
14 Tools for Test Case Generation

Axel Belinfante1, Lars Frantzen2∗
, and Christian Schallhart3

1 Department of Computer Science
University of Twente
Axel.Belinfante@cs.utwente.nl

2 Nijmegen Institute for Computing and Information Sciences (NIII)
Radboud University Nijmegen
lf@cs.kun.nl

3 Institut für Informatik
Technische Universität München
schallha@cs.tum.edu

14.1 Introduction

The preceding parts of this book have mainly dealt with test theory, aimed at
improving the practical techniques which are applied by testers to enhance the
quality of soft- and hardware systems. Only if these academic results can be
efficiently and successfully transferred back to practice, they were worth the
effort.

In this chapter we will present a selection of model-based test tools which
are (partly) based on the theory discussed so far. After a general introduction of
every single tool we will hint at some papers which try to find a fair comparison
of some of them.

Any selection of tools must be incomplete and might be biased by the back-
ground of the authors. We tried to select tools which represent a broad spectrum
of different approaches. Also, to provide some insight into recent developments,
new tools such as AsmL and AGEDIS have been added. Therefore, the tools
differ a lot with respect to theoretical foundation, age, and availability. Due to
commercial restrictions, only limited information was available on the theoreti-
cal basis of some of the tools. For the same reason, it was not always possible to
obtain hands-on experience.

Relation to Theory

The preceding chapters of this book discuss theory for model-based testing. One
could raise the question: what does all this theory bring us, when we want to
make (or use) model-based testing tools? A possible answer could be that theory
allows us to put different tools into perspective and to reason about them.

The formal framework described elsewhere in this book in the introduction to
Part II (page 113) allows to reason about, and classify, all model-based testing
∗

Lars Frantzen is supported by the Netherlands Organisation for Scientific Research
(NWO) under project: STRESS – Systematic Testing of Realtime Embedded Soft-
ware Systems.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 391-438, 2005.
 Springer-Verlag Berlin Heidelberg 2005

392 Axel Belinfante, Lars Frantzen, and Christian Schallhart

approaches, even those that are not aware of it. An example is given in Sec-
tion 14.3.1, where the error-detecting power of a number of model-based testing
tools is compared by looking at the theory on which the tools are based.

The formal framework also allows to reason about correctness, not only of
the implementation that is to be tested, but also of the testing tool itself, as we
will see below.

The key concept of the formal framework is the implementation relation (or
conformance relation). It is the most abstract concept of the framework, since
it has no “physical” counterpart in model-based testing, unlike concepts like
specifications, test suites or verdicts. The implementation relation relates the
result of test execution (so, whether execution of tests generated from the model
failed or passed) to conformance (or non-conformance) between the model and
the SUT. The idea is the following. Suppose a user has a model, and also an idea
of which (kind of) implementations the user will accept as valid implementations
of the model – an implementation that according to the user is a valid one is
said to conform to the model. The user will then derive (generate) tests on the
basis of (from) the model. The idea is that if the SUT conforms to the model,
then the execution of all tests that are generated on the basis of the model must
be successful. Here conforms to is formalized by the implementation relation.
Therefore, any tool defines an implementation relation, explicitly or implicitly.
If the implementation relation is defined implicitly, it may still be possible to
make it explicit by analyzing the test derivation algorithm implemented in the
tool, or maybe even by experimenting.

The implementation relation is embodied in the test derivation algorithm.
This is reflected in the theoretical framework by the concept of soundness, which
says that the generated test cases should never cause a fail verdict when executed
with respect to a correct (conforming) implementation. A related concept is
completeness (or exhaustiveness) which says that for each possible SUT that
does not conform to the model, it is possible to generate a test case that causes
a fail verdict when executed with respect to that SUT.

If one knows that a tool implements a test derivation algorithm that is sound,
analyzing unexpected test execution results may be easier, because one knows
that the tool will never generate test cases that cause a fail verdict that was not
deserved. The unexpected result may be caused by an error in the SUT (this is
what one hopes for), but it may also be caused by an error in the model, or by
an error in the glue code connecting the test tool to the SUT. However, (as long
as the test derivation algorithm was implemented correctly) it can not be caused
by the test derivation tool. Without this knowledge, the error can be anywhere.

Also completeness of the test derivation algorithm has important practical
implications. In practice one is only able to execute a limited number of tests,
so one may be unlucky and no distinguishing test case is generated. However, if
one does know that the test derivation algorithm is complete, one at least knows
that it does not have any “blind spots” that a priori make it impossible for it to
find particular errors. So, if one has a SUT that is known to be incorrect (non-
conforming), and one tries hard and long enough, one should eventually generate
a test case that causes a fail verdict for the SUT. In contrast, if one applies a

14 Tools for Test Case Generation 393

test derivation algorithm for which one knows that it is not complete, one also
knows that there are erroneous implementations that one can never distinguish
from correct ones, and it makes no difference whether or not one tries long or
hard, because the inherent blind spots in the test derivation algorithm simply
make it impossible to generate a test case that causes a fail verdict.

14.2 Tool Overview

Tool Section Page Languages CAR Method

Lutess 14.2.1 394 Lustre A
Lurette 14.2.2 399 Lustre A
GATeL 14.2.3 402 Lustre A CLP
AutoFocus 14.2.4 406 AutoFocus A CLP
Conformance Kit 14.2.5 408 EFSM R FSM
Phact 14.2.6 409 EFSM R FSM
TVEDA 14.2.7 410 SDL, Estelle R FSM
AsmL 14.2.8 412 AsmL R FSM?
Cooper 14.2.9 414 LTS (Basic LOTOS) A LTS
TGV 14.2.10 417 LTS-API (LOTOS, SDL, UML) A LTS
TorX 14.2.11 420 LTS (LOTOS, Promela, FSP) A LTS
STG 14.2.12 424 NTIF A LTS
AGEDIS 14.2.13 427 UML/AML CAR LTS
TestComposer 14.2.14 429 SDL C LTS/EFSM?
AutoLink 14.2.15 431 SDL C

Table 14.1. Test Tools

Table 14.1 lists the tools that will be presented in more detail below. From
left to right, the columns contain the name of a tool, the section in which it
is discussed, its starting page number, the input languages or APIs, its origin
or availability (whether it was developed by an Academic institute, by a non-
university Research institute, or whether it is Commercially available), and the
test derivation method used in the tool (CLP stands for testing based on Con-
strained Logic Programming, FSM stands for testing of Finite State Machines
and LTS stands for testing of Labeled Transition Systems). For some tools we
left the Method entry open because the method implemented in the tool differed
too much from those discussed in the theoretical chapters.

From top to bottom the table shows the tools in the order in which we
will present them. Unfortunately, there is no simple single criterion to order
them. Therefore, we ordered them by input language and test derivation method.
We start with tools for models based on time-synchronous languages. Next, we
discuss tools for (extended) finite state machine models. Finally, we discuss tools
based on labeled transition system models. For each of those categories, we try
to follow the flow of development, so we go from the earlier tools, based on more
simple theory, to the later ones, based on more advanced theory. With AutoFocus

394 Axel Belinfante, Lars Frantzen, and Christian Schallhart

we refer to the testing facilities (for which we do not know a separate name) of
the modeling tool AutoFocus. The tool AGEDIS was developed in a European
project. It is commercially available, and freely for academic purposes.

For most of these tools, the theory on which they are based has already been
discussed in the previous chapters, and we will just refer to it. For the other
tools, we will try to give a brief overview of the relevant theory when we discuss
the tool.

Each of the following tool presentations contains an introduction (which also
tells where the tool originated, if known), followed by discussions of its test gener-
ation process and its interfaces (which also lists its input and output languages),
and concluded by a summary and, for the interested reader, a categorized list of
literature references.

14.2.1 Lutess

Introduction

Lutess [dBORZ99] is a testing environment for synchronous reactive systems
which is based on the synchronous dataflow language Lustre [HCRP91].

It builds its test harness automatically from three elements, a test sequence
generator, the SUT, and an oracle. Lutess does not link these elements into a
single executable but is only connecting them and coordinating their execution.
The test sequence generator is derived from an environment description and test
specification. The environment description is given in terms of a synchronous
observer, i.e., as synchronous program which observes the input/output stream
of the SUT. The environment description determines whether a test sequence is
realistic wrt. the environment, and the oracle determines whether the sequence
is correct or not.
The SUT and the oracle might be given as synchronous programs, Lutess is able
to handle them completely as black-boxes. Optionally, they can be supplied as
Lustre programs, which are automatically compiled to be integrated into the
test harness.

The test sequence generator is derived by Lutess from the environment de-
scription written in Lustre and from a set of constraints which describe the set
of interesting test sequences. Lustre has been slightly expanded such that these
constraints can be expressed in Lustre, too. Lutess allows one to state operational
profiles [Mus93], properties to be tested, and behavioral patterns.

All three components of a test harness must not have any numerical inputs or
outputs – this might be the most serious restriction of Lutess: It is only working
with Boolean variables.

The test sequences are generated on the fly while the SUT is executed. First
the test sequence generator provides an initial input vector for the SUT. Then
the SUT and test sequence generator compute in an alternating manner output
vectors and input vectors respectively. The oracle is fed with both, the input and
the output stream, and computes the verdict. If the SUT is deterministic, i.e., a
sequence of input vectors is determining the corresponding sequence of output

14 Tools for Test Case Generation 395

vectors, then the complete test sequence can be reproduced based on the initial
random seed given to the test sequence generator.

Lutess is aimed at two goals – first it supports a monoformalistic approach,
i.e., the software specification, the test specification and the program itself can be
stated in the same programming language. Second, the same technology should
support verification and testing techniques [dBORZ99].

Lustre

Lustre is a high-level programming language for reactive systems [HCRP91,
CPHP87] which combines two main concepts, namely it is a dataflow oriented
as well as a time-synchronous language.

Lustre is based on the synchrony hypothesis, i. e., a Lustre program is written
with the assumption that every reaction of the program to an external event is
executed instantaneously. In other words, it is assumed that the environment
does not change its state during the computation of a reaction. This allows the
use of an idealized notion of time where each internal event of a program takes
place at a known point in time with respect to the history of external events.

To make this concept usable in practice, Lustre is designed such that each
Lustre program can be compiled into a finite IO-automaton where each state
transition is compiled into a piece code without branches. A transition of this
automaton corresponds to an elementary reaction of the program. Thus, it is
possible to give an accurate upper bound on the maximum reaction time of the
program for a given machine. This structuring of compiled synchronous programs
was introduced in the context of the Esterel language [BC85]. Taken together,
this approach allows to check the synchrony hypothesis.

Many reactive systems are easily and naturally modeled in terms of dataflows.
Each dataflow is a mapping of discrete time to values, i.e., a dataflow X repre-
sents a sequence of values x1, x2, In Lustre, reactive systems are composed
of flows of data which are recombined and transformed by a set of operators. In
fact each variable in Lustre represents a dataflow. So for example, in Lustre the
statement X = Y + Z means that each element of the flow X equals the sum
of the corresponding elements of the flows Y and Z , i.e., if Y = y1, y2, . . . and
Z = z1, z2, . . . then X = x1, x2, . . . with xi = yi + zi .

Advantages of the dataflow approach are that it is functional and parallel.
Functional programs are open to automated analysis and transformation because
of the lack of side-effects. Parallel components are naturally expressed in Lus-
tre by independent dataflows. Synchronization is implicitly described by data
dependencies between the different dataflows.

The following piece of code implements a counter as a so called node.1 A
node recombines a set of dataflows into a new one. In this case val init is used
as initialization of the new flow which is then incremented by val incr in each
cycle.

1 This example has been taken from [HCRP91].

396 Axel Belinfante, Lars Frantzen, and Christian Schallhart

node COUNTER(val_init, val_incr : int; reset : bool)
returns (n : int);
let

n = val_init -> if reset then val_init else pre(n)+val_incr;
tel;

This example shows the two more fundamental time operators of Lustre2. The
first operator -> is the followed-by operator. If A and B have the respective
sequence of values a0, a1, . . . and b0, b1, . . . then A -> B declares the sequence
a0, b1, b2, Therefore, in the example, the flow of n starts with the first value
of val init.
The second time operator in the example is pre. Given a flow A with the values
a0, a1, . . . , pre(A) is the flow with the values nil , a0, a1, So in the code above,
we find that if reset is true, then n is set to the current value of val init.
Otherwise n is set to the previous value of n plus the increment val incr. Two
simple applications of this node are the following two sequences.

even=COUNTER(0,2,false);
mod5=COUNTER(0,1,pre(mod5)=4);

The first sequence generates the even numbers, and the second cycles through
the numbers between 0 and 4. Note that the reset input is indeed fed with
another flow.
To approximate the position of an accelerating vehicle, we can use the following
two flows

speed=COUNTER(0,acceleration,false);
position=COUNTER(0,speed,false);

Note that speed used as input in the second statement is a flow which is chang-
ing over time. E.g. if acceleration is the constant flow with value 4, then
speed would be the sequence 0,4,8,12,16,. . . , and position would start with
0,4,12,24,40,. . .

Testing Method

The construction of the test sequence generation is formally described in the
paper [dBORZ99]. Basically, a test sequence generator built by Lutess is based
on an environment description given in Lustre and a set of further (probabilistic)

2 Lustre also offers two other operators, namely when and current. These operators
allow the manipulation of the clock of a dataflow. Each dataflow in Lustre has an
associated clock which determines when a new value is added to the corresponding
flow. For example, a flow with the clock true, false, true,... would be expanded
by a new value every second cycle. The when operator allows to declare a sequence
which runs with a slower clock, while the current operator allows to interpolate a
flow with a slow clock such that it becomes accessible for recombination with faster
flows.

14 Tools for Test Case Generation 397

constraints to guide the test sequence generation. The environment description
computes a predicate which indicates whether the test sequence is relevant or
not. The test sequence generator inverts this predicate, i.e., it computes the set
of inputs for the SUT which satisfy the environment description. In every step,
the oracle is provided with the last input/output pair of the SUT to compute a
pass or fail verdict for the sequence tested so far.

Random Testing The behavior of the environment is restricted by a set of
constraints which must be satisfied unconditionally by the whole test sequence.
For example, an environment description for a telephone-system will allow a
test sequence such as oni , diali , offi , oni , diali , offi . . . , where oni is the event of
picking up the phone i , diali is the event of dialing a number, and offi is the
event of hanging up. A sequence starting with oni , oni , . . . would not be allowed
by the environment description, since it is physically impossible to pick up the
same phone twice.

Random testing is the most basic mode of operation, where Lutess generates
test sequences which respect the environment constraints based on a uniform
distribution.

Operational Profile-Based Testing Although random test sequences are
possible interactions between the SUT and the environment, the arising test se-
quences lack realism, i.e., most sequences which occur in the target environment
are not generated since they unlikely happen at random. To obtain more realis-
tic test sequences, Lutess allows to add operational profiles to the environment
description. An operational profile CP(e) = 〈(p1, c1), . . . , (pn , cn)〉 associates
conditional probabilities (pi , ci) with an input e. If the condition ci evaluates to
true, then the input e of the SUT will be set to true with probability pi in the
next step. Therefore, operational profiles do not rule out unexpected cases, but
they are emphasizing more common sequences of events.

Property-Guided Testing Next, Lutess provides property guided testing. In
this case, Lutess will try to generate test sequences which test safety properties.
For example, if a property of the form a ⇒ b should be an invariance, then
Lutess will set a to true if such a setting is consistent with the basic environment
constraints. However, Lutess is only able to provide this feature for expressions
that do not involve references into the past. For example pre(a) ⇒ b cannot
be used for property guided testing, since pre(a) is refers to the value of the
expression a in the last step.

Pattern-Based Testing Finally, Lutess provides pattern-based testing. A pat-
tern BP = [true]cond0[inter1]cond1 . . . [intern]condn is a sequence of conditions
cond0, . . . ,
condn with associated interval conditions inter1, . . . , intern . Lutess probabilis-
tically generates test sequences which match the pattern, i.e., if the environment

398 Axel Belinfante, Lars Frantzen, and Christian Schallhart

allows to generate an input such that cond0 becomes true, such a choice is taken
with higher probability. Then, Lutess will take choices which are biased to either
maintain the first interval condition inter1 or to match the next condition cond1.
The concrete probabilities are given as part of the specification. This process is
continued until the test sequence has passed the pattern entirely or until the test
sequence becomes inconsistent with the pattern.

Test Sequence Generation

Given the internal state of the environment description and the last output of
the SUT, the test sequence generator must produce an input vector for the SUT,
such that the environment constraints will be satisfied. For random testing, the
generator has to determine the set of input vectors which are relevant wrt. the
environment description. Then it has to choose one such vector randomly in
an efficient way according to the current testing method (random, operational
profile-based, property-guided, or pattern-based).
To determine the set of relevant input vectors efficiently, Lutess constructs a
Binary Decision Diagram (BDD) [Bry85] to represent all state transitions which
are valid within the environment. This BDD contains all valid transitions in
all possible states of the environment. To allow efficient sampling on the set of
possible input vectors for the current state of the environment description, all
variables which determine the next input vector for the SUT are placed in the
lower half of the BDD, while all other variables (describing the state and last
output of the SUT) are placed in the upper part of the BDD. Given the current
state and the last output vector, the generator can quickly determine the sub-
BDD which describes all possible input vectors to be sent to the SUT in the
next step.

Then this sub-BDD is sampled to determine the next input for the SUT.
The sampling procedure is supported by further annotations. Depending on the
employed testing methods, the sampling is implemented in different ways, see
[dBORZ99] for details on the sampling procedure.

Summary

Lutess allows to build the test harness for fully automated test sequence genera-
tion and execution in the context of synchronous reactive systems. The harness
is constructed from a SUT, a test specification, and an oracle. The SUT and
the oracle can be given as arbitrary synchronous reactive programs. The test
sequence generated is based on an environment description given in Lustre. Op-
tionally, the test sequence generation can be controlled by operational profiles,
safety properties to be tested, and behavioral patterns to be executed. Lutess
has been applied to several industrial applications [PO96, OP95].

However, Lutess is not able to deal with SUTs which have numerical inputs
or outputs. Also, it is not possible to express liveness properties in Lutess. Fur-
thermore Lutess does not provide any means to generate test suites based on
coverage criteria.

14 Tools for Test Case Generation 399

14.2.2 Lurette

Introduction

The approach of Lurette3 is generally comparable to Lutess which has been
presented above [RNHW98]. Lurette is also based on the synchronous dataflow
language Lustre. Both tools build their test harness from three elements, namely
the SUT, a test sequence generator, and an oracle. Moreover, both tools derive
the test sequence generator from an environment description written in Lustre
while the SUT is tested as a black box. Finally, both tools utilize environment
descriptions and oracles given as synchronous observers. Synchronous observers
are programs which implement acceptors for sequences. A synchronous observer
used as environment description will output true as long as the sequence pre-
sented to the observer represents a valid sequence of events in the environment.

However, in contrast to Lutess, Lurette allows to validate systems which
have numerical inputs and outputs. On the other hand, Lurette is only offering
a single mode for test sequence generation. The randomly generated sequences
are based on a uniform distribution. Also, Lurette requires that the SUT is given
as a C-file which implements a predefined set of procedures.

The test sequence is generated on the fly during the execution of the SUT.
An initial input is provided by the test sequence generator and fed into SUT.
From then on, the SUT and the test sequence generator compute outputs and
inputs in an alternating fashion.

Testing Method

The testing method of Lurette is relatively simple. The environment description
is used to express both relevant and interesting test sequences. In [RNHW98],
the term relevance refers to those properties which constrain the environment
itself and the term interest refers to the test purpose. The constraints which rep-
resent the relevance and the interest are expressed within the same synchronous
observer, i.e., there is no distinction between the environment description and
the test purpose. This observer is fed with the inputs and outputs of the SUT
and evaluates to true, if the sequence so far is relevant and interesting.

A test sequence generated by Lurette is constructed uniformly and randomly
such that the observer evaluates to true in every single step of the sequence.
In other words, Lurette has to invert the environment description to compute a
new input vector for the SUT based on the current state of the environment and
the last output of the SUT. The oracle is also fed with the inputs and outputs
of the SUT to evaluate the correctness of the sequence. The result of the oracle
is either a fail or pass verdict.

Test Sequence Generation

In each step of the test sequence generation, Lurette has to compute an input
vector for the SUT based on the internal state of the environment description
3 See also http://www-verimag.imag.fr/SYNCHRONE/lurette/lurette.html.

400 Axel Belinfante, Lars Frantzen, and Christian Schallhart

and the last output of the SUT, such that the environment constraints will be
satisfied. The approach is completely analogous to the test sequence generation
of Lutess, however, Lurette has to deal with linear constraints over integers and
reals.

Abstracting the Observer To solve this problem with numerical constraints,
Lurette computes an abstract version of the original observer. In this abstract
observer, all numerical constraints have been replaced by new Boolean Variables.
These new variables are treated as further inputs of the observer. Consider the
following observer with a number of numerical constraints:

node RELEVANT(X,Y,Z : int; A,B : bool)
return (relevant : bool)
let

relevant = (X=0) -> if A then (B or (X>Y))
else (X+Y<=Z) and (Z* pre(Y)<12);

tel

Note that pre(Y) can be treated as constant, since its value has been determined
in the last step. Assuming that we are not in the initial state, Lurette would
replace this observer by a new abstract observer with three additional Boolean
variables C1,C2,C3 to represent the numerical constraints.

node ABSTRACT_RELEVANT(A,B,C1,C2,C3 : bool)
return (relevant : bool)
let

relevant = (A and (B or C1) or
((not A) and C2 and C3);

tel

where C1,C2,C3 represent the conditions X > Y , X +Y � Z , and Z ∗pre(Y) <
12 respectively.

This abstracted observer is then represented as BDD. The BDD can be in-
verted effectively, i.e., it is easy to expand a partial truth assignment to a com-
plete satisfying truth assignment. Assigning the last output of the SUT, we have
a partial assignment which must be completed such that ABSTRACT RELEVANT
evaluates to true, i.e., the associated BDD evaluates to true.

Choosing the Next Input Lurette chooses one of the Boolean assignments
which satisfy the BDD randomly according to a uniform distribution. This as-
signment determines the set of numerical constraints to be satisfied. This set of
linear constraints on integers and reals establishes a convex polyhedron which is
explicitly constructed. If the polyhedron is empty, then the Boolean assignment
lead to numerical infeasibility – another Boolean assignment must be chosen to
repeat the process. If the polyhedron is non-empty, a point is selected within
the polyhedron according to a specified strategy, [RNHW98] mentions limited

14 Tools for Test Case Generation 401

vertices and random selection within the polyhedron. The assignments to the
Boolean and numerical variables obtained by this procedure are used as input
vector to the SUT.

An Optimization Lurette does not only test linear test sequences. In each step
of a test sequence generation and execution, Lurette tests several inputs with
the SUT. More precisely, it computes the output of the SUT for a whole set
of input vectors and checks whether each of the correspondingly continued test
sequences would be correct. This is possible, since the SUT is required to provide
one method to produce the next output of the SUT without changing its state,
and a separate method to advance the state of the SUT. If an error is found, the
test sequence which provoked the error is returned along with a fail verdict and
Lurette terminates. If no error is detected, then the test sequence is continued
with one of the tested inputs. This is possible, since Lurette is requiring the SUT
to be given in a way that allows to compute the output of the SUT on a given
input vector without advancing its internal state.

SUT Program Format

To test a program with Lurette, this program must be given as a C-file which
implements a synchronous reactive program. In particular, the C-file must im-
plement a specific interface to be integrated into the test harness. This interface
must allow to access the following elements:

• The names and types of the inputs and outputs of the SUT, such that the
test harness can connect to the SUT with the test case generator.
• The initialization procedure initP must bring the SUT P into its initial state.
• The output procedure o = outP(i) has to compute the output of P based

on the current internal state of P and the input i . Note that a call to outP
is not allowed to change the state of P .
• Finally, the procedure nextP(i) has to bring P into the next state, again on

the basis of the current internal state and the input i .

The Lustre compiler which is provided for free by Verimag produces C-files
which are suitable for Lurette. Alternatively, the code generator of the SCADE
environment4 can be used to obtain appropriate input files for Lurette. Other
synchronous languages are probably adaptable to Lurette by wrapping the gen-
erated code into the above described procedures.
To integrate an oracle into a test harness, it must be provided in the same form
as the SUT P .

4 SCADE is a suite for developing dependable software, including tools to facilitate
specification, code generation, and code validation. It is based on a graphical imple-
mentation of the Lustre language. See http://www.esterel-technologies.com.

402 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Summary

Lurette is targeted at the fully automated testing of synchronous reactive sys-
tems. It builds a test harness from an environment description, a SUT, and an
oracle. The SUT and the oracle must be given in terms of a C-file which imple-
ment a specific set of procedures. The environment description must be given
in Lustre. It describes the environment and the test purpose simultaneously.
The generated test sequence is chosen randomly such that relevance and interest
constraints are satisfied.

Lurette allows to test SUTs which have numerical inputs and outputs. How-
ever, Lurette is only able to deal with linear constraints between these numerical
parameters. Each step in the test sequence generation is subdivided into two
phases, first an abstracted environment description is used to obtain a set of
linear constraints to be satisfied. Then the obtained constraint set is solved.

On the other hand, Lurette is not able to deal with liveness properties and
it only allows to specify test purposes in terms of safety properties.

14.2.3 GATeL

Introduction

The third Lustre-based tool which is described here is GATeL5 [MA00]. Its
approach is quite different from the two other Lustre related tools (Lutess and
Lurette) presented in this chapter. Lutess and Lurette start the test sequence
generation from the initial state. Then the sequence is generated on the fly, i.e.,
in each step the outputs of the SUT are used to compute a new input for the SUT
based on the environment description and the test purpose. This process is iter-
ated either until a negative test verdict is produced, or until the maximum test
sequence length is reached. In contrast, GATeL starts with a set of constraints
on the last state of the test sequence to be generated. This set of constraints can
contain invariant properties as well as any other constraint on the past which can
be expressed in Lustre. The latter amounts to a test purpose since it allows to
state a predicate on all sequences which are of interest. During the test sequence
generation, GATeL tries to find a sequence which satisfies both, the invariant
and the test purpose. To find such a sequence, GATeL employs constraint logic
programming (CLP) in a search process which extends the sequence backwards,
i.e., from the last state to the first one.

