Skip to main content

Combinatorial Analysis of Generic Matrix Pencils

  • Conference paper
  • 1158 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3509))

Abstract

This paper investigates the Kronecker canonical form of matrix pencils under the genericity assumption that the set of nonzero entries is algebraically independent. We provide a combinatorial characterization of the sums of the row/column indices supported by efficient bipartite matching algorithms. We also give a simple alternative proof for a theorem of Poljak on the generic ranks of matrix powers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beelen, T., Van Dooren, P.: An improved algorithm for the computation of Kronecker’s canonical form. Linear Algebra Appl. 105, 9–65 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Demmel, J., Kågström, B.: Accurate solutions of ill-posed problems in control theory. SIAM J. Matrix Anal. Appl. 9, 126–145 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Demmel, J., Kågström, B.: The generalized Schur decomposition of an arbitrary pencil A − λB: Robust software with error bounds and applications. ACM Trans. Math. Software 19, 160–201 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Duff, I., Gear, C.W.: Computing the structural index. SIAM J. Algebraic Discrete Meth. 7, 594–603 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edelman, A., Elmroth, E., Kågström, B.: A geometric approach to perturbation theory of matrices and matrix pencils. Part I: Versal deformations. SIAM J. Matrix Anal. Appl. 18, 653–692 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edelman, A., Elmroth, E., Kågström, B.: A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl. 20, 667–699 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9, 39–47 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gear, C.W.: Differential algebraic equations, indices, and integral algebraic equations. SIAM J. Numer. Anal. 27, 1527–1534 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Iwata, S.: Computing the maximum degree of minors in matrix pencils via combinatorial relaxation. Algorithmica 36, 331–341 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Iwata, S., Murota, K., Sakuta, I.: Primal-dual combinatorial relaxation algorithms for the maximum degree of subdeterminants. SIAM J. Sci. Comput. 17, 993–1012 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kågström, B.: RGSVD — An algorithm for computing the Kronecker canonical form and reducing subspaces of singular matrix pencils A − λB. SIAM J. Sci. Stat. Comput. 7, 185–211 (1986)

    Article  MATH  Google Scholar 

  12. Murota, K.: On the Smith normal form of structured polynomial matrices. SIAM J. Matrix Anal. Appl. 12, 747–765 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Murota, K.: Combinatorial relaxation algorithm for the maximum degree of subdeterminants — Computing Smith-McMillan form at infinity and structural indices in Kronecker form. Appl. Algebra Engin. Comm. Comput. 6, 251–273 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Murota, K.: On the degree of mixed polynomial matrices. SIAM J. Matrix Anal. Appl. 20, 196–227 (1999)

    Article  MathSciNet  Google Scholar 

  15. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  16. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9, 213–231 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Poljak, S.: Maximum rank of powers of a matrix of a given pattern. Proc. Amer. Math. Soc. 106, 1137–1144 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rosenbrock, H.H.: State-Space and Multivariable Theory. John Wiley, Chichester (1970)

    MATH  Google Scholar 

  19. van der Woude, J.W.: The generic canonical form of a regular structured matrix pencil. Linear Algebra Appl. 353, 267–288 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Van Dooren, P.: The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra Appl. 27, 103–140 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wilkinson, J.H.: Kronecker’s canonical form and the QZ algorithm. Linear Algebra Appl. 28, 285–303 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iwata, S., Shimizu, R. (2005). Combinatorial Analysis of Generic Matrix Pencils. In: Jünger, M., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2005. Lecture Notes in Computer Science, vol 3509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496915_25

Download citation

  • DOI: https://doi.org/10.1007/11496915_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26199-5

  • Online ISBN: 978-3-540-32102-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics