟
⎠

= max

{

1 + 1

α
, 2 + α

} n∑

i=1

(
wi
pi
m

− wi+1
pi+1
m

) k(i)∑

l=1

∑

j∈Si
l

p j

m

(
M j + p j

2

)
.

Here, M j denotes the mean busy time of job j in the LP-schedule. Applying Eq. (1)
again it follows that the previous quantity equals

max

{

1 + 1

α
, 2 + α

} ∑

j∈N

w j

(
M j + p j

2

)

= max

{

1 + 1

α
, 2 + α

}
⎛

⎝Zm
R (I) + 1

2

∑

j∈N

w j p j

⎞

⎠ ,

123

118 J. R. Correa, M. R. Wagner

and by Lemma 2.1 it follows that
∑

j∈N w j Cα
j ≤ max{1 + 1

α
, 2 + α}Zm(I). Finally,

we recall that Zm(I), the optimal value of P|r j , pmtn|∑ j w j C j , is a lower bound
on the optimal offline cost of P|r j |∑ j w j C j . ��

As in the single machine case, there are instances for which algorithm NAS gives
a schedule with cost as much as twice the LP lower bound; see, for example, [11].
However, we do not know whether our analysis is tight.

4 A randomized online algorithm for P |rj |∑j wjCj

Consider the following algorithm, which we denote as Non-preemptive α scheduling
randomized (NASR).

Algorithm NASR:

Input: A scheduling instance I = {(pi , ri , wi), i ∈ N } that is revealed online,
and a distribution f .

(1) Construct the preemptive LP-schedule on a single virtual machine m-times faster
(I �→ Im).

(2) Each α j is taken identically and independently from distribution f (α).
(3) At job j’s α j -point t j (α j), it enters into a FIFO queue for the m machines (job j

is then scheduled the first time a machine is available after all preceding jobs in
the queue have started).

We start by proving that the uniform distribution already gives 2-competitiveness;
this matches Schulz and Skutella’s [21] bound with a list-scheduling algorithm. The
proof is very similar to Theorem 3.4 in [11].

Theorem 4.1 NASR is 2-competitive when f (α) is the uniform distribution on (0, 1].

Proof Let Cα
j be the completion time of job j in the schedule given by algorithm

NASR. We apply Lemma 3.1 and first consider a conditional expectation, holding α j

constant:

E
[
Cα

j |α j

]
≤ t j (α j) +

∑

k
= j

pk

m

ηk (α j)∫

0

dαk + p j = t j (α j)

+
∑

k
= j

pk

m
ηk(α j) + p j ≤ 2

(
t j (α j) + p j

2

)
.

This implies that

E
[
Cα

j

]
≤

1∫

0

2

(

t j (α j) + 1

2
p j

)

dα j = 2

(

M j + 1

2
p j

)

,

123

LP-based online scheduling: from single to parallel machines 119

where M j denotes the mean busy time of job j in the LP-schedule. Multiplying by
w j and summing over j we get

E

⎡

⎣
∑

j∈N

w j C
α
j

⎤

⎦ ≤ 2

(

Z R(Im) + 1

2

∑

i∈N

wi pi

)

≤ 2 · Zm(I),

which proves the result. ��

We now turn to deriving improved bounds which will depend on the number of
machines. We show that by taking the α j from an appropriate distribution we can
improve on 2-competitiveness. Let us start by giving a refinement of Lemma 3.1.

Lemma 4.2

Cα
j ≤ t j (α j) +

∑

k:αk≤ηk (α j)

k
= j

(

1 + αk

m
− ηk(α j)

m

)
pk

m
+ p j .

Proof As in Lemma 3.1, the completion time of job j is equal to the time to enter the
queue for the parallel machines plus the wait-time in queue plus the processing time
of job j . The only difference in the bound we are attempting to prove here lies in the
in-queue waiting time. This can be bounded as follows:

Consider the set K of jobs that entered the queue before job j ; i.e., K = {k : αk ≤
ηk(α j), k
= j}. If at time t > tk(αk) the fast machine is processing job k, then at
least one of the parallel machines is busy at time t (maybe processing another job).
Indeed, even if job k is interrupted by a job, say l, the fast machine will only go back
to processing job k after l is completed; thus l will enter the queue before time t .

Thus, at time t j (α j), the parallel machines have together processed
∑

k∈K (ηk(α j)−
αk)

pk
m units of work. Now, the total processing requirement entered into the queue

before job j is
∑

k∈K pk . Since we have just argued that by time t j (α j), the m machines
have processed

∑
k∈K (ηk(α j) − αk)

pk
m , the remaining processing requirement in the

system at time t j (α j) is

∑

k∈K

pk −
∑

k∈K

(ηk(α j) − αk)
pk

m
=

∑

k∈K

(

1 + αk

m
− ηk(α j)

m

)

pk .

Using standard averaging arguments, the first time a machine will empty up to

process job j is at most
∑

k∈K

(
1 + αk

m − ηk (α j)

m

)
pk
m . ��

Recall that N is defined as the set of all jobs. For a given job j , we partition N\{ j}
into N1 and N2. N2 is the set of all jobs that are processed between the start and
completion of job j on the fast virtual machine and N1 consists of any remaining jobs.

123

120 J. R. Correa, M. R. Wagner

For any k ∈ N2, we let µk denote the fraction of job j that, in the LP schedule of Im ,
is processed before the start of job k. This implies ∀k ∈ N2

ηk(α j) =
{

0, α j ≤ µk

1, α j > µk .

Letting t j (0+) denote the start time of job j on the fast virtual machine, we may then
write

t j (α j) = t j (0
+) +

∑

k∈N2
α j >µk

pk

m
+ α j

p j

m
.

Recalling that in the LP-schedule M j = ∫ 1
0 t j (α)dα we have that

M j = t j (0
+) +

∑

k∈N2

(1 − µk)
pk

m
+ 1

2

p j

m
. (3)

We can now rewrite Lemma 4.2 as

Cα
j ≤ t j (0

+) +
∑

k∈N1
αk≤ηk (α j)

(

1 + αk

m
− ηk(α j)

m

)
pk

m

+
∑

k∈N2
α j >µk

(

2 − 1 − αk

m

)
pk

m
+

(
1 + α j

m

)
p j . (4)

This bound will prove useful in the proof of the main result in this section.
For any m ≥ 1, consider the following equation, which extends the equation in

Theorem 3.9 in [11] to an arbitrary number of machines:

ln

(

1 + 1

m
− γ

m

)

+ γ

m

= e(−γ /m)
(
1 + 1

m − γ
m − e(−γ /m)

) (
me(γ /m) − γ e(γ /m) + 1

m e(γ /m) + 1 − m
)

1 + 1
m − γ

m

.

(5)

For any finite value of m, it can be shown that Eq. (5) has an unique solution γ ∈ (0, 1)

(see Appendix 6.4). We set

δm

m
= ln

(

1 + 1

m
− γ

m

)

+ γ

m
,

123

LP-based online scheduling: from single to parallel machines 121

for the unique value of γ that satisfies Eq. (5). It can also be shown that δm ∈ (0, 1) for
any finite m (see Appendix 6.4). With this, we can consider the following distribution:

f (α) =
{

cme(α/m), 0 ≤ α ≤ δm

0, o.w.

where cm = (
m

(
eδm/m − 1

))−1
. The main result is then the following.

Theorem 4.3 With f (α) as above, NASR is (1 + cm)-competitive.

To prove this theorem, we first need a series of technical lemmas.

Lemma 4.4

η∫

0

f (α)
(

1 + α

m
− η

m

)
dα ≤ cmη, ∀η ∈ [0, 1].

Proof For η ∈ [0, δm],
η∫

0

f (α)
(

1 + α

m
− η

m

)
dα

= cm

[

(m − η)
(

e(η/m) − 1
)

+ 1

m

(
mηe(η/m) − m2e(η/m) + m2

)]

= cmη.

For η ∈ (δm, 1],
η∫

0

f (α)
(

1 + α

m
− η

m

)
dα <

δm∫

0

f (α)

(

1 + α

m
− δm

m

)

dα = cmδm < cmη.

��

Lemma 4.5
(

2 − (1 − E[α])
m

) 1∫

µ

f (α)dα ≤ (cm + 1) (1 − µ) , ∀µ ∈ [0, 1].

Proof We first find the expected value of α; E[α] = (mcm + 1)δm − m. Therefore,

2 − (1 − E[α])
m

= 1 − 1

m
+ (mcm + 1)

δm

m
.

We now turn to the other component. For µ ∈ [0, δm],
1∫

µ

f (α)dα = cmm
(

e(δm/m) − e(µ/m)
)

.

123

122 J. R. Correa, M. R. Wagner

Thus,

(

2 − (1 − E[α])
m

) 1∫

µ

f (α)dα=
(

1− 1

m
+(mcm + 1)

δm

m

)

cmm
(

e(δm/m)−e(µ/m)
)

.

We now use Eq. (5) and calculate the portion

(

1 − 1

m
+ (mcm + 1)

δm

m

)

cm . (6)

Define 	 = 1+ 1
m − γ

m −e(−γ /m) and ϒ = me(γ /m) −γ e(γ /m)+ 1
m e(γ /m) +1−m,

so that the RHS of Eq. (5) can be written as e(−γ /m)	ϒ

(1+ 1
m − γ

m)
. Now, using the fact that

e(δm/m) = e(γ /m)(1 + 1
m − γ

m), we have that cm = e−(γ /m)

m	
.

Substituting this expression for cm in Expression (6) and replacing δm
m with the RHS

of Eq. (5), we have that

(

1 − 1

m
+ (mcm + 1)

δm

m

)

cm =
(

1 − 1

m
+

(
e−(γ /m)

	
+ 1

)
δm

m

)
e−(γ /m)

m	

=
(

1− 1

m
+

(
e−(γ /m)

	
+1

)
e(−γ /m)	ϒ

(1+ 1
m − γ

m)

)
e−(γ /m)

m	

=
(

1− 1

m
+

(
e−(γ /m) + 	

) e(−γ /m)ϒ

(1+ 1
m − γ

m)

)
e−(γ /m)

m	

=
(

1 − 1

m
+ e(−γ /m)ϒ

)
e−(γ /m)

m	

=
(

e−(γ /m) + m	
) e−(γ /m)

m	

= (cm + 1)e−(γ /m).

Consequently,

(

2 − (1 − E[α])
m

) 1∫

µ

f (α)dα = (cm + 1)e−(γ /m)m
(

e(δm/m) − e(µ/m)
)

= (cm + 1)m

(

1 + 1

m
− γ

m
− e((µ−γ)/m)

)

≤ (cm + 1)m

(

1 + 1

m
− γ

m
− 1 − (µ − γ)

m

)

= (cm + 1)(1 − µ).

��

123

LP-based online scheduling: from single to parallel machines 123

Lemma 4.6 1 + E[α]
m

≤ (cm + 1)

(
m + 1

2m

)

.

Proof A simple calculation yields

1 + E[α]
m

= δme(δm/m)

m
(
e(δm/m) − 1

) = 2mδme(δm/m)

2m2
(
e(δm/m) − 1

) . (7)

Turning to the RHS of the lemma, we see that

cm + 1 = me(δm/m) − m + 1

m
(
e(δm/m) − 1

) ,

and consequently

(cm + 1)

(
m + 1

2m

)

= m2e(δm/m) − m2 + me(δm/m) + 1

2m2
(
e(δm/m) − 1

) . (8)

Examining the numerators of Eqs. (7) and (8) (and noting that the denominators
are positive), it is sufficient to prove m2e(δm/m) −m2 +me(δm/m) +1 ≥ 2mδme(δm/m);
we demonstrate this as follows:

m2e(δm/m) − m2 + me(δm/m) + 1 − 2mδme(δm/m)

=
(

m2 + m − 2mδm

)
e(δm/m) − m2 + 1

≥
(

m2 + m − 2mδm

)(

1 + δm

m

)

− m2 + 1

= m(1 − δm) +
(
δm − δ2

m

)
+

(
1 − δ2

m

)
≥ 0.

��
Now we prove Theorem 4.3.

Proof of Theorem 4.3 First, we fix α j and use the shorthand ηk = ηk(α j). Applying
Eq. (4) and Lemma 4.4 we obtain

E
[
Cα

j | α j

]
≤ t j (0

+) +
∑

k∈N1

ηk∫

0

f (αk)
(

1 + αk

m
− ηk

m

) pk

m
dαk

+
∑

k∈N2
α j >µk

(

2 − 1 − E[αk]
m

)
pk

m
+

(
1 + α j

m

)
p j

≤ t j (0
+) + cm

∑

k∈N1

ηk
pk

m
+

(

2 − 1 − E[α]
m

) ∑

k∈N2
α j >µk

pk

m
+

(
1+ α j

m

)
p j

123

124 J. R. Correa, M. R. Wagner

≤ (cm + 1)t j (0
+) +

(

2 − 1 − E[α]
m

) ∑

k∈N2
α j >µk

pk

m
+

(
1 + α j

m

)
p j .

The last inequality follows from the fact that t j (0+) ≥ ∑
k∈N1

ηk
pk
m ; this follows

because, for every job k ∈ N1, we have ηk(α j) = ηk(0+). In particular, if job k
starts before job j and is not preempted by job j , then ηk(α j) = 1 = ηk(0+), and
if job k is preempted by job j , then job j finishes before job k restarts, so we have
ηk(0+) = ηk(α j) = ηk(1). We now integrate over α j and apply Lemmas 4.5 and 4.6
to find a bound on the unconditional expectation:

E[Cα
j] ≤ (cm +1)t j (0

+)+
(

2− 1 − E[α]
m

) ∑

k∈N2

1∫

µk

f (α j)
pk

m
dα j +

(

1+ E[α j]
m

)

p j

≤ (cm + 1)t j (0
+) + (cm + 1)

∑

k∈N2

(1 − µk)
pk

m
+

(

1 + E[α j]
m

)

p j

≤ (cm + 1)t j (0
+) + (cm + 1)

∑

k∈N2

(1 − µk)
pk

m
+ (cm + 1)

(
m + 1

2m

)

p j

= (cm + 1)

⎛

⎝t j (0
+)+

∑

k∈N2

(1−µk)
pk

m
+ p j

2m
+ p j

2

⎞

⎠=(cm + 1)
(

M j + p j

2

)
,

where the last equality follows from Eq. (3). Multiplying by w j and summing over j
gives

E

⎡

⎣
∑

j∈N

w j C
α
j

⎤

⎦ ≤ (cm + 1)

⎛

⎝
∑

j∈N

w j M j + 1

2

∑

j∈N

w j p j

⎞

⎠

= (cm + 1)

⎛

⎝Zm
R (I) + 1

2

∑

j∈N

w j p j

⎞

⎠

≤ (cm + 1)Zm(I),

which proves the result. ��
The proof of Theorem 4.3 shows that the cost of the non-preemptive algorithm

NASR is at most (1 + cm)Zm(I), where Zm(I) is the offline optimal value of
P|r j , pmtn|∑w j C j . Therefore, we have the following corollary.

Corollary 4.7 Algorithm NASR (with f (α) as in Theorem 4.3) returns a solution
whose cost is within a factor (1 + cm) of the optimal offline preemptive schedule.

The class of distributions we applied is optimal for our analysis. Essentially, Eq. (5)
is a sufficient optimality condition for our distributions and analysis technique.

123

LP-based online scheduling: from single to parallel machines 125

0 10 20 30 40 50
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

m

C
om

pe
tit

iv
e

R
at

io
s

(1+c
m

): Competitive ratios of NASR

(1+γ
m

): Competitive ratios of PASR

Fig. 1 The competitive ratios (1 + cm) and (1 + γm) are plotted in the top (solid line) and bottom (dashed
line) curves, respectively, as a function of m

We can also prove that cm < 1 for any finite m ≥ 1 and limm→∞ cm = 1 (see
Appendix 6.4). Not surprisingly then, as m grows, f uniformly approaches the uniform
distribution on [0, 1]. Let us finish by plotting 1 + cm as a function of the number of
machines, as depicted in Fig. 1.

5 A randomized online algorithm for P |rj , pmtn|∑j wjCj

We now consider the simpler preemptive case. Consider the following algorithm Pre-
emptive α scheduling randomized (PASR).

Algorithm PASR:

Input: A scheduling instance I = {(pi , ri , wi), i ∈ N } that is revealed online,
and a distribution f .

(1) Construct the preemptive LP-schedule on a single virtual machine m-times faster
(I �→ Im).

(2) Draw α randomly from the distribution f (α).
(3) Apply preemptive list-scheduling in order of non-decreasing t j (α) on the m

machines.