Testing Method

GATeL requires the SUT or a complete specification of the SUT, an environment
description, and a test objective. All three elements must be supplied as Lustre
source code. All three components of the test harness are not allowed to use real
variables or tuples.

5 See also http://www-drt.cea.fr/Pages/List/lse/LSL/Gatel/index.html.

14 Tools for Test Case Generation 403

The test objective allows to state properties and path predicates. Safety prop-
erties are expressed with the assert keyword of Lustre. An asserted property
must hold in each step of the generated test sequence. To state a path predicate,
GATeL employs a slightly expanded Lustre syntax. GATeL allows to express
path predicates with the additional keyword reach. The statement reach Exp
means that Exp must be reached once within the test sequence. More precisely,
GATeL will try to find a test sequence which ends in a state where all expressions
to be reached evaluate to true.

The SUT and the environment are only allowed to contain assertions. An
assertion in the SUT is used by Lustre compilers to optimize the generated
code. Assertions within the environment description are used to constrain the
possible behavior of the environment – as usual.

As an example, consider the following program and test objective. The node
COUNT
SIGNAL is counting the number of cycles when signal is true. Let us further
assume that signal is part of the input.

node COUNT_SIGNAL(signal : bool)
returns (n : int);
let

base = 0 -> pre(n);
n = if signal then base + 1 else base;

tel;

assert true -> not (signal and pre(signal))
reach COUNT_SIGNAL(signal)>1;

The assertion requires signal to be true in two consecutive steps. The subse-
quent reach statement requires GATeL to generate a test sequence such that
COUNT SIGNAL(signal) becomes greater than 2.

Based on the SUT (or its specification) and the environment description,
GATeL will try to find a test sequence which satisfies the path predicate ex-
pressed in the reach statement and which satisfies the asserted invariance ex-
pressions in every cycle. If such a test sequence can be found, it will be executed
with the SUT. The output values computed by the SUT are compared with the
corresponding values of the precomputed test sequence. If the two sequences
match, the test case passed, otherwise it failed.

Test Sequence Generation

Consider again the node COUNT SIGNAL with the test objective

assert true -> not (signal and pre(signal));
reach COUNT_SIGNAL(signal)>1;

To find a sequence which satisfies the test objective, GATeL starts with the final
cycle of the test sequence to be generated. Using the notation signal[N] to

404 Axel Belinfante, Lars Frantzen, and Christian Schallhart

denote the Nth value of the flow signal, the constraints on this final cycle N are
the following:

• true -> not (signal[N] and signal[N-1]) = true
• COUNT SIGNAL(signal[N]) > 1

Then GATeL tries to simplify this constraint set as far as possible without in-
stantiating further variables. In this example, GATeL would derive the three
constraints shown next, where maxInt is a user tunable parameter.

• true -> not (signal[N] and signal[N-1]) = true
• COUNT SIGNAL[N] in [2,maxInt]
• COUNT SIGNAL[N] = if signal[N] then base[N] + 1 else base[N]

This set cannot be simplified further without instantiating a variable. GATeL
has to choose one variable to instantiate – it tries to find a variable with a
maximum number of waiting constraints and a minimal domain size. In the
example above the first and second constraints are waiting for signal[N], i.e.,
these constraints can be simplified further once signal[N] has been instantiated.
The domain of signal[N] contains only two values since signal[N] is Boolean.
Therefore, GATeL would choose to instantiate this variable. The value to be
assigned to signal[N] is chosen randomly wrt. the uniform distribution. This
process leads to the following set of constraints (assuming that GATeL chooses
to assign true).

• signal[N] = true
• true -> not (signal[N-1]) = true
• base[N] in [1,maxInt]
• base[N] = 0 -> COUNT SIGNAL[N-1]

In this situation, GATeL has to decide whether the Nth cycle is the initial one
or not. Internally, GATeL uses an implicit Boolean variable to represent this
decision. Again, the assigned value is chosen randomly. Assuming that GATeL
would choose that the Nth cycle is non-initial, we would find the constraint set
shown next.

• signal[N] = true
• signal[N-1] = false
• true -> not (signal[N-2]) = true
• COUNT SIGNAL[N-1] in [1,maxInt]
• COUNT SIGNAL[N-1] = if signal[N-1] then base[N-1] + 1

else base[N-1]

Note that the third constraint listed above is instantiated from the invariance
property which has been expressed as an assertion.

This process of backward constraint propagation is continued until either
a test sequence has been found which satisfies all initial constraints or until a
contradiction arises. In the latter case, GATeL starts to backtrack. If a test se-
quence is generated successfully, some variables might be still unassigned. The

14 Tools for Test Case Generation 405

corresponding values are chosen randomly again to obtain a complete test se-
quence.

The test sequence generation is implemented in Prolog and based on the
ECLiPSE package [ECLb].

Domain Splitting

The basic testing method described above allows to generate a single test se-
quence. GATeL offers the possibility of “domain splitting”, i.e., to replace the
domain (described by the current constraint set) with two ore more sub-domains
(again described by constraint sets) which are special cases of the original do-
main (see Section 12.2 on page 324).
For example if the constraint set contains the condition A = B <= C, then GATeL
offers two possibilities to split the domain. The first possibility is to split the
domain into B <= C and B > C. The second possibility is to split the domain
into B < C , B = C, and B > C. Domain splitting can be applied recursively to
obtain a tree of sub-domains of the original domain.
Once the user decides to stop the domain splitting, GATeL will produce a test
sequence for each sub-domain (if possible).

Summary

GATeL does not only allow to state invariance properties but allows to state
path predicates to express the test purpose. To support path predicates, GATeL
has to construct its test sequences backwards, i.e., it has to start with the final
state to be reached by the test sequence. Thus the test sequence is not generated
during the execution of the SUT, but before the SUT is executed.
This backward search is implemented in terms of a backtracking algorithm. The
backtracking algorithm has to guess appropriate assignments when the current
constraint set does not enforce a particular assignment or does not allows further
simplification.
Moreover, GATeL requires the SUT to be given as Lustre source code, represent-
ing either the actual implementation or its complete specification. Again, this is
necessary, since GATeL has to construct its test sequences backwards.
The feature of domain splitting allows to further subdivide the domain of in-
teresting test sequences interactively. Moreover, it requires human intervention,
which does not allow to generate a large number of sub-domains automatically.
Finally, the domain splitting applies to the initial constraint set, which primarily
constrains the very last cycles of the test sequence. Consequently, the domain
splitting as implemented by GATeL only allows to split the domain wrt. the end
of the test sequence.

406 Axel Belinfante, Lars Frantzen, and Christian Schallhart

14.2.4 AutoFocus

Introduction

Autofocus6 is a graphical tool that is targeted at the modeling and develop-
ment of distributed systems [HSE97]. Within AutoFocus, distributed systems
are described as collections of components which are communicating over typed
channels. The components can be decomposed into networks of communicat-
ing subcomponents. More specifically, a model in AutoFocus is a hierarchically
organized set of time-synchronous communicating EFSMs which use functional
programs for its guards and assignments. A model in AutoFocus can be used for
code generation and as basis for verification and testing.

The testing facilities [PPS+03] of AutoFocus require a model of the SUT,
a test case specification, and the SUT itself. The test case specification might
be functional, structural, or stochastic. Functional specifications are used to test
given properties of the SUT, structural specifications are based on some coverage
criterion, and stochastic specifications are used to generate sequences randomly
wrt. some given input data distributions. Based on the model and the test case
specification, a set of test cases is generated automatically with the help of a
constraint logic programming (CLP) environment.

To execute a suite of test sequences, the SUT needs to be adapted to the
abstraction level of the model which underlies the test sequences. The adaption
has to translate the IO between the conceptual level of the model and the con-
crete implementation level of the SUT.
The testing environment for smart cards used in [PPS+03] is automatically exe-
cuting the complete test suite and reports deviations between the expected and
actual IO-traces of the SUT.

Test Method

Functional Specifications Functional test purposes are used for testing of a par-
ticular feature, i.e., test sequences have to be generated which trigger the ex-
ecution of a certain functionality. AutoFocus employs a nondeterministic state
machine to represent the set of sequences which are of interest, i.e., trigger the
functionality in question. In many cases, there is more than one way to exercise
a specific feature. In such situations, nondeterministic state machine allow to
represent the set of possible test sequences in a natural way. Also, it is possible
to add transitions that will cause a failure in the protocol represented by the
state machine.

The composition of the model and the functional test specification yields a
generator which enumerates test sequences for a given length exhaustively or
stochastically.

6 See also http://autofocus.informatik.tu-muenchen.de.

14 Tools for Test Case Generation 407

Structural Specifications Structural specification can exploit the hierarchical
modeling within AutoFocus, i.e., it is possible to generate suites independently
for different components and to use these unit tests to generate integration tests
[Pre03]. Also, it is possible to require the generated test sequences not to contain
given combinations of commands or states.

In addition, AutoFocus allows to incorporate coverage criteria into the test
specification. More precisely, coverage criteria can be applied to the model of
the SUT or on the state machine which is used as functional test specification.

Statistical Specifications In the case of statistical testing, test sequences up to
a given length are generated randomly. Because of the huge number of test se-
quences that would be almost identical, the generated sequences can be required
to differ to certain degree.

Test Generation

Like GATeL, the test generation of AutoFocus is based on constraint logic pro-
gramming (CLP). The AutoFocus model is translated into a CLP language and
is executed symbolically (see Section 12.3 on page 338 for further details).

Each component K of the model is translated into a corresponding set
of CLP predicates nextK (SK , i , o,DK). nextK is the next state relation, i.e.,
nextK (SK , i , o,DK) holds if the component K has a transition from state SK to
state DK with input i and output o. The next-state predicates are composed
of the predicates of the subcomponents mirroring directly the decomposition
of the model at hand. Executing the generated logic program yields the set of
all possible execution traces of the model. The formulation as constraint logic
program allows to reduce the size of this set because of the compact symbolic
representation of the traces. E.g., if the concrete command i sent to a model
is unimportant as long as it is not the Reset command, only two traces will be
generated, one where the command i is fixed to Reset , and another one where
the command is left uninstantiated with the constraint i �= Reset . To further re-
duce the number of generated test sequences, the testing environment allows to
prohibit test sequences which contain the same state more than once. In such an
approach, the detailed prohibition mechanism must be chosen carefully. More-
over the technique which is used to store and access the set of visited states is
crucial to the overall performance. See [Pre01] for details.

To generate the test sequences according to a given test specification, the
specification is also translated into or given directly in CLP and added to the
CLP representation of the corresponding model. The specification guides the
test sequence generation, determines its termination, and it restricts the search
space.

The result of this process is a set of symbolic test sequences, i.e., test se-
quences which contain uninstantiated variables. For example, a symbolic test
sequence might contain a command AskRandom(n). The concrete value of n
might be free but bound to the interval [0, 255]. However, each of these vari-

408 Axel Belinfante, Lars Frantzen, and Christian Schallhart

ables might be subject to some of the constraints which are collected during the
symbolic execution.

These variables can be instantiated randomly or based on a limit analysis.
After instantiation, the test sequences can be used for actual testing.

Summary

AutoFocus allows to model a system as a collection of communicating com-
ponents which can be decomposed hierarchically into further subnetworks of
synchronously communicating components. The testing environment of Auto-
Focus provides the possibility to translate its models into a CLP language and
to symbolically execute these transformed models. The model can be associated
with functional, structural, and stochastic test specifications to generate test
sequences based on the symbolic execution within the CLP environment. In ad-
dition AutoFocus is able to generate test cases that conform to a given coverage
criteria to the model itself, or on a functional test specification. The generated
test sequences can be employed to drive a SUT which implements or refines the
model which underlies the generated test sequences.

14.2.5 Conformance Kit

Introduction

At KPN Research [KPN] the Conformance Kit was developed in the early
nineties to support automatic testing of protocol implementations. It is not pub-
licly available. (E)FSMs serve as specifications. Beside the typical EFSM con-
cepts like variables and conditions (predicates) on transitions, some additional
notions like gates are introduced to facilitate the mapping to the SUT. The gate
concept allows to split a specification into several EFSMs which communicate
through such gates.

The first fundamental tool of the Kit is a converter which transforms an
EFSM into an equivalent FSM (i.e. same input/output behavior) via enumer-
ation of the (necessarily finite domain) variables. In a next step the resulting
FSM is minimized. A basic syntax check is embedded into these steps which is
capable of detecting nondeterministic transitions and input-incomplete specifica-
tions. Furthermore, EFSMs can be simulated and a composer allows to assemble
communicating EFSMs into a single one with equal behavior.

Test Generation Process

The test suite generation tool offers several FSM techniques to derive test cases.
A transition tour is possible if the FSM is strongly connected. The disad-
vantage of this method is that only the input/output behavior is tested, the
correctness of the end-states of the transitions is not checked. To overcome this
disadvantage a tour including unique input/output (UIO) sequences is offered
which does check the end-states. It is called partition tour because it does not

14 Tools for Test Case Generation 409

yield one finite test sequence covering all transitions but a set of single sequences
for each transition. Each such sequence consists of three parts:

(1) A synchronizing sequence to transfer the FSM to its initial state.
(2) A transferring sequence to move to the source state of the transition to

be tested.
(3) A UIO sequence which verifies the correct destination state of the transi-

tion.