Repeating an observation from Schulz and Skutella [22], we see that at any given
time, the order of the t j (α) of already released jobs can be found, even if the actual
values of t j (α) are not known. Consider an arbitrary pair of jobs j, k. If t j (α j) is known
and tk(αk) is not known, then clearly t j (α j)≤ tk(αk). If both α-points are unknown,
we can infer that t j (α j) ≤ tk(αk) if and only if w j/p j ≥ wk/pk .

It is interesting to note that if step (2) is replaced by “Take α = 1” the algorithm
becomes a deterministic online algorithm and it coincides with Megow and Schulz’s
2-competitive algorithm for P|r j , pmtn|∑ j w j C j [17]. On the other hand, if f is

123

126 J. R. Correa, M. R. Wagner

taken as the uniform distribution in [0, 1], PASR is also 2-competitive (and this follows
as a consequence of the forthcoming analysis).

Let Cα
j denote the completion time of job j in the schedule output by algorithm

PASR. Consider job j . Define J as the set of jobs that start before job j in the LP-
schedule. For any k
= j , let ηk denote the fraction of job k that is completed in
the LP-schedule by time t j (0+); note that we are using a slightly different definition
for ηk than the definition used in Sects. 3 and 4. Note that ηk = 0, ∀k
∈ J . We
also have that t j (0+) ≥ ∑

k∈J ηk
pk
m . Now, define K1 = {k | tk(α) < t j (0+)} and

K2 = {k | t j (0+) < tk(α) < t j (α)} (K = K1 ∪ K2 is the set of jobs that can preempt
job j). Note that jobs k ∈ K2 preempt job j in the LP-schedule and are all processed
in the interval [t j (0+), t j (α)]. Consequently, t j (α) = t j (0+)+∑

k∈K2

pk
m +α

p j
m . The

following bound is central to our analysis.

Lemma 5.1

Cα
j ≤ t j (α) +

(
1 − α

m

)
p j +

∑

k∈J,ηk≥α

(
1 − ηk

m

) pk

m
.

Proof We first note that if the LP-schedule is busy, then at least one machine is busy
in the schedule defined by PASR. Thus, by time t j (0+), the LP-schedule will have
processed a total of

∑
k∈K1

ηk
pk
m and consequently, so will have the schedule defined

by algorithm PASR.
We now make some assumptions that can only increase the completion time of job

j : (1) Job j has not begun processing in the schedule defined by PASR at time t j (0+)

and (2) jobs k ∈ K2 are released at time t j (0+) (note that, originally, jobs in K2 were
released sometime in the interval [t j (0+), t j (α)]). Under Assumptions (1) and (2), at
time t j (0+), the amount of available processing that remains from K1 ∪ K2 is at most∑

k∈K2
pk + ∑

k∈K1
(1 − ηk

m)pk . Since we have m machines, by standard averaging
arguments, we have that

Cα
j ≤ t j (0

+) +
∑

k∈K2

pk

m
+

∑

k∈K1

(
1 − ηk

m

) pk

m
+ p j

= t j (0
+) +

∑

k∈K2

pk

m
+

∑

k∈J,ηk≥α

(
1 − ηk

m

) pk

m
+ p j

= t j (0
+) +

∑

k∈K2

pk

m
+ α

p j

m
+

(
1 − α

m

)
p j +

∑

k∈J,ηk≥α

(
1 − ηk

m

) pk

m

= t j (α) +
(

1 − α

m

)
p j +

∑

k∈J,ηk≥α

(
1 − ηk

m

) pk

m
.

��
The next lemma generalizes a result by Schulz and Skutella [22].

Lemma 5.2 Suppose there exists a distribution f (α) and a constant γm ∈ (0, 1) such
that:

123

LP-based online scheduling: from single to parallel machines 127

• maxα∈[0,1] f (α) ≤ 1 + γm.
• (1 − η

m)
∫ η

0 f (α)dα ≤ γmη, ∀η ∈ [0, 1].
• 1 − E{α}

m ≤ 1+γm
2 .

Then, Algorithm PASR is (1 + γm)-competitive.

Proof Using Lemma 5.1, we have that

E
[
Cα

j

]
≤ E

[
t j (α)

] + E
[(

1 − α

m

)
p j

]
+ E

⎡

⎣
∑

k∈J,ηk≥α

(
1 − ηk

m

) pk

m

⎤

⎦ .

We bound each term individually:

E[t j (α)] = E[t j (0
+) + t j (α) − t j (0

+)]

= t j (0
+) +

1∫

0

f (α)(t j (α) − t j (0
+))dα

≤ t j (0
+) + (1 + γm)(M j − t j (0

+))

= (1 + γm)M j − γmt j (0
+);

E
[(

1 − α

m

)
p j

]
=

(

1 − E[α]
m

)

p j ≤ (1 + γm)
p j

2
;

E

⎡

⎣
∑

k∈J,ηk≥α

(
1 − ηk

m

) pk

m

⎤

⎦ =
∑

k∈J

(
1 − ηk

m

) pk

m

ηk∫

0

f (α)dα

≤ γm

∑

k∈J

ηk
pk

m
≤ γmt j (0

+).

Summing the terms it follows that

E[Cα
j]≤(1+γm)M j − γmt j (0

+) + (1+γm)
p j

2
+γmt j (0

+)=(1+γm)
(

M j + p j

2

)
.

Multiplying by w j and summing over j , we conclude that

E

⎡

⎣
∑

j∈N

w j C
α
j

⎤

⎦ ≤ (1 + γm)
∑

j∈N

w j (M j + p j/2)

= (1 + γm)(Zm
R (I) +

∑

j∈N

w j p j/2) ≤ (1 + γm)Zm(I).

��

123

128 J. R. Correa, M. R. Wagner

Consider the following distribution for α for the case where we have m machines:

f (α) =
{

γm
m2

(m−α)2 , α ∈ [0, δm]
(1 + γm), α ∈ (δm, 1],

where γm = δm (m−δm)
m−δm (1−δm)

and δm ∈ (0, 1]. Note that for m = 1, if we let δ1 = 1
2 , then

γ1 = 1
3 and f is exactly the distribution chosen by Schulz and Skutella [22], which

gives a (1 + γ1) = 4
3 -competitive algorithm. We now show that the best possible

choices for δm are δ2 = 2(
√

2 − 1) and δm = 1, for all m ≥ 3. For simplicity we
separate the cases m = 2 and m ≥ 3.

In the case m ≥ 3, we have that γm = m−1
m and the distribution becomes:

f (α) = γm
m2

(m − α)2 , α ∈ (0, 1].

In the series of lemmas that follow, we show that the above distribution satisfies the
conditions of Lemma 5.2, proving Theorem 5.3 (the competitive ratios are plotted in
Fig. 1).

Theorem 5.3 Algorithm PASR is (2 − 1/m)-competitive for m ≥ 3.

Lemma 5.4 For m ≥ 3, we have that maxα∈[0,1] f (α) ≤ 1 + γm .

Proof Note that f (α) is increasing; consequently,

max
α∈[0,1] f (α) = m

m − 1
.

Since (1 + γm) = 2 − 1/m, the bound clearly holds for m ≥ 3. ��
We now present a result related to the second requirement of Lemma 5.2.

Lemma 5.5 For m ≥ 1, we have that

(
1 − η

m

)
η∫

0

f (α)dα = γmη, ∀η ∈ [0, 1].

Proof
(
1 − η

m

) ∫ η

0 f (α)dα = (
1 − η

m

)
γmm η

m−η
= γmη. ��

Finally, we address the third requirement of Lemma 5.2.

Lemma 5.6 For m ≥ 2,

1 − E[α]
m

≤ 1 + γm

2
. (9)

123

LP-based online scheduling: from single to parallel machines 129

Proof We first drop the subscript m from γm . We may express E[α] as

E[α] = γ m2
(

1

m − 1
+ ln

(
m − 1

m

))

.

Note that

1 − E[α]
m

= (m − 1) ln

(
m

m − 1

)

and
1 + γ

2
= 2m − 1

2m
.

Therefore, it is sufficient to prove that for m ≥ 2,

ln

(
m

m − 1

)

≤ 2m − 1

2m(m − 1)
.

Letting x = m/(m − 1) (note that m ≥ 2 ⇔ x ∈ (1, 2]), it is equivalent to show

ln(x) ≤ x2 − 1

2x
.

Enlarging the range of x , we see that the inequality holds with equality at x = 1.
The inequality would then be true iff the RHS increases faster than the LHS. Taking
derivatives, we need to show that 1

x ≤ x2+1
2x2 , which clearly holds for any real x . ��

Consequently, Lemmas 5.2 and 5.4–5.6 give us Theorem 5.3.
Similarly, in the case m = 2, we have that γ = δ(2−δ)

2−δ(1−δ)
and δ = 2(

√
2 − 1), and

the distribution becomes:

f (α) =
{

γ 4
(2−α)2 , α ∈ [0, δ]

(1 + γ), α ∈ (δ, 1].

In this situation we can again show that the distribution satisfies the conditions of
Lemma 5.2, proving the second result of this section.

Theorem 5.7 Algorithm PASR is (1 + γ)-competitive for m = 2, where (1 + γ) <

1.5225.

Proof We start by observing that f (α) is increasing in (0, δ]. Then,

max
α∈[0,δ] f (α) = γ

4

(2 − δ)2 ≤ 1 + γ,

for all −2(
√

2 + 1) ≤ δ ≤ 2(
√

2 − 1), so the first condition in Lemma 5.2 follows.
To see the second requirement of Lemma 5.2, note that for η ≤ δ, we have that

(1 − η
2)

∫ η

0 f (α)dα = (1 − η
2)2γ

η
2−η

= γ η. On the other hand, for η > δ,

η∫

0

f (α)dα = 2η − 2δ + δ2 + δη

2 − δ(1 − δ)
≤ γ η

2

2 − η
,

123

130 J. R. Correa, M. R. Wagner

for the chosen values of γ and δ.
Finally, we address the third requirement of Lemma 5.2.

1 − E[α]
2

≤ 1 + γ

2
, (10)

which follows immediately since E[α] = 4γ
(

δ
2−δ

+ ln
(2−δ

2

)) + (1 + γ) 1−δ2

2 . ��

To finish the section we observe that our analysis is tight. Indeed, for m ≥ 3,
setting η = 1 in the second requirement of Lemma 5.2 implies that γm ≥ (m − 1)/m.
Similarly, for m = 2, setting η = δ2 in the second requirement of Lemma 5.2 implies
that γ2 ≥ δ(2−δ)

2−δ(1−δ)
.

6 Computational results

To conclude this paper, we present a computational study of our algorithms when the
problem data is randomly generated. To the best of our knowledge, this study is one of
the first computational investigations of LP-based scheduling algorithms. Particularly,
we believe it is the first that considers the combination of online algorithms, a multiple
machine environment and the objective of minimizing the weighted sum of completion
times. We are aware of only two other papers that investigate a similar topic. Savels-
bergh et al. [19] perform an extensive computational study of a number of heuristics
and approximation algorithms for the single machine problem 1|r j |∑ j w j C j (the
offline version). As in their work, our results suggest that the practical performance of
LP-based scheduling algorithms is much better than what theory predicts. However, it
is worth noting that Albers and Schröder [2] perform a computational study of online
algorithms for parallel machine scheduling problems with the objective of minimizing
the makespan. They experimentally show that online algorithms that perform well on
randomly generated data do not necessarily perform well on real-world data.