Note that a partition tour is only possible if the utilized sequences exist, which
is not always the case. See Part II of this book for a more detailed description
of the FSM-based algorithms. Also a random sequence can be computed in
which a random generator is used to produce stimuli. Statistics ensures that the
whole specification is covered given that a real random generator is used and
that the produced sequence is of infinite length. This is of course not practicable
but at least these sequences can always be constructed and additional control
mechanisms, which allow an explicit exclusion of transitions, may give quite
usable results.

Tool Interfaces

A textual representation of the specification (E)FSM is needed. All the necessary
information including special features like guards are described here. After a
test suite is generated it is expressed in TTCN-MP, the syntactical notation of
TTCN-2. A graphical representation in the common TTCN table form (TTCN-
GR) is possible via a transformation from TTCN-MP to LATEX.

The Kit has been integrated into several tools and approaches. Below we will
introduce two major ones.

14.2.6 PHACT

Philips [Phi] developed in 1995 a set of tools called PHACT (PHilips Automated
Conformance Tester) which extends the Conformance Kit with the ability to ex-
ecute the computed TTCN test cases against a given SUT. To link the abstract
events of the specification to the corresponding SUT actions, a so called PIXIT
(Protocol Implementation eXtra Information for Testing, this is ISO9646 termi-
nology) has to be written. The executing part of PHACT consists basically of
three components, the supervisor, the stimulator and the observer. The latter
two give stimuli to the SUT respectively observe its outputs, hence they must be
customized for each system. The supervisor utilizes these two components to ex-
ecute the TTCN test suite and to give a pass/fail verdict based on the observed
behavior. A test log is generated which can be processed by the commercial tool
SDT from Telelogic, which in turn can present the log as a Message Sequence
Chart.

To execute tests against an SUT, several modules are compiled and linked
with the observer and simulator. This results in an executable tester which can

410 Axel Belinfante, Lars Frantzen, and Christian Schallhart

be separate from the SUT or linked with it. To compile a tester, modules in C,
VHDL (Very High Speed Integrated Circuit Hardware Description Language)
and Java are supported. Also the TTCN test suite is translated into one of these
languages. This makes it possible to download a whole test application on a
ROM-emulator and carry out the test in batch mode.

Other extensions comprise additional test strategies extending the ones of-
fered by the Conformance Kit (partition and transition tour). To do so a test
template language is defined. Such templates correspond basically to regular ex-
pressions over sequences of input actions that are allowed by the FSM when start-
ing from the initial state. PHACT is not publicly available but several research
groups had access to it and used it to conduct case studies, see e.g. [HFT00].

Testing VHDL Designs

In [MRS+97] the authors report about a generic approach to use PHACT for
hardware testing. More precisely not real hardware is tested here, but its VHDL
model. VHDL can be simulated and is therefore suited for serving as the SUT.
After a test suite is generated by the Conformance Kit, a generic software layer
is used to interface with the VHDL design. The main problem here is to map
the abstract ingredients of the test cases to the model which consists of complex
signal patterns, ports, etc. The aim of the approach is to automate this mapping
as much as possible. Small protocol examples were used as case studies.

Summary

The Conformance Kit and the tools built upon it such as PHACT made it pos-
sible to do several interesting industrial case studies. Furthermore the PHACT
implementation was used for a comparative case study involving other tools like
TGV and TorX. We return to that in section 14.3.

Related Papers

• Case Studies: [MRS+97, HFT00]

14.2.7 TVEDA

Introduction

The R&D center of France Telecom [Fra], formerly called CNet, developed the
TVEDA [CGPT96] tool from 1989 to 1995. The final version TVEDA V3 was
released 1995. The main goal was to support automatic conformance testing
of protocols. Not a formal test theory but empirical experience of test design
methodology formed the base of the TVEDA algorithms. Care has also been
taken to let the tool generate well readable and structured TTCN-2 output. The
approaches of TVEDA and TGV (see 14.2.10) have been partially incorporated
into the tool TestComposer (see 14.2.14) which is part of the commercial tool
ObjectGeode from Telelogic [Tel].

14 Tools for Test Case Generation 411

Test Generation Process

The notion of test purpose in TVEDA basically corresponds to testing an EFSM-
transition. Achieving a complete coverage here is its test approach. This strategy
originates from (human) test strategies for lower layer protocol testing. TVEDA
basically offers two test selection strategies: single tests for each transition or a
transition tour.

To test transitions the tool has to find paths to and from their start-, respec-
tively end-states. One main problem of state-based testing is state explosion
when building the complete state graph of the specification (e.g. when trans-
forming a EFSM into a FSM, or a LOTOS specification into its LTS-semantics).
In particular the problem consists of finding a path from one EFSM-state to
another while satisfying given conditions on the variables. Instead of doing a
(prevalently infeasible) raw analysis, TVEDA implements two main approaches
to compute feasible paths: symbolic execution and reachability analysis using
additional techniques. Only the latter method has been applied effectually and
hence found its way into TestComposer. One hindrance of the symbolic attempt
is that path computations are time-exponential w.r.t. the length of the path to
be computed.

The reachability technique is based on an (external) simulator/verifier. In a
first step the EFSM is reduced. Here all the parts which do not concern reaching
the demanded target transitions are excluded, i.e. specification elements which do
not influence firing-conditions of transitions. After that the simulator is exerted
using three heuristics:

(1) A limited exhaustive simulation. A typical limit is 30000 explored states. A
major part of the paths is found here. Because of a breadth-first search the
discovered paths are also the shortest ones.

(2) Transitions not reached during the first step are tried to be caught during a
second exhaustive simulation using a concept of a state-distance. When the
distance increases during the exploration, the current path is given up and
the next branch is taken. This may yield some new paths which have not
been found in step 1.

(3) Finally TVEDA tries to reuse an already computed path which brings the
specification to a state which is close to the start state of a missing transition.
Another exhaustive search is initiated until the transition is is reached.

This heuristic reachability analysis is used by the offered test selection strategies
to produce the resulting test suites. See [CGPT96]for a detailed description of
the algorithms.

Tool Interfaces

Estelle7 or SDL8 serve as specification languages. A (sequential) SDL specifica-
tion can be represented as an EFSM. In that case an EFSM-transition corre-
7 ISO9074
8 ITU Recommendation Z.100

412 Axel Belinfante, Lars Frantzen, and Christian Schallhart

sponds to a path from one SDL-state to the following next state. The resulting
test suite is expressed in TTCN.

Summary

TVEDA was successfully applied to several protocol implementations, mostly
specified in SDL. Meanwhile it has partly found it’s way into TestComposer,
which is addressed in section 14.2.14. Most of its underlying empirical principles
were later justified theoretically in terms of well elaborated I/O theories, see
[Pha94b].

Related Papers

• Underlying Theory: [CGPT96, Pha94b]

14.2.8 AsmL Test Tool

Introduction

At the beginning of the nineties the concept of Evolving Algebra came up
due to the work of Yuri Gurevich [Gur94]. He was driven by the ambition to
develop a computation model which is capable of describing any algorithm at its
appropriate abstraction level. Based on simple notions from universal algebra an
algorithm is modeled as an evolution of algebras. The underlying set corresponds
to the machines memory and the algebra transformation is controlled by a small
selection of instructions. Later on Evolving Algebra was renamed to Abstract
State Machine, short ASM. ASMs have been used for defining the semantics
of programming languages and extended in several directions like dealing with
parallelism. See the ASM Homepage [ASMa] for detailed information.

At Microsoft Research a group called Foundations of Software Engineering
[MSF] is developing the Abstract State Machine Language, short AsmL,
which is a .NET language and therefore embedded into Microsoft’s .NET frame-
work and development environment. Based on ASMs it is aimed at specifying
systems in an object-oriented manner. AsmL and the .NET framework can be
freely downloaded at [ASMb].

Test Generation Process

AsmL has a conformance test facility included which is based on two steps.
Firstly the specification ASM is transformed into an FSM before subsequently
well known FSM-based algorithms (rural Chinese postman tour, see Part II of
this book) are applied to generate a test suite. The whole testing process is
bounded by the .NET framework, hence the SUT must be written in a .NET
language. The ASM specification is aimed at describing the behavior of the SUT,
abstracting away from implementation details.

14 Tools for Test Case Generation 413

Generating FSMs out of ASMs

In the following we will try to sketch the extraction process which generates an
FSM out of a given ASM specification. This is the crucial step because it highly
depends on user-defined and domain-specific conditions to guide the extraction.
The quality of these conditions determines whether the resulting FSM is an
appropriate abstraction of the ASM and if the extraction algorithm terminates
at all.

If one is not familiar with ASMs just think of it as a simple program-
ming language with variables, functions/methods, some control structure like
an if-then-else, loops, etc. Now every action of the SUT is specified as fol-
lows:

if g1 then R1

. . .
if gk then Rk

where the gi are boolean guards and the Ri are further instructions which are
not allowed to make use of the if-then-else construct anymore (this is a kind
of normal form, one can be less strict when specifying). As expected the initial
values of the variables determine the initial state of a program run. When an
action a is executed the program moves to a next state, which can be seen as a
transition with label a between two program states.

The main problem is that such an ASM has usually an infinite number of
reachable states (unless all possible runs terminate). Hence it is necessary to re-
duce the number of states by grouping them according to a suitable equivalence
relation. To get a satisfying result this relation must guarantee that firstly the
number of resulting equivalence classes (also called hyperstates) is finite, other-
wise the algorithm does not terminate. Secondly the number should not be too
small, i.e. the result does not reflect a meaningful test purpose anymore. In fact
you can consider the definition of the equivalence relation as a kind of very gen-
eral test purpose definition, respectively test selection. The resulting hyperstates
basically become the states of the generated FSM.

The equivalence relation is based on a set of boolean conditions {b1, . . . , bn}.
Two states of the ASM lay in the same class iff none of the bi distinguishes them.
Therefore at most 2n hyperstates are possibly reachable. For example take the
gi of the action specifications as mentioned above as a base for the condition-set.
Using them one can define that states differ (represent different hyperstates) iff
their sets of executable actions differ. Other obvious selections are conceivable.
Beside the potentially exponential number of resulting hyperstates the problem
of computing the so called true-FSM, which covers all reachable hyperstates, is
undecidable (and in a bounded version still NP-hard).

The extracting algorithm which computes the FSM does a kind of graph
reachability analysis. A pragmatic solution to the stated problems is to addition-
ally define a so called relevance condition which tells the extraction algorithm if
the actually encountered ASM-state is worth being taken into account for fur-

414 Axel Belinfante, Lars Frantzen, and Christian Schallhart

ther traversing, even if it does not represent a new hyperstate. Such a relevance
condition usually demands a certain domain specific knowledge to produce a
good result, i.e. a FSM which is as much as possible similar to the true-FSM.

The resulting FSM represents the specified behavior of a system based on the
offered method calls. Hence the method calls constitute the input actions and
their return values correspond to the output actions. For further information see
[GGSV02].

Tool Interfaces

The close embedding of AsmL into .NET enables it to interact with the frame-
work and other .NET languages. Guidance by the user is necessary to construct
test cases as paraphrased above. This process is supported by a GUI and a pa-
rameter generator which generates parameter sets for methods calls. In addition
to the mentioned abstractions (hyperstates, relevance condition), filters can be
used to exclude states from exploration and a branch coverage criteria can be
given to limit the generation process. To carry out the test cases, the SUT must
be given as any managed .NET assembly, written in a .NET language. The bind-
ing of the specification methods with the implementation methods is supported
by a wizard. A test manager is then able to carry out the generated test cases,
see [BGN+03].

Summary

The process of generating an FSM out of an ASM is a difficult task which
requires a certain expertise from the tester for firstly defining a hopefully suitable
equivalence relation and secondly giving a relevance condition which prunes the
state space into something similar like the true-FSM. It is also problematic that
the resulting FSM may become nondeterministic (even if the specification ASM
is not). This makes FSM-based test generation complicated and the AsmL test
generator can not handle it. Dealing with nondeterminism seems to be the main
focus of current research activities. In [BGN+03] one application of the FSM
sequence generator is mentioned but no papers about case studies exist yet.
Note that ASM based testing is a quite new topic and ongoing research may
produce results which extenuate the actual obstacles.

Related Papers

• Tool Overview: [BGN+03]
• Underlying Theory: [Gur94, GGSV02]

14.2.9 Cooper

Introduction

Cooper [Ald90] is a prototype implementation of the Canonical Testers the-
ory [Bri89]. It was developed in the LotoSphere project [BvdLV95, Lit]. Cooper

14 Tools for Test Case Generation 415

has never been applied to case studies; its main function is educational, to il-
lustrate the Canonical Tester theory and the Co-Op method [Wez90, Wez95]
to derive canonical testers. The underlying theory is discussed in Section 6.4.2
(page 166).

Test Generation Process

(Most of the following is quoted/paraphrased from [Wez95].)
Cooper implements the implementation relation conf of [Bri89]. In this no-

tion a process B1 conforms to B2 if and only if B1 contains no unexpected
deadlocks with respect to traces of B2. So, if B1 performs a trace that can also
be done by B2, and at a certain point B1 deadlocks, then also B2 should be
able to perform the same trace and deadlock at the same point. This notion of
conformance allows B1 to perform traces that are not in B2. But when we place
B1 in an environment that expects B2, it will not deadlock unexpectedly with
the environment.