We let the data for each job be independent realizations of uniformly distributed
random variables: ri ∼ U [0, R], pi ∼ U [0, P] and wi ∼ U [0, W], for i = 1, . . . , n.

We now describe our general approach. We first fix the parameters R, P and W and
vary m and n. Then, we fix m and n and vary R, P and W . For each set of parameters
we run 1000 trials to give the mean, max and standard deviation (presented in this
order) of the ratio of the cost of the online algorithm (NAS, NASR or PASR) to the
lower bound given in Lemma 2.1.

6.1 NAS

We first fix R = P = W = 10 and study the effect of changing m and n.

n = 10 n = 100 n = 500
m = 1 (1.2226, 1.4321, 0.0421) (1.0283, 1.0433, 0.0019) (1.0056, 1.0063, 0.0001)

m = 10 (1.3275, 1.5293, 0.0559) (1.1579, 1.1842, 0.0063) (1.0421, 1.0449, 0.0009)

m = 25 (1.3308, 1.5548, 0.0614) (1.2613, 1.2866, 0.0076) (1.0871, 1.0943, 0.0017)

123

LP-based online scheduling: from single to parallel machines 131

Next, we fix P = W = 10 and let R depend on n; specifically, we let R = n for
n ∈ {10, 100, 500}. We also vary m as before: m ∈ {1, 10, 25}.

R = n = 10 R = n = 100 R = n = 500
m = 1 (1.2226, 1.4321, 0.0421) (1.0463, 1.0958, 0.0111) (1.0131, 1.0252, 0.0031)

m = 10 (1.3275, 1.5293, 0.0559) (1.0526, 1.0677, 0.0045) (1.0112, 1.0128, 0.0005)

m = 25 (1.3308, 1.5548, 0.0614) (1.0521, 1.0674, 0.0045) (1.0110, 1.0123, 0.0004)

Finally, we fix m = 10 and n = 100 (the middle case) and vary R, P and W in the
following set {1, 10}; we present the eight results below.

(R, P) = (1, 1) (R, P) = (1, 10)

W = 1 (1.1057, 1.1139, 0.0026) (1.1579, 1.1776, 0.0053)

W = 10 (1.1057, 1.1157, 0.0025) (1.1583, 1.1784, 0.0054)

(R, P) = (10, 1) (R, P) = (10, 10)

W = 1 (1.0799, 1.0915, 0.0040) (1.1578, 1.1876, 0.0061)

W = 10 (1.0799, 1.0928, 0.0041) (1.1581, 1.1816, 0.0061)

6.2 NASR

We first fix R = P = W = 10 and study the effect of changing m and n. The
expected competitive ratio for m = 1, m = 10 and m = 25 are 1.6853, 1.9673 and
1.9869, respectively.

n = 10 n = 100 n = 500
m = 1 (1.2140, 1.5575, 0.0569) (1.0336, 1.0429, 0.0026) (1.0075, 1.0083, 0.0002)

m = 10 (1.3186, 1.5094, 0.0574) (1.1536, 1.1849, 0.0065) (1.0415, 1.0449, 0.0009)

m = 25 (1.3331, 1.6013, 0.0607) (1.2574, 1.2835, 0.0081) (1.0863, 1.0918, 0.0016)

Next, we fix P = W = 10 and let R depend on n; specifically, we let R = n for
n ∈ {10, 100, 500}. We also vary m as before: m ∈ {1, 10, 25}.

R = n = 10 R = n = 100 R = n = 500
m = 1 (1.2140, 1.5575, 0.0569) (1.0449, 1.0903, 0.0098) (1.0121, 1.0238, 0.0030)

m = 10 (1.3186, 1.5094, 0.0574) (1.0517, 1.0717, 0.0044) (1.0109, 1.0124, 0.0004)

m = 25 (1.3331, 1.6013, 0.0607) (1.0516, 1.0685, 0.0045) (1.0109, 1.0123, 0.0005)

Finally, we fix m = 10 and n = 100 and vary R, P and W in the following set
{1, 10}; we present the eight results below.

(R, P) = (1, 1) (R, P) = (1, 10)

W = 1 (1.1080, 1.1190, 0.0028) (1.1553, 1.1711, 0.0053)

W = 10 (1.1079, 1.1207, 0.0027) (1.1551, 1.1739, 0.0052)

(R, P) = (10, 1) (R, P) = (10, 10)

W = 1 (1.0808, 1.0945, 0.0046) (1.1535, 1.1766, 0.0065)

W = 10 (1.0812, 1.0951, 0.0047) (1.1533, 1.1772, 0.0066)

123

132 J. R. Correa, M. R. Wagner

6.3 PASR

We first fix R = P = W = 10 and study the effect of changing m and n. The
expected competitive ratio for m = 1, m = 10 and m = 25 are 1.3333, 1.8961 and
1.9595, respectively.

n = 10 n = 100 n = 500
m = 1 (1.0887, 1.5016, 0.0650) (1.0015, 1.0091, 0.0013) (1.0000, 1.0004, 0.0000)

m = 10 (1.2678, 1.3957, 0.0461) (1.0430, 1.0756, 0.0110) (1.0015, 1.0038, 0.0006)

m = 25 (1.3081, 1.4914, 0.0559) (1.1515, 1.2112, 0.0160) (1.0117, 1.7732, 0.0242)

Next, we fix P = W = 10 and let R depend on n; specifically, we let R = n for
n ∈ {10, 100, 500}. We also vary m as before: m ∈ {1, 10, 25}.

R = n = 10 R = n = 100 R = n = 500
m = 1 (1.0887, 1.5016, 0.0650) (1.0107, 1.0595, 0.0071) (1.0028, 1.0189, 0.0019)

m = 10 (1.2678, 1.3957, 0.0461) (1.0426, 1.0540, 0.0037) (1.0090, 1.0105, 0.0004)

m = 25 (1.3081, 1.4914, 0.0559) (1.0486, 1.0634, 0.0040) (1.0102, 1.0114, 0.0004)

Finally, we fix m = 10 and n = 100 and vary R, P and W in the following set
{1, 10}; we present the eight results below.

(R, P) = (1, 1) (R, P) = (1, 10)

W = 1 (1.0037, 1.3452, 0.0108) (1.0065, 1.0095, 0.0007)

W = 10 (1.0034, 1.0048, 0.0003) (1.0065, 1.0094, 0.0007)

(R, P) = (10, 1) (R, P) = (10, 10)

W = 1 (1.0220, 1.0662, 0.0029) (1.0433, 1.5628, 0.0199)

W = 10 (1.0219, 1.0316, 0.0023) (1.0436, 1.0815, 0.0117)

6.4 Observations

• For all three algorithms, as m increases, the mean and max increase.
• For all three algorithms, as n increases, the mean and max decrease.
• Statistically, it seems that NAS and NASR are comparable.
• Over 1000 trials, the max ratio of NASR never exceeded the expected competitive

ratio.
• Over 1000 trials, the max ratio of PASR did exceed the expected competitive ratio

(e.g., m = 1, n = 10).
• Fixing P , W and letting R = n vary shows that as R increases, the mean compet-

itive ratio decreases for all values of m tested.
• Varying W ∈ (0, m] (and keeping other parameters constant) does not significantly

affect the performance of the algorithms.

Acknowledgements We thank Andreas Schulz and an anonymous referee for carefully reading this
manuscript and for several pointers to relevant literature. We specially thank another anonymous referee
for pointing out an error in a preliminary version of Theorem 5.3. Finally, we thank Vladimir Barzov for
implementing the algorithms designed in this paper. The research of the first author was partially supported
by CONICYT through grants FONDECYT 1060035 and ACT08.

123

LP-based online scheduling: from single to parallel machines 133

Appendix A: Technical details concerning Eq. (5)

In this appendix, we first discuss Eq. (5):

ln

(

1 + 1

m
− γ

m

)

+ γ

m

= e(−γ /m)
(
1 + 1

m − γ
m − e(−γ /m)

) (
me(γ /m) − γ e(γ /m) + 1

m e(γ /m) + 1 − m
)

1 + 1
m − γ

m

and we then discuss some details concerning δm and cm .

Existence of γ ∈ (0, 1)

We show that, for any finite m, there exists γ ∈ (0, 1) that satisfies Eq. (5). Let

l(γ) = ln

(

1 + 1

m
− γ

m

)

+ γ

m

and

r(γ) = e(−γ /m)
(
1 + 1

m − γ
m − e(−γ /m)

) (
me(γ /m) − γ e(γ /m) + 1

m e(γ /m) + 1 − m
)

1 + 1
m − γ

m

.

We have that l(0) = ln (1 + 1
m) and r(0) = 1

m ; note that for finite
m, l(0) < r(0). For γ = 1, we have that l(1) = 1

m and r(1) =
e(−1/m)

(
1 − e(−1/m)

) (
(e(1/m) − 1)(m − 1) + 1

m e(1/m)
)
. We next show that l(1) >

r(1), which is equivalent to showing (e(1/m) + e(−1/m) − 2)(m − 1) < 1
m . To see the

latter, we bound e(−1/m) using the standard Taylor series bound e−x ≤ 1 − x + x2

2
and bound e(1/m) by using

ex = 1 + x + x2

2! + x3

3! + · · · < 1 + x + x2

2

(
1 + x + x2 + · · ·

)

= 1 + x + x2

2

(
1

1 − x

)

.

Substituting the values we obtain l(1) > r(1), as desired. Since both l(γ) and r(γ)

are continuous functions of γ , it is clear that there exists a value of γ ∈ (0, 1) such
that l(γ) = r(γ).

123

134 J. R. Correa, M. R. Wagner

6.5 Uniqueness of γ ∈ (0, 1)

Define x = (1 + 1
m − γ

m)e(γ /m) ≥ 0; Eq. (5) can then be written as

x ln x

x − 1
= m − γ + 1

m
− (m − 1)e−(γ /m).

Let l(γ) = x ln x
x−1 and r(γ) = m − γ + 1

m − (m − 1)e−(γ /m). Note that

dl(γ)

dγ
= dl(γ)

dx

dx

dγ
= (x − 1 − ln x)

(x − 1)2

(1 − γ)e(γ /m)

m2 ≥ 0

dr(γ)

dγ
= −1 + m − 1

m
e−(γ /m) < 0.

Consequently, there is an unique solution to Eq. (5).

6.6 Feasibility of f (α): δm ∈ (0, 1), ∀m ≥ 1

Using the notation and analysis from above, we have that δm satisfies: 0 < ml(0) <

δm < ml(1) = 1.

6.7 Calculation showing limm→∞ δm = 1

Observing that ml(0) = m ln (1 + 1
m) and applying l’Hôpital’s Rule,

lim
m→∞ m ln (1 + 1

m
) = lim

m→∞

(
1

1+ 1
m

)(
− 1

m2

)

− 1
m2

= 1.

6.8 Calculation showing limm→∞ cm = 1

Note that γ ∈ (0, 1); we have that

lim
m→∞ cm = lim

m→∞
1/m

e(γ /m)
(
1 + 1

m − γ
m

) − 1

= lim
m→∞

−1/m2

e(γ /m)
(

γ

m2 − 1
m2

)
+(

1+ 1
m − γ

m

)
e(γ /m)

(
− γ

m2

) (by l’Hôpital’s Rule)

= 1.