A canonical tester is then a process that can test whether an implementation
conforms to a specification with respect to the conf relation. To test whether a
process P conforms to B we place a canonical tester T (B) in parallel with P .
The tester synchronizes with P , as explained below.

In the initial version of the Co-Op method on which Cooper is based, we only
have basic actions (events) without values. There is no partitioning in input and
output actions, and interaction between tester and implementation is by syn-
chronizing on observable actions. This means that an action can only “happen”
if both the tester and the implementation can “do” it. If only one of them (tester
and implementation) is willing (or able) to do an action, and the other one can
not do the action, then it can not happen. If at a given moment the tester or
the implementation has no actions that it can do, or if the intersection of the
sets of actions that they can do is empty (which means that there are no ac-
tions that they can do together), then they deadlock. There is the notion of an
unobservable, internal (τ) action. And, from there, there is the notion of stable
and unstable states. Stable states are those from which the implementation will
only move after an interaction with its environment. Unstable states are states
from which the implementation can move by itself, by performing some internal
action.

If the tester tries to test an action x that is performed from an unstable
state, it is possible that the implementation has moved to a different state and
no longer wants to do x . So, x can be seen as an action that is (for the given
state) optional in the implementation (the implementation may want to do it,
but it also possible that the implementation no longer can do it because it moved
to a different state where the action is not possible). However, in general, after
the implementation has moved (by doing an internal action) “through” zero or
more unstable states, it will end up in a stable state from which it cannot move
by itself (there are no internal actions possible). For such a stable state, the
tester must be willing to do at least one of actions that the implementation
wants to do from there. Otherwise the tester might deadlock with a correct

416 Axel Belinfante, Lars Frantzen, and Christian Schallhart

implementation. The Co-Op method of deriving a canonical tester is based on
the above observations.

To slightly formalize the above we can say that the outgoing transitions from
a state s can be divided in two sets: Options(s) is the set of actions that s can
perform from its unstable states, and Compulsory(s) is a set of of sets of actions,
where each of the sets of actions corresponds to a stable state that can be reached
from B , and contains exactly the outgoing actions of that stable state.

The initial behavior from the tester is constructed using Compulsory and
Options . The tester may initially try to test any of the actions in Options(s).
The implementation may interact, but this is not guaranteed. Alternatively (or
after trying several Options), the tester may internally move to a state from
which it offers to interact with any of a set of actions: this set is chosen such
that it contains exactly one action of each of the elements of Compulsory(s).
We assume that eventually the implementation moves to one of its stable states,
and from there must be able to perform at least one of the actions offered by the
tester. An implementation that does not interact within some limited time is not
regarded as conforming. If a process s may, after performing a series of internal
actions, enter a deadlocking state from which it cannot perform any actions,
Compulsory(s) will contain the empty set. The tester may then try to do any of
the observable outgoing transitions of s , but no interaction is guaranteed. The
tester may then, after trying zero or more actions, deadlock.

The behavior of the tester after doing an action is computed by first collecting
all states subsequent that can be reached by doing that transition, computing the
initial behavior for the tester from those states (using Compulsory and Options
as above), and combining these initial behaviors.

To paraphrase: this is about who takes the initiative to force a decision in the
case of non deterministic choices. If the specification can decide to do something,
the tester must be able to follow, but if the specification leaves the choice to its
environment, the tester can make (force) the decisions. This means that in the
resulting tester, we see internal steps where the tester may make a decision (to
select between multiple actions offered from stable states of the implementation),
and actions directly offered (without preceding internal step) where the tester
must be able to interact directly with actions from unstable states.

User Interaction

Cooper is started with a given specification. It then shows the user this speci-
fication, together with the initial canonical tester for it, which is the canonical
tester derivation function T applied to the whole expression of the specification.

The user can then zoom in and step by step apply the canonical tester deriva-
tion function on expressions and subexpressions, every time replacing a sub ex-
pression by its initial tester, which leaves the canonical tester to be applied on
the sub expressions that follows the initial actions in initial tester, from which
can then in turn the initial tester can be computed, etc.

Cooper allows the user to select a behavior expression, and then computes
the corresponding canonical tester by computing the tester for the left-hand side

14 Tools for Test Case Generation 417

(prefix) of the expression, and combining that with the recursive application to
the remaining parts of the expression.

Tool Interfaces

Cooper is part of the toolkit Lite (LOTOS Integrated Tool Environment) [Lit]
that was developed in the LotoSphere project for the specification language LO-
TOS. All tools in this toolkit work on LOTOS. Cooper only accepts a restricted
version of LOTOS, called basic LOTOS, that does only contain actions, with-
out data. [Wez95] extends the theory to full LOTOS, but this has not been
implemented.

The canonical tester that Cooper (interactively) generates also has the form
of a LOTOS specification. Test execution is not possible, except by taking the
LOTOS text from a specification or implementation and the LOTOS text of
a tester and manually combining these into a new specification. In this new
specification the behaviors of the original specification (or implementation) and
the tester are put in parallel composition, synchronizing on all actions (this is
actually just a small matter of text editing).

Summary

Even though Cooper is not useful for practical work, it nicely demonstrates the
canonical tester theory underlying it, and the way in which the Co-Op method
allows compositional derivation of canonical testers.

Related Papers

• Tool Overview: [Ald90]
• Input Language: [ISO88, BB87]
• Underlying Theory: [Bri89, Wez90, Wez95]

14.2.10 TGV

Introduction

TGV [JJ02] has been developed by Vérimag and IRISA Rennes, France. It is a
test generator that implements the ioco implementation relation9 [Tre96c] (see
Section 7.4, page 178).

TGV is available as part of the Caesar Aldebaran Development Package
(CADP) [FGK+96]. It has also been integrated as one of the two test generation
engines in the commercial tool TestComposer of ObjectGéode(for SDL), and
it is used as test generation engine in AGEDIS, discussed in Section 14.2.13
(page 427).

Different versions of TGV have been used for a number of case studies in
various application domains and with different specification languages.
9 We think that TGV has always implemented ioco, notwithstanding an earlier pub-

lication [FJJV96] that refers to ioconf [Tre96a] as the implementation relation.

418 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Test Generation Process

The underlying model of TGV is an Input Output Labeled Transition System
(IOLTS). An IOLTS is like an LTS, but with the labels partitioned into three sets:
one containing stimuli, another containing observations, and a third containing
(invisible) internal actions.

The implementation relation implemented is ioco. Hence, the assumption
is made that the SUT is input complete, which means that we assume that it
will never refuse a stimulus, as long as the stimulus is taken from the set from
stimuli.

The input to TGV consists of a specification and a test purpose. Both are
IOLTSes. The generated test cases are IOLTSes with three sets of trap states:
Pass, Fail and Inconclusive, that characterize the verdicts.

The authors of the papers about TGV define test purposes as follows. Note
that this differs from the definition in the glossary. Formally, a test purpose is a
deterministic and complete IOLTS, equipped with two sets of trap states Accept
and Refuse, with the same alphabet as the specification. Complete means that
each state allows all actions (we will see below how this is accomplished), and
a trap state has loops on all actions. Reaching a state in Accept means that
the wanted behavior has been seen; the Refuse set is used to prune behavior
in which we are not interested. In a test purpose the special label “*” can be
used as a shorthand, to represent the set of all labels for which a state does
not have an explicit outgoing transition. In addition, regular expressions can be
used to denote sets of labels. For states where the user does not specify outgoing
transitions for all labels, TGV completes the test purpose with implicitly added
“*” loop transitions. This increases the expressive power of the test purposes, but
at the same time may make it (at least for the inexperienced user) more difficult
to come up with the “right” test purpose that selects the behavior that the user
had in mind (because the implicitly added “*” may make it harder to predict
the result). As mentioned in [RdBJ00], in practice, usually some iterations are
needed in which one defines or refines a test purpose, generates a test suite, looks
at it, and modifies the test purpose, etc.

The test generation process consists of a number of steps; we will briefly
describe them below.

From the specification and the test purpose first a synchronous product is
computed, in which the states are marked as Accept and Refuse using informa-
tion from the test purpose. In the next step the visible behavior is extracted,
after which quiescent states (states in which no observations from the SUT are
expected) are marked. To the quiescent states special δ loop transitions are
added. These δ transitions represent an observation of quiescence: the absence
of output from the SUT.

The result is determinized by identifying meta-states. Determinization is
needed to be able to deal with states that have multiple outgoing transitions
with the same label. Then, test cases are extracted by selecting accepted be-
haviors, i.e. selection of traces leading to Accept states is performed. TGV can
generate both a complete test graph, containing all test cases corresponding

14 Tools for Test Case Generation 419

to the test purpose, and individual test cases. To compute the complete test
graph, the traces not leading to an Accept state are truncated if possible, and
an Inconclusive verdict is added. Pass verdicts are added to traces that reach
Accept. Fail verdicts are implicit for observations not explicitly present in the
complete test graph. Finally, from the complete test graph a controllable sub-
graph is extracted. This controllable subgraph no longer has states that offer
the choice between stimuli and observations, or that offer the choice between
multiple stimuli. In the controllable subgraph each state offers either a single
stimulus, or one or more observations. If the result should be a single test case,
it can be derived from the complete test graph, by making similar controllability
choices.

TGV does most of the steps in an on the fly manner, and here on the fly
means the following. The steps of the algorithm are executed in a lazy (demand
driven) way, where earlier steps are driven by the demand of the later ones, to
avoid doing work in earlier steps that will not be used by later ones. So, it is
not the case that each step is run to completion, after which the complete result
of the step is passed on to the next step. This use of on the fly should not be
confused with the use of the words on the fly for the other tools like Lutess,
Lurette or TorX: there it refers to continuously alternating between generation
of a test step, and execution of the test step (after which the next test step is
generated, and executed, and the next, etc.).

Tool Interfaces

To interface with the outside world (both for specification and test purpose, and
for generating formalism in which the resulting test suite is presented) TGV uses
APIs, which makes it quite flexible.

The specification languages accepted by TGV include LOTOS (via CADP
[FGK+96], needs an additional file specifying input/output partitioning), SDL
(either using the simulator of the ObjectGéode SDL tool, or using the com-
mercial tool TestComposer [KJG99] that integrates TGV), UML (using UM-
LAUT [UMLb, HJGP99] to access the UML model) and IF (using the simulator
of the IF compiler [BFG+99]). TGV also accepts specifications in the other for-
mats/languages made accessible by the open/caesar interface [Gar98] (API) of
the CADP tool kit. It is also used as test generation engine in AGEDIS (see
Section 14.2.13). The resulting test suite can be generated in TTCN or in one
of the graph formats (.aut and .bcg) of CADP.

Summary

TGV is a powerful tool for ioco-based test generation from various specification
languages. New specification languages or test suite output formats can relatively
easy be connected thanks to the open APIs TGV uses. The main contribution
of TGV lies in the algorithms that it implements, and in its tool architecture.

420 Axel Belinfante, Lars Frantzen, and Christian Schallhart

TGV uses test purposes to steer the test generation process; coming up with
the “right” test purposes to generate the tests envisioned may take some itera-
tions.

A limitation lies in the non-symbolic (enumerative) dealing with data. Be-
cause all variables in the specification are instantiated for all possible values (or,
in the case of infinite data types, for a finite subset), the resulting test cases can
be big and therefore relatively difficult to understand (compared to what could
be the result if more symbolic approaches would be used).

Related Papers

• Tool Overview: [JJ02]
• Related Tools: [FGK+96, Gar98, UMLb, HJGP99, KJG99, BFG+99]
• Underlying Theory: [Tre96c]
• Case Studies: there is an overview in [JJ02]

14.2.11 TorX

Introduction

In the late nineties the Dutch academic-industrial research project Côte de
Resyste [TB02] had as its goal to put into practice the (ioco) testing the-
ory that had been developed so far. The way to put the theory in practice was
by developing a testing tool based on this theory, by applying the tool to case
studies to evaluate it, and by forcing it to progress by offering it new challenges.
The case studies ranged from toy examples to (not too big) industrial applica-
tions [BFdV+99, dBRS+00, dVBF02].

The testing tool result of this project is TorX. TorX is both an architecture
for a flexible, open, testing tool for test derivation and execution, and an imple-
mentation of such a tool. The ioco implementation relation that it implements
has already been discussed in Chapter 7 (page 173) and will be revisited when
we discuss the test generation algorithm of TorX.

TorX can freely be downloaded [Tor], its license file lists the conditions for
use.

Test Generation Process

TorX is both a testing tool architecture and an implementation of a testing tool.
With “TorX” we refer to the testing tool; unless we explicitly say otherwise. TorX
can be used both for test generation and test execution. TorX, the architecture,
offers two modes of operation: batch and on the fly generation and execution.
TorX, the testing tool, does not implement all possibilities offered by the TorX
architecture.

14 Tools for Test Case Generation 421

Batch Mode The batch mode works with two separate phases in which first a
test suite is generated, and then executed. The batch generation mode has not
been implemented in TorX. The batch execution mode is implemented as on the
fly generation and execution (as discussed below) from degenerate models (that
only describe a single test case). The batch execution mode has been used to
execute test cases generated by TGV [dBRS+00].

On the Fly Mode The on the fly generation and execution mode works in a dif-
ferent way. In this mode generation and execution go hand in hand. Or, phrased
differently, during execution the test suite is generated on demand (comparable
to lazy evaluation in functional programming languages). As soon as a test step
is generated, it is also executed, after which the next test step is generated, and
executed, etc. The advantage of this approach is that it is not necessary to ex-
pand the complete state space during test generation – in on the fly mode TorX
expands only that part of the state space that is needed for a particular test
run. How a particular test run is chosen will be discussed below.

Implementation Relation TorX implements the implementation relation ioco
[Tre96c]. The underlying model is that of Labeled Transition Systems (LTS). The
visible labels (L) in the LTS are partitioned into stimuli (I) and observations
(U). There are two special labels (actions), τ and δ. τ represents the internal (in-
visible) action. δ represents quiescence, the observation of the absence of output
(the observation that there is nothing to observe). How quiescence is actually
observed depends on the (interfaces to) the implementation. For message-based
interfaces, usually a timer will be set, and when no message is received by the
time the timer expires, it is assumed that no message will come at all (until a
further stimulus is send), so quiescence has been observed. In other cases there
may be other ways to observe quiescence.

The main characteristic of ioco is that for any trace of actions allowed by the
specification, the output (in U∪δ) that can be observed from the implementation
after doing this trace is allowed in the specification. The assumption is that the
implementation is input-enabled, which means that it will be able to consume
all stimuli that the tester sends to it. On the other hand, the tester is able to
consume all outputs (observations) of the implementation.

TorX Algorithm From the above we can come to an informal description of
the algorithm implemented in TorX. We do a walk through the state space of
the specification. For now we assume a random walk, so whenever the algorithm
has to make a choice, the choice will be made randomly; in the next section we
will discuss how the walk (rephrased: how the choices made by the algorithm)
can be guided by test purposes (test case specifications). Elsewhere it has been
discussed why random walks are effective in protocol validation [Wes89] – similar
reasons apply to testing. For a comparison of random walk and other approaches
for testing see Section 11.4 (page 301).

422 Axel Belinfante, Lars Frantzen, and Christian Schallhart

If the specification contains nondeterminism, we simply follow multiple paths
at the same time.

We start at the initial state of the specification. We choose between stimu-
lating and observing. If we want to observe, we get an observation from the SUT
and check if it is allowed by the specification. If we want to stimulate, we derive
a stimulus from the specification (if there are multiple possibilities, we choose
one) and we send the stimulus to the implementation. We do this until we find
an inconsistency (an observation from the implementation was not allowed by
the specification), or until we have done a given (pre-decided) number of test
steps. In the first case, we give the verdict fail, in the second, the verdict pass.

If we make the choices randomly, so each test run maps to a random walk in
the specification, and we do this often enough, and/or long enough, we should be
able to find all errors (provided the random walks are indeed random so we do
not consistently ignore certain parts of the specification). The case studies done
with TorX, where choices were made randomly, seem to confirm this. Note that
for this approach we do not need a test purpose – however, we cannot control
the random walk through the specification, other than by deciding on the seed
for the random number generator.

Test Purposes To have more control over which part of the specification is
walked, the TorX architecture, and the tool, allow the use of a test purpose. In
TorX, a test purpose can be anything that represents a set of traces over L∪{δ}.
During the random walk, the random decisions to be made (the choice between
stimulating and observing, and, when stimulating, the choice of the stimulus
from a set of them) are constrained by the traces from the test purpose. If the
test purpose traces allow (at a certain point) only stimuli, or only observations,
the choice between stimulating and observing is decided by the test purpose. In
the same way, the choice of a stimulus is constrained by those that are allowed
by the test purpose. If (at a certain point in the random walk) the intersec-
tion of the actions allowed by the test purpose and the actions allowed by the
specification becomes empty, the test purpose has not been observed (we have
missed it [VT01]) (there is one exception to this which we will discuss below).
This corresponds to the traditional inconclusive verdict. On the other hand, if
we reach the end of one of the traces of the test purpose, we have successfully
observed (hit in [VT01]) (one of) the behavior(s) of the test purpose.

The one exception mentioned above is the following. One can think of a
test purpose that triggers an error in an erroneous implementation. The last
action of such a test purpose can be the erroneous output (observation) triggered
by the test purpose. Running such a test purpose with the specification and
an erroneous implementation will yield a fail verdict, but the last (erroneous)
output of the implementation will be the last action in the test purpose, so the
test purpose is hit, even though the intersection between the (correct) behavior
specified in the specification and the incorrect behavior described in the test
purpose is empty. The result of the execution will be the tuple 〈fail , hit〉.

As implicitly suggested above, correctness (pass and fail verdicts) and the
success (hit or miss) of observing a desired (or undesired) behavior are treated

14 Tools for Test Case Generation 423

as two different dimensions, such that when a test purpose is used, the verdict of
TorX is a tuple from {pass , fail}×{hit ,miss}, which is slightly more informative
than the traditional singleton verdict from {pass , fail , inconclusive}.

Tool Interfaces

In principle, TorX can be used for any modeling language of which the models can
be expressed as an LTS. As much as possible, it tries to connect to existing tools
that can generate an LTS for a particular specification language. So far, it has
been connected to the Caesar Aldebaran Development Package (CADP, offering
.aut, LOTOS) [FGK+96], to Trojka (a program, based on SPIN [Hol91], that
derives test primitives from systems described in Promela) [dVT98]. to the LTSA
tool (giving access to the language FSP) [MK99], and to the LOTOS [ISO88]
simulator Smile [EW92, Eer94].

In this way, TorX can be used with specifications written in the languages
LOTOS, Promela [Hol91] and FSP, and in a number of the formats made avail-
able via the open-caesar interface of the CADP tool kit [Gar98] (Aldebaran
(.aut), binary coded graphs (.bcg)).

For the test purposes TorX uses a special regular expression-like language and
tool, called jararaca. The tool jararaca gives access to the LTS (i. e. the traces)
described in the test purpose. Also other languages can be used to describe
test purposes; initial experiments have been done by describing test purposes in
LOTOS and accessing the LTS via the connection to CADP.

The interfaces between the components in TorX are documented, so the user
is free to connect his or her own specification language to TorX (as long as it
can be mapped onto an LTS).

TorX expects the user to provide the connection to the SUT, in the form
of a program (glue code) that implements the TorX Adapter interface. In this
interface abstract input and output actions are exchanged. It is the users re-
sponsibility to provide in the glue code the encoding and decoding functionality,
and the connection to the SUT.

Summary

TorX is a flexible, open tool that is based on the ioco implementation relation.
It allows (non-deterministic) specifications in multiple languages (in principle
any language which can be mapped on an LTS can be connected). It can use
but does not need test purposes. It has an open, well defined interface for the
connection to the SUT; however, the end user has to provide the glue code to
make this connection.

Related Papers

• Tool Overview: [TB02]
• Input Languages: [ISO88, BB87, Hol91, MK99]

424 Axel Belinfante, Lars Frantzen, and Christian Schallhart

• Related Tools: [FGK+96, Gar98, dVT98, MK99, EW92, Eer94]
• Underlying Theory: [Tre96c, VT01]
• Case Studies: [BFdV+99, dBRS+00, dVBF02]

14.2.12 STG

Introduction

STG (Symbolic Test Generator) [CJRZ02] has been developed at IRISA/INRIA
Rennes, France. It is a tool that builds on the ideas on which TGV and TorX are
based, and adds symbolic treatment of variables (data) to these. In TorX and
TGV all variables in the specification are instantiated for all possible values10.
In contrast, variables in STG are treated in a symbolic way, leading to symbolic
test suites that still contain free variables, which are then instantiated during
test execution. So, STG supports both generation of symbolic test suites, and
execution of these.

STG is a relatively new tool. The theory underlying it has been published in
2000 [RdBJ00]; the tool was reported first in 2002 [CJRZ02]. STG has been used
to test simple versions of the CEPS (Common Electronic Purse Specification)
and of the 3GPP (Third Generation Partnership Program) smart card. The
results of the CEPS case study are summarized in [CJRZ01]. STG was used to
automatically generate executable test cases, and the test cases were executed on
implementations of the systems, including mutants. Various errors in the source
code of the mutants were detected.

At the time of writing, STG is not publicly available (this may change in the
future).

Test Generation Process

As mentioned in the introduction, STG supports both test generation, and test
execution, where the test cases that are generated and executed are symbolic. It
implements a symbolic form of ioconf [Tre96a] but without quiescence (for an
overview of implementation relations see Section 7.4, page 178).

STG takes as input a specification in the form of an (initialized, discussed
below) Input Output Symbolic Transition System (IOSTS) and a test purpose
and produces from these a symbolic test case. Such a symbolic test case is a
reactive program that covers all behavior of the specification that is targeted by
the test purpose.

For execution, the abstract symbolic test case is translated into a concrete test
program that is to be linked with the implementation. The resulting executable
program is then run for test execution, which can yield three possible results:
Pass, Fail or Inclusive, with their usual meaning.

An IOSTS differs from an LTS in the following way. An IOSTS has specifi-
cation parameters and variables. Actions are partitioned into input, output and

10 Except when Promela, or LOTOS with Smile, are used in TorX.

14 Tools for Test Case Generation 425

internal actions. With each action a signature (a tuple of types) is associated
(the types of the messages exchanged in/with the action). An IOSTS does not
have states, but (a finite set of) locations. A state is now a tuple consisting of
a location and a valuation for the variables and parameters. Transitions now
not only associate a source (origin) location with a destination location and an
action, but also have a boolean guard, a tuple of messages (the messages sent/re-
ceived in the action), and a set of assignments. An IOSTS can be instantiated
by providing values for its parameters. An instantiated IOSTS can be initialized
by providing an initial condition that assigns a value to each variable. In a deter-
ministic IOSTS the next state after execution of an internal action only depends
on the source state, and the next state after execution of a valued input or valued
output action only depends on the source state and the action. Rephrased, once
we know which action is executed, we also know the successor state. So, in an
initialized, deterministic IOSTS we resolve the free variables as we execute the
actions, i.e. for each transition, the free variables that it introduces are resolved
(bound) when the action is executed. Free variables in subsequent behavior only
originate from actions that still have to be executed – once these actions are
executed as well, also those free variables are bound.

The authors of the STG papers define test purposes as follows (note that
this differs from the definition in the glossary, but is relatively close to the test
purposes of TGV discussed in Section 14.2.10 on page 417). The test purpose
is also an IOSTS. This IOSTS can refer to parameters and variables of the
specification to select the interesting part of the specification. A test purpose has
two specially named locations: Accept and Reject. Reaching the Accept location
means that the test purpose has been successfully passed. The Reject location
is used to discard uninteresting behavior. The user does not have to write a
“complete” test purpose, because it is implicitly completed, as follows. For each
“missing” outgoing action a self loop is added, and for each outgoing action
with guard G, a transition to Reject, with guard ¬G, is added. Nevertheless,
Rusu et al. mention that according to their experience with the tool TGV, the
development of “good” test purposes is an iterative process in which the user
writes down a test purpose, examines the result, modifies the test purpose and
repeats until a satisfactory result is obtained [RdBJ00].

From a specification and a test purpose a test case is generated by taking
the product of the specification and the test purpose. We will skip the details
here, and just mention the steps in test case generation. In a first step, the
product of specification and test purpose is computed. From this product, the
internal actions are removed, which may involve propagating guards of internal
actions to the nearest observable actions. In a subsequent step, nondeterminism
is eliminated, to avoid that verdicts depend on internal choices of the tester. The
last step consists of selecting the part that leads to the Accept locations, and of
adding transitions to a new location fail for “missing” observation actions. The
result should be an initialized, deterministic, observation-complete, sound test
case. These properties are proven in the paper.

The test case can still contain parameters and variables, these are filled in
during test execution. How the parameters and variables are selected is not

426 Axel Belinfante, Lars Frantzen, and Christian Schallhart

discussed in the papers describing STG. Formally, a test case is an initialized,
deterministic IOSTS together with three disjoint sets of locations Pass, Incon-
clusive and Fail.

During test generation and test execution, STG has to do symbolic evaluation
of guards, to be able to prune actions that have conflicting guards. If STG
would have implemented (a symbolic form of) ioco, it would not only have been
important for efficiency, to avoid exploring parts of the specification that are
“unreachable” anyway, but also for correctness, to be able to mark the right
states as quiescent.

The IOSTS model is defined such that it can be easily translated to the
input languages of tools like the HyTech model checker [HHWT97] and the
PVS theorem prover [ORSvH95]. Rusu et al. demonstrate this by showing how
HyTech and PVS can be used to simplify generated tests to prune parts that are
unreachable due to guards that contain conflicts [RdBJ00]. STG has been used
in conjunction with PVS for combined testing/verification [Rus02].

Tool Interfaces

The tool STG [CJRZ02] can be seen as an instantiation of the approach to
symbolic test generation described by Rusu et al. [RdBJ00].

STG accepts specifications and test purposes in the LOTOS-like language
NTIF [GL02], a high-level LOTOS-like language developed by the VASY team,
INRIA Rhône-Alpes. The specification and the test purpose are automatically
translated into IOSTS’s, after which the test generation process produces a sym-
bolic test case, which is also an IOSTS. For test execution the symbolic test case
is translated into a C++ program which is to be linked with the (interface to
the) SUT. The test case C++ program communicates with the (interface to the)
SUT via function calls.