123

LP-based online scheduling: from single to parallel machines 135

References

1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M.,
Skutella, M., Stein C., Sviridenko, M.: Approximation schemes for minimizing average weighted
completion time with release dates. In: Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 32–43 (1999)

2. Albers, S., Schröder, B.: An experimental study of online scheduling algorithms. J. Exp. Algorith-
mics 7, 3 (2002)

3. Anderson, E.J., Potts, C.N.: On-line scheduling of a single machine to minimize total weighted com-
pletion time. Math. Oper. Res. 29, 686–697 (2004)

4. Chakrabarti, S., Phillips, C., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved scheduling
algorithms for minsum criteria,” in Automata, Languages and Programming (ICALP), LNCS, vol.
1099, pp. 646–657. Springer, Heidelberg (1996)

5. Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for average completion
time scheduling. SIAM J. Comput. 31, 146–166 (2001)

6. Chou, M.C., Queyranne, M., Simchi-Levi, D.: The asymptotic performance ratio of an on-line algorithm
for uniform parallel machine scheduling with release dates. Math. Program. 106, 137–157 (2006)

7. Sousa, J.P.: Time Indexed Formulations of Non-Preemptive Single-Machine Scheduling Problems.
PhD thesis, Université Catholique de Louvain (1989)

8. Eastman, W.L., Even, S., Isaacs, I.M.: Bounds for the optimal scheduling of n jobs on m proces-
sors. Manage. Sci. 11, 268–279 (1964)

9. Goemans, M.X.: A supermodular relaxation for scheduling with release dates. In: Proceedings of the
5th Integer Programming and Combinatorial Optimization Conference (IPCO), LNCS, vol. 1084, pp.
288–300. Springer, Heidelberg (1996)

10. Goemans, M.X.: Improved approximation algorithms for scheduling with release dates. In: Proceedings
of the 8th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), New Orleans, LA, 1997.
ACM, New York, 1997, pp. 591–598 (1997)

11. Goemans, M., Queyranne, M., Schulz, A.S., Skutella, M., Wang, Y.: Single machine scheduling with
release dates. SIAM J. Discrete Math. 15, 165–192 (2002)

12. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

13. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time:
off-line and on-line approximation algorithms. Math. Oper. Res. 22, 513–544 (1997)

14. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and
on-line approximation algorithms. In: Proceedings of the 7th Annual ACM–SIAM Symposium on
Discrete Algorithms, pp. 142–151 (1997)

15. Hoogeveen, J.A., Vestjens, A.P.A.: Optimal on-line algorithms for single-machine scheduling. In:
Proceedings of the 5th Integer Programming and Combinatorial Optimization Conference (IPCO),
LNCS, vol. 1084, pp. 404–414. Springer, Heidelberg (1996)

16. Kovács, A., Beck, J.C.: A global constraint for total weighted completion time. In: Proceedings of
the 4th International Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (LNCS 4510), Brussels, pp. 112–126. Springer, Heidelberg
(2007)

17. Megow, N., Schulz, A.S.: On-line scheduling to minimize average completion time revisited. Oper.
Res. Lett 32, 485–490 (2004)

18. Phillips, C., Stein, C., Wein, J.: Minimizing average completion time in the presence of release
dates. Math. Program. 82, 199–223 (1998)

19. Savelsbergh, M.W.P., Uma, R.N., Wein, J.: An experimental study of LP-based approximation algo-
rithms for scheduling problems. INFORMS J. Comput. 17, 123–136 (2005)

20. Schulz, A.S.: New old algorithms for stochastic scheduling. In: Albers, S., Möhring, R.H., Pflug, G.C.,
Schultz, R. (eds.) Algorithms for Optimization with Incomplete Information, Dagstuhl Seminar Pro-
ceedings 05031, Schloss Dagstuhl, Germany (2005)

21. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding. SIAM J. Discrete
Math. 15, 450–469 (2002)

22. Schulz, A.S., Skutella, M.: The power of α-points in preemptive single machine scheduling. J. Sched.
5, 121–133 (2002)

23. Seiden, S.: A guessing game and randomized online algorithms. In: Proceedings of the 32nd ACM
Symposium on Theory of Computing, pp. 592–601 (2000)

123

136 J. R. Correa, M. R. Wagner

24. Sitters, R.: Complexity and approximation in routing and scheduling. PhD Thesis, Eindhoven Univer-
sity of Technology, The Netherlands (2004)

25. Skutella, M.: List scheduling in order of α-points on a single machine. Lecture Notes in Computer
Science, vol. 3484, pp. 250–291 (2006)

26. Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Logist. Q. 3, 59–66 (1956)
27. Stougie, L., Vestjens, A.P.A.: Randomized algorithms for on-line scheduling problems: how low can’t

you go?. Oper. Res. Lett. 30, 89–96 (2002)
28. Vestjens, A.P.A.: Online machine scheduling. PhD Thesis, Eindhoven University of Technology, The

Netherlands (1997)

123

	LP-based online scheduling: from single to parallel machines
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Overview and structure of the paper

	2 Preliminaries
	3 A deterministic online algorithm for P|rj|wjCj
	4 A randomized online algorithm for P|rj|j wj Cj
	5 A randomized online algorithm for P|rj,pmtn|j wj Cj
	6 Computational results
	6.1 NAS
	6.2 NASR
	6.3 PASR
	6.4 Observations

	Acknowledgements
	6.5 Uniqueness of (0,1)
	6.6 Feasibility of f(): m (0,1), m 1
	6.7 Calculation showing limm m = 1
	6.8 Calculation showing limm cm = 1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