For each action of the test case, the (interface to the) SUT should implement
a function that has the same signature as the action, such that the messages of
the action are passed as parameters to the function.

STG uses OMEGA [KMP+95] for symbolic computations (to compute sat-
isfiability of guards). As a consequence, the data types that are allowed in the
specification are limited to (arrays of) integers, and enumerations.

Summary

STG builds on existing theory and tools (algorithms) of mostly TGV, and adds
symbolic treatment of data to this, which results in smaller and thus more read-
able test cases than achieved with the enumerative approaches used so far.

The ability to do symbolic computation (e.g. to detect conflicts in predicates,
such that behavior can be pruned) is non-trivial. STG uses the tool OMEGA
to do this. The capabilities of OMEGA (what data types does it support) are
reflected in the input language for STG.

14 Tools for Test Case Generation 427

Related Papers

• Tool Overview: [CJRZ02]
• Input Language: [GL02]
• Related Tools: [KMP+95, ORSvH95, HHWT97]
• Underlying Theory: [RdBJ00]
• Case Studies: [CJRZ01, CJRZ02]

14.2.13 AGEDIS

Introduction

AGEDIS [AGE] (Automated Generation and Execution of test suites for DIs-
tributed component-based Software) was a project running from October 2000
until the end of 2003. The consortium consisted of seven industrial and academic
research groups in Europe and the Middle East, headed by the IBM Research
Laboratory in Haifa. The goal was the development of a methodology and tools
for the automation of software testing in general, with emphasis on distributed
component-based software systems. Starting from a specification expressed in
a UML-subset, basically the TGV algorithms are used for the test generation.
Another tool which partly found its way into AGEDIS is GOTCHA from IBM.

Test Generation Process

An open architecture was a fundamental principle of the AGEDIS design. There-
fore interfaces play a vital role. The main interfaces are as follows:

• Behavioral modeling language
• Test generation directives
• Test execution directives
• Model execution interface
• Abstract test suite
• Test suite trace

The first three constitute the main user interface while the last three are more
of internal interest. In the following the actual instantiations of the interfaces
are shortly introduced.

AML (AGEDIS Modeling Language), which is a UML 1.4 profile, serves as
the behavioral modeling language. Class diagrams together with associations
describe the structure of the SUT. The behavior of each class is fixed in a cor-
responding state diagram, where Verimags language IF serves as the action lan-
guage. Attached stereotypes are used to describe the interfaces between the SUT
and its environment. A full description of AML is available at the AGEDIS web
page [AGE].

Test purposes are given in the test generation directives which are modeled
with system level state diagrams or MSCs. Also simple default strategies are
possible. As TestComposer (which also builds on TGV), AGEDIS allows here to

428 Axel Belinfante, Lars Frantzen, and Christian Schallhart

use wildcards to specify abstract test purposes which are completed by the tool
in every possible way to allow abstraction from event-ordering. AGEDIS offers
five predefined strategies to generate test purposes:

• Random test generation
• State coverage – ideally cover all states of the specification
• Transition coverage – ideally cover all transitions of the specification
• Interface coverage – ideally cover all controllable and observable interface

elements
• Interface coverage with parameters – like interface coverage with all param-

eter combinations

The abstract specification parts like classes, objects, methods and data types
have to be mapped to the SUT. This, and the test architecture itself, is described
in an XML schema which instantiates the test execution directives interface.

The model execution interface encodes all the behavior models of the SUT,
i.e. the classes, objects and state machines. Again IF is used to do so. See also
here the web site for a detailed description.

Both the abstract test suite and test suite traces are described by the same
XML schema. A test suite consists of a set of test cases, zero or more test suite
traces and a description of the test creation model. Each test case consists of a
set of test steps which in turn may consist of stimuli (method calls), observations,
directions for continuation or verdicts. Several stimuli may occur in one test step
and they can be executed sequentially or in parallel. The common verdicts pass,
fail and inconclusive are possible. Alternative behavior within a test case is used
to model nondeterminism. Test cases can also be parameterized to be run with
different values and other test cases can be evoked within a test case. AGEDIS is
restricted to static systems, i.e. objects can not be created or destructed during
test case execution.

The AGEDIS tools are written in Java. Currently, the specification modeling
in AML and the creation of test generation directives are only supported using
the commercial Objecteering UML Editor together with an AML profile. The
designed model can be simulated with an IF-simulator. Test generation based
on the model and the test generation directives is done by the TGV algorithms.

AGEDIS also allows an execution of the generated test suite. The execution
framework is called Spider. It is able to execute test cases on distributed com-
ponents written in Java, C or C++. Spider takes care of the distribution of the
generated test objects. Furthermore it controls the whole test run, i.e. provid-
ing synchronous or asynchronous stimuli, observing the outputs, checking them
against the specification and writing the generated traces in the suite as XML
files. Two tools are provided for test analysis, a coverage and a defect analyzer.
The first one checks for uncovered data value combinations and method calls.
It generates new test cases to cover these missed parts and a coverage analysis
report. The defect analyzer tries to cluster traces which lead to the same fault
and generates one single fault-trace out of them to ease the analysis when many
faults are detected.

14 Tools for Test Case Generation 429

Tool Interfaces

As outlined above, AGEDIS is based on a specification given in AML. It is able
to execute the generated test suite in a distributed environment with components
written in Java, C or C++. Widely accepted formats like XML and the open
interface structure of AGEDIS offer easy access to extensions and variations of
the framework.

Summary

AGEDIS is currently not obtainable for academic use. The list of available publi-
cations is also rather small, basically only the motley selection from the AGEDIS
website is accessible. Decisions regarding further propagation and succeeding
projects will determine the progression of the toolset. The main strength of
AGEDIS is its open and user friendly embedding of the theory in a UML-based
environment. A related modeling concept is the U2TP (UML Testing Profile)
which is about to find its way into UML 2.0 and will therefore gain a great atten-
tion by the test-tool vendors. See chapter 17 for more information. Furthermore
it is based on UML 2.0 concepts and in that sense better equipped to become the
favored test-related modeling language in the UML community. Nonetheless the
open concept of AGEDIS may pay off and further development (e.g. regarding
dynamic object behavior, converge to U2TP) can make AGEDIS an interesting
UML-based testing environment for distributed systems.

14.2.14 TestComposer

Introduction

TVEDA and TGV constitute the basis of TestComposer, which was commer-
cially released in 1999 as a component of ObjectGeode by Verilog. In Decem-
ber 1999 Telelogic acquired Verilog. Together with the Tau toolset, in which
AutoLink is the test component (also Telelogic), they form the two major SDL
toolsets. TVEDA was integrated in the test purpose generation process. Some
extensions were applied to facilitate the processing of multi-process specifica-
tions (TVEDA was only designed for single-processes). The test case generation
was taken over by the TGV algorithms.

Test Generation Process

The whole testing process is based on an SDL specification of a (possibly dis-
tributed) system. Any block within the SDL specification can be identified as
the SUT. The channels which are connected to the block become PCOs (Points
of Control and Observation). In the case of a distributed system TestComposer
is restricted to a monolithic tester, i.e. one tester takes care of the whole testing
process.

430 Axel Belinfante, Lars Frantzen, and Christian Schallhart

To generate a test suite a set of test purposes is needed, which represent
sequences of input and output events exchanged between the SUT and its envi-
ronment (black box testing). Two modes are offered to generate them. In the in-
teractive mode the user can define test purposes with the help a SDL-simulator.
Guiding a stepwise simulation of the system one can construct a sequence of
interest.

Based on the SDL specification the tool can automatically complete a set of
test purposes based on a state space exploration to achieve a given percentage
of system-coverage. As in AutoLink the coverage unit is an observational step,
i.e. a sequence of events connecting two states in which the only possible actions
are an input stimuli or a timeout of an internal timer (so called stable states). A
test purpose corresponds to such an observational step which again corresponds
to one or many basic blocks, i.e. blocks of SDL instructions without branching.
It is the same approach as the one from AutoLink and hence there is the same
problem with nondeterminism, see 14.2.15.

In addition to depth-first and supertrace algorithms TestComposer offers a
breadth-first search to traverse the reachability graph. To narrow the search it
is possible to exclude parts of the SDL specification (like transitions, processes
or whole blocks) from the state exploration. To automatically generate postam-
bles which bring the SUT back to a suitable idle-state, TestComposer allows to
manually define boolean expressions that signalizes such idle states and there-
fore allow a search back to them. Test purposes are automatically partitioned
into preamble, test body and postamble. Observer processes can also be used as
abstract test purposes. They do not have to be transformed into MSCs like in
AutoFocus. Such an observer can be used to prune paths of the state space or
generate reports when a given condition holds.

A test purpose does not have to cover a complete sequence of observable
events, it can be incomplete (respectively abstract). TestComposer computes the
missing events needed to bind the specified ones together. There can be many
ways to complete the abstract sequence which allows an abstract test purpose
to describe the set of all possible completions. This is especially useful when the
order of signals does not matter which is a common situation when different
communication channels are involved.

To generate test cases, paths in the SDL specification have to be found which
correspond to the test purposes. Here come the TGV algorithms into operation
which perform also the postamble computation.

Tool Interfaces

SDL specifications serve as inputs. An API (Application Programming Lan-
guage) allows the user to construct interfaces with arbitrary test specification
languages. A module for TTCN is already included.

Summary

TestComposer is very similar to AutoLink. Some of the comparative results of
[SEG00] will be addressed in 14.3.

14 Tools for Test Case Generation 431

Related Papers

• Case Studies: [SEG00]

14.2.15 AutoLink

Introduction

autolink [KGHS98, SEG00] is a test generation tool that has been developed
at the Institute for Telematics in Lübeck and is based on the former work of the
SaMsTaG project [GSDH97]. It has been integrated in (added to) the Tau tool
environment of Telelogic in 1997.

AutoLink has been used extensively within the European Telecommunica-
tions Standards Institute (ETSI) for the production of the conformance test
suite for the ETSI standard of the Intelligent Network Protocol (INAP) Capa-
bility Set 2 (CS-2).

Attention has been given to the production of readable output (TTCN) –
the resulting test suite is not something that is just to be given to a (TTCN-)
compiler to produce an executable test program, it is also to be meant to be
amenable to human apprehension.

Test Generation Process

AutoLink uses test purposes to guide the test generation process. It does this
by exploring the state space of the specification. These test purposes can be
written by hand, obtained by simulation, or generated fully automatically. The
automatic generation of test purposes is based on state space exploration, where
the decisive criterion is to get a large structural coverage of the specification.
Each time a part of the specification is entered that has not been covered by a
previous test purpose, a new one is generated. The basic unit of coverage is a
single symbol of the specification. To avoid generating many identical test cases,
larger sequences of coverage units that lead from one stable state to another are
examined. A stable state is a state in which the system either waits for a new
stimulus from its environment or the expiration of a timer. Such sequences are
called observation steps. Each automatically generated test purpose contains at
least one observation step. In most cases, an observation step includes a stimulus
from the tester and one or more responses from the SUT.

Due to non-determinism, a single observation step can correspond to multi-
ple parts of the specification, i.e. one cannot be sure that an observation step
indeed tests the intended part of the specification. Schmitt et al. claim that the
computation of Unique Input/Output sequences would solve this problem, but
that in practice it is most of the time not necessary to prove that a test includes
UIO sequences [SEG00] .

To explore the state space, both depth-first and supertrace algorithms are
offered. The user can also provide a path from the initial state to a point from
which automatic exploration is done. Also other strategies/heuristics are imple-
mented.

432 Axel Belinfante, Lars Frantzen, and Christian Schallhart

AutoLink also allows test generation using observer processes. The observer
process runs in parallel with the specification, and has access to all internal
elements of the specification. This seems similar to the power of the test purposes
in other test tools discussed here like e.g. STG, TGV, TorX, Lutess. However,
the observer process has first to be transformed to a set of message sequence
charts, because AutoLink requires (complete) Message Sequence Charts for test
purposes.

AutoLink can also generate test cases from only test purposes, so, without
specification. Schmitt et al. mention that this can be beneficial, because it is
not always possible to simulate a test purpose [SEG00]. One reason for this
could be that the specification is incomplete and only partial specifications are
available, and thus the behavior one wants to test is not present in the (partial)
specification [KGHS98]. We did not study this in detail, but we are worried
about the correctness (soundness) of the resulting test cases, because, how can
you be sure that the tests that you generate in this way will not reject a correct
implementation?

Once the test purposes are available, the test generation from them is divided
in three steps. In the first step the data structures for a new test case are initial-
ized, the test purpose is loaded, etc. In the second step the actual state space
exploration is performed, and a list of constraints is constructed. Constraints
are definitions of data values exchanged between the tester and the SUT; one
could say that these definitions impose constraints on, for example, values for
message parameters, hence the name which originates from TTCN terminology.
Basically, for each send and receive event in the test case a constraint with a
generic name is created. Usually, these generic names are not very informative.
Therefore, a mechanism has been added to AutoLink to allow the user to control
the naming and parameterization of these constraints via a configuration file in
which rules can defined using a special language. Finally, in the third step the
data structure for the resulting test case may be post processed, and identical
constraints are merged. Usually, this greatly reduces the number of constraints,
and this increases the readability of the generated test suite.

AutoLink supports a generic architecture for distributed testers. The user
has to explicitly state synchronization points in the test purpose, after which
coordination messages can be generated automatically.

Schmitt et al. state that AutoLink uses on-the-fly generation in the same way
as TGV.

Tool Interfaces

AutoLink accepts specifications in SDL. Test purposes should be provided as
Message Sequence Charts (MSCs). The resulting test suite is generated in the
form of TTCN-2. The constraints (see above) are provided (generated) into
separate files, which can be modified by the user before the complete TTCN test
suite is generated.

A TTCN compiler can then be used to translate the generated TTCN into
an executable test program.

14 Tools for Test Case Generation 433

Summary

AutoLink is an (industrial strength) test generator to generate (readable) TTCN
test suites from SDL specifications. The test suite generation is guided by test
purposes that can be supplied by the user, or also generated fully automatically.
Unfortunately, a theoretical underpinning of the algorithms used in AutoLink
was not present in the papers we studied. Fortunately, it turned out to be possible
to reverse engineer the conformance relation definition for AutoLink [Gog01].
AutoLink has been used in a number of case studies.

Related Papers

• Tool Overview: [KGHS98, SEG00]
• Related Tools: [GSDH97]
• Underlying Theory: [Gog01]

14.3 Comparison

Many aspects can be addressed when comparing tools. Below we name just a
few, grouped by separating theoretical aspects from more practical ones.

• Theoretical aspects
– Are the test generation algorithms based on a sound theory? How do

these theories relate to each other?
– Which error-detecting power can be achieved theoretically?
– What is the time/space complexity of the underlying algorithms?
– Is the theory suited for compositional issues? Can models be congruently

composed?
– Is the theory suited for distributed issues? Is it possible to generate

several distributed testers or is only a monolithic one possible?
– How is data handled by the formalisms? Is the theory restricted to simple

sets of actions or is there support for complex/symbolic data, e.g. infinite
domains? How is this handled?

– Is there a notion of time? Is it possible to guarantee time constraints
during the test execution (which is necessary for real time systems)?

– Can it deal with nondeterministic SUTs, or only with deterministic ones?
– Can it deal with non nondeterministic specifications?

• Practical aspects
– Which error-detecting power can be achieved practically (case studies)?
– Is it only possible to generate test suites or also to execute them on a

real SUT?
– How user-friendly is the tool? Is there a GUI facilitating the usage? Are

graphical models used (e.g. UML)?
– Which are the supported test case specifications?
– How difficult is it to create a suitable input (e.g. defining test purposes)?

Are many parameters needed and does the tool help in setting them?

434 Axel Belinfante, Lars Frantzen, and Christian Schallhart

– Are the interfaces open or proprietary? Are widely accepted standards
used?

– To which operational environment is the tool restricted?
– What practical experience is there (what test cases are performed) with

the tool?

We will focus on two comparison approaches that we found in the literature:
theoretical analysis and benchmarking. In a theoretical analysis, one compares
the test generation algorithms implemented in the tools, and tries to deduce
conclusions from that. In benchmarking, one does a controlled experiment, in
which one actually uses the tools to find errors, and tries to deduce conclusions
from that.

Below we discuss each of the approaches in more detail. In the discussion we
will mainly focus on theoretical and practical error-detecting power. Regarding
the other aspects, we have tried to give as much information as possible in the
individual tool descriptions, and leave it to the interested reader to follow the
references.

14.3.1 Theoretical Analysis

Goga analyzes the theory underlying the tools TorX, TGV, AutoLink and
PHACT [Gog01]. For PHACT, the theory underlying the Conformance Kit is
analyzed; it implements a UIO test generation algorithm. Goga maps the algo-
rithms used in the tools onto a common theory in order to compare the con-
formance relations that they use. To be able to do so, he also constructs the
conformance relation for AutoLink. Then, by comparing their conformance re-
lations, he can compare their error-detecting power. The rough idea is that, the
finer the distinction is that the conformance relation can make, the more subtle
the differences are that the tool can see, and thus, the better its error-detection
power is. For the details we refer to [Gog01].

The result of this comparison is the following (here we quote/paraphrase
[Gog01]). TorX and TGV have the same error-detection power. AutoLink has less
detection power because it implements a less subtle relation than the first two (for
certain kinds of errors TGV and TorX can detect an erroneous implementation
and AutoLink can not).UIO algorithms (PHACT) have in practice less detection
power than AutoLink, TGV and TorX. In theory, if the assumptions hold on
which UIOv is based, it has the same detection power as the algorithms of the
other three tools. These assumptions are:

A) the specification FSM is connected
B) the specification FSM is minimal
C) the number of states of the implementation is less than or equal to the

number of states of the specification.

Because in practice assumption C) rarely holds, we conclude that in practice the
three other algorithms are in general more powerful than UIOv algorithms.

14 Tools for Test Case Generation 435

These theoretical results coincide with the results obtained with the bench-
marking experiment discussed below.

Regarding the other theoretical aspects we have tried to give as much infor-
mation as possible in the tool descriptions. Not all facts (especially complexity
issues) are known for every tool and some aspects are still actual research topics.
Examples of the latter are compositionality, complex data and real time issues.

14.3.2 Benchmarking

The benchmarking approach takes the view that, as the proof of the pudding is
in the eating, the comparison (testing) of the test tool is in seeing how successful
they are at finding errors. To make comparison easier, a controlled experiment
can be set up. In such an experiment, a specification (formal or informal) is
provided, together with a number of implementations. Some of the implementa-
tions are correct, others contain errors. Each of the tools is then used to try to
identify the erroneous implementations. Ideally, the persons doing the testing do
not know which implementations are erroneous, nor do they know details about
the errors themselves. Also, the experience that they have with the tools should
be comparable (ideally, they should all be expert users, to give each tool the
best chance in succeeding).

In the literature we have found a few references to benchmarking or similar
experiments.

Other disciplines, for example model checking, have collected over time a
common body of cases or examples, out of which most tool authors pick their
examples when they publish results of their new or updated tools, such that
their results can be compared to those of others.

In (model-based) testing this is much less the case, in our experience. Often
papers about model-based testing tools do refer to case studies done with the
tools, but usually the case studies are one-time specific ones. Moreover, many
of the experiments done for those cases cannot be considered controlled in the
sense that one knows in advance which SUTs are erroneous. This does make those
experiments more realistic – which is no coincidence since often the experiments
are done in collaboration with industry – but at the same time it makes it hard
to compare the results, at least with respect to error-detecting power of the tools.

Of course, there are exceptions, where controlled model-based testing exper-
iments are conducted and the results are published. In some cases those experi-
ments are linked with a particular application domain. For example, Lutess has
participated in a Feature Interaction contest [dBZ99].

Also independent benchmarking experiments have been set up, like the “Con-
ference Protocol Benchmarking Experiment” [BFdV+99, HFT00, dBRS+00] that
we will discuss in more detail below. The implementations that are tested in such
an experiment are usually much simpler than those that one has to deal with in
day-to-day real-life testing – if only to limit the resources (e.g. time) needed to
conduct or participate in the experiment. There is not much one can do about
that.

436 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Conference Protocol Benchmarking Experiment The Conference Proto-
col Benchmarking Experiment was set up to compare tools where it counts: in
their error-detecting capability. For the experiment a relative simple conference
(chat box) protocol was chosen, and a (reference) implementation was made for
it (hand written C code). This implementation was tested using “traditional
means”, after which it was assumed to be correct (we will refer to this one as
the correct implementation from now on).

Then, the implementor of the correct version made 27 “mutants” of it by
introducing, by hand, small errors, such that each mutant contains a single error
that distinguishes it from the correct version. The errors that were introduced
fall in three groups.

The errors in the first group are introduced by removing a program statement
that writes an output message. The effect of these errors is visible as soon as the
(now removed) statement is reached during program execution.

The errors in the second group are introduced by replacing the condition in
an internal check in the program by “true”. The effect of these errors may not
be immediately visible.

The errors in the third group are introduced by removing a statement that
updates the internal state of the program. The effect of these errors is not im-
mediately visible, but only when a part of the program is reached where the
absence of the preceding internal update makes a difference. So, the error has
to be triggered first by reaching the code where the internal update has been
removed, and then the error has to be made visible by reaching a part of the
program where the erroneous internal state causes different output behavior.

Then, the informal description of the protocol, the source of the implementa-
tion and the mutants, and a number of formal specifications were made available
via a web page.

Finally, several teams took a model-based testing tool (usually, their own,
that they mastered well), reused, or adapted a given specification, or wrote a new
one, if necessary, tried to devise test purposes, and tried to detect the incorrect
implementations, without knowing which errors had been introduced to make
the mutants. To our knowledge, this has been done with the following tools (and
specification languages): TorX (LOTOS, Promela); TGV (LOTOS); AutoLink
(SDL); Kit/PHACT (FSM). We will briefly mention the results here; for the
discussion of the results we refer to the papers in which the results have been
published.

TorX and TGV With TorX and TGV all mutants have been detected11. With
TorX all mutants were found using the random walk testing strategy, so no
test purposes were used. With TGV it turned out to be pretty hard to come
up (by hand) with the right test purposes to detect all mutants; one mutant

11 That is, all 25 mutants that could be detected with respect to the specification that
was used. It turned out that two mutants needed behavior outside the specification
to be detected. As a consequence, these mutants are ioco-conformant with respect
to the specification used.

14 Tools for Test Case Generation 437

was detected by a test purpose that was not hand written, but generated by a
random walk of a simulator. Elsewhere it has been discussed why random walks
are effective in protocol validation [Wes89] – similar reasons apply to testing. For
a comparison of random walk and other approaches for testing see Section 11.4
(page 301).

AutoLink With AutoLink not all ioco-erroneous mutants were detected: it
detected 22 mutants. Here, most likely, the lack of complete success had to do
with the test purposes that were hand written12. Only after the experiment, the
(inexperienced) user of the tool learned of the possibility to let the simulator
generate a set of test purposes fully automatically, so unfortunately this feature
has not been evaluated.

Kit/PHACT With Kit/PHACT the fewest mutants (21) were detected. Here,
no test purposes were needed, but a test suite was automatically generated using
the partition tour strategy.

All test cases of the test suite were executed as one large single concatenated
test case, without resetting the implementation between individual test cases.
This actually helped to detect errors. In some of the test cases an error was
triggered in one test case, without being detected there. However, some of the
mutants contained an error that made the synchronizing sequence fail to do
its job, which thus failed to bring the implementation to its initial state. As a
result, it happened that much later, in a different test case, the implementation
responded erroneously as a consequence of the error triggered much earlier.

Analysis of the mutants that were not detected showed that in two cases,
due to the error, the mutant contained a state not present in the specifica-
tion. Such non-detected errors are typical for the partition tour method used
by PHACT [HFT00]. One other mutant was not detected because the decoding
function in the glue code to connect to the SUT was not robust for incorrect
input and thus the test execution was aborted by a “core dump”. The remaining
undetected mutant was not found, because only the explicitly specified tran-
sitions were tested. A PHACT test suite that tests all transitions (which is a
possibility with PHACT) would probably detect this mutant.

Conclusions with respect to the Benchmarking Approach Performing a controlled
benchmarking experiment allows comparison of testing tools where it counts: in
their error-detecting capability. However, doing a fair comparison is difficult, be-
cause it can be hard to find experimenters that have comparable experience with
the tools and specification languages involved. As a consequence, the absolute
comparison results should be taken with a grain of salt.

Such benchmarking can also provide information about some of other prac-
tical aspects that we listed. For example, the experimenters in the Conference

12 To be more precise, obtained by taking the traces of manual simulation of the spec-
ification.

438 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Protocol Benchmarking Experiment also gave estimations of the amount of time
invested by humans to develop specifications and test purposes, versus the com-
puter run time needed to generate and execute the tests [BFdV+99, dBRS+00].
Such estimations give some idea of the (relative) ease with which errors can be
found with the respective tools.

14.4 Summary

System vendors focus more and more on the quality of a system instead of
increasing functionality. Testing is the most viable and widely used technique
to improve several quality aspects, accompanying the entire development cycle
of a product. Motivated by the success of model-based software development
and verification approaches, model-based testing has recently drawn attention
of both theory and practice.

System development tools reflect this tendency in many ways, automatic
model-based generation of test suites has incipiently found its way into prac-
tice. TestComposer and AutoLink are the dominating design tools in the SDL
community. The UTP serves the need for test support within UML-based soft-
ware development, and Microsoft’s AsmL is another example for the effort major
companies make to benefit from the existing theory.

But whatever theory is chosen as a basis, none of them can belie the domi-
nating problem of system complexity. Even simple behavioral models like FSMs
or LTSs can generally not be specified or exploited exhaustively. In that sense
testing is always a David vs. Goliath struggle, even when pragmatical approaches
were chosen.

Nevertheless it is worth the effort of improving the theory w.r.t. practicability.
Furthermore there are system criteria which are not treated satisfactorily yet,
like real-time constraints or symbolic data, e.g. infinite data domains.

Although automatic testing is still in the fledgling stages it can already be ex-
erted successfully to improve the quality of real world systems. Further research
is needed to improve and ease its application. It is a promising field where formal
methods find their way into practice.

	14.1 Introduction
	14.2 Tool Overview
	14.3 Comparison
	14.4 Summary

