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Abstract. The PPSZ algorithm presented by Paturi, Pudlak, Saks, and
Zane in 1998 has the nice feature that the only satisfying solution of a
uniquely satisfiable 3-SAT formulas can be found in expected running
time at most O(1.3071n). Using the technique of limited independence,
we can derandomize this algorithm yielding O(1.3071n) deterministic
running time at most.

1 Introduction

The problem of deciding whether a k-CNF G has a satisfying assignment is
well known as the k-SAT problem, which is NP-complete for k > 2. Hence, if
NP 6= P holds (which is widely assumed), there is no hope to find a polynomial
time algorithm for the k-SAT problem for k > 2.

For a CNF G on n variables, a naive approach is to enumerate all possi-
ble assignments and to check for each one whether it satisfies G. This algo-
rithm has O (poly(|G|) · 2n) running time at most. There are way more sophis-
ticated algorithms known, and the evolution of expected running time bounds
for 3-SAT, which are somewhat below the deterministic ones, is given as [Sch99,
SSW02, Rol03a, BS03, Rol03b, IT04] with bounds of O(1.334n), O(1.3302n),
O(1.32971n), O(1.3290n), O(1.32793n), and O(1.3238n).

In [PPSZ98], Paturi, Pudlak, Saks, and Zane proved that for a uniquely
satisfiable 3-CNF, the solution can be found in O(1.3071n) expected running
time at most. This is the best randomized bound known for Unique-3-SAT.
But paradoxically, this bound is getting worse when the number of solutions
increases. This is even more curios since Unique-k-SAT is proven to be the
hardest case of k-SAT for k tending to infinity (cf. [CIKP03]). Alas, for the
general 3-SAT resp. 4-SAT case, this algorithm achieves expected running time
bounds of O(1.362n) resp. O(1.476n) only, which is worse than the best known
randomized bounds of O(1.3238n) resp. O(1.474n), established in [IT04].

The best bounds for k-SAT make excessive usage of random bits so that enu-
merating the entire probability space would yield useless bounds, i.e. much more
than O(2n). But, do random bounds really compete with deterministic bounds
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when the existence of true randomness is not provable? At least, randomized
algorithms often supply a good starting point to develop fast deterministic algo-
rithms. For example, for k-SAT, the algorithm of Schöning in [Sch99], based on
randomized local search and restart, yields a bound of O((2−2/k+ε)n) expected
running time at most, which has been derandomized in [DGH+02] to the best
known deterministic bound of O(1.481n) for k = 3 and O((2−2/(k+1)+ε)n) for
k > 3, based on limited local search and covering codes. Alas, like so often, the
deterministic bound is much worse than the original randomized one. However,
in this paper, we derandomize the algorithm of [PPSZ98], already mentioned
in the paragraph before, for the uniquely satisfiable case yielding (almost) the
same bound like the randomized version making it the best known determinis-
tic bound for Unique-k-SAT. We use the technique of limited independence (cf.
[AS92]) to proof that the algorithm can be adapted to enumerate some small
probability spaces yielding deterministic running time O(1.3071n) at most. This
means that the best bound for Unique-k-SAT is not only a deterministic one,
but also better than the best known randomized bound for (general) k-SAT.

2 Preliminaries

Firstly, we make some common definitions. A literal is a variable or its negation.
An assignment β to a set of variables X maps each variable in X to 0 or 1.
A literal l is satisfied by β if X(l) = 1 if l is not negated resp. X(l) = 0 if l
is negated. A clause is a set of literals based on different variables. A clause is
satisfied by some assignment β if at least one literal is satisfied by β. A formula
is a set of clauses. A formula is satisfied by β if each clause is satisfied by β. A
k-clause is a clause of size k and a k-CNF is a set of clauses of size at most k. A
1-clause is commonly known as unit clause. For a set of clauses G, let vars(G)
be the set of variables occurring in G.

We will not consider polynomial factors in complexity calculations because
we always expect an exponential expression which outweighs all polynomials for
large problems, and because the number of clauses is O(|vars(G)|k), polynomials
that depend on the number of clauses can also be replaced by some polynomial
in |vars(G)|.

For a CNF G and a literal l, we denote with G|l the formula obtained by
making l true in G, i.e. we remove all clauses that contain l and remove l from
all clauses that contain it.

A clause pair (C1, C2) is a resolvent pair if they have only one variable v in
common whereby v ∈ C1 and v ∈ C2. Their resolvent R(C1, C2) is the clause
(C1 − v) ∪ (C2 − v). Because any satisfying assignment of C1 and C2 must also
satisfy R(C1, C2), adding R(C1, C2) to a CNF does not change its set of satisfying
assignments.

s-bounded resolution means to add to G all resolvent pairs of clauses in G
where the size of the resolvent is at most s, over and over again until there is
nothing more to do. Note that, if s is a constant, this has polynomial time and
space complexity in |vars(G)|.

2



3 The Algorithm

At first, we present our algorithm, which is a derandomized form of the one in
[PPSZ98]. Note that π denotes a permutation of the variables of G computed us-
ing a polynomial time function π(α) where α is a member of some set Ω(n, w, L).
The definition of both objects and the role of the parameters is deferred to Sec-
tion 4.

Algorithm 1: PPSZ(k-CNF G, integer d, integer L, integer t)

1 G := do kd-bounded resolution on G

2 for each π = π(α) with α ∈ Ω(|vars(G)|, (k − 1)d+1 − 1, L) and for each
bit string b of size t do {

3 G′ := G

4 repeat as long there is an unused bit in b do {

5 v := next unused variable in π
6 if G′ contains a unit clause v resp. v
7 then G′ := G′|v resp. G′ := G′|v
8 else Choose G′ := G′|v or G′ := G′|v depending on the next unused

bit of b being 1 or 0

9 }

10 If G′ is the empty formula then return true

11 }

12 return false

The only difference between the original algorithm in [PPSZ98] and this one
is that they choose a permutation π of vars(G) and a bit string b of length
|vars(G)| uniformly at random.

4 The Analysis

Without loss of generality, we denote the variables of G with the integers in [n].
Moreover, let β denote the one and only satisfying assignment of G.

4.1 Deterministic Bounds for Unique-k-SAT

In the algorithm, we use a set Ω(n, w, L) with w = (k−1)d+1−1, the set will be
defined in Section 4.2. But for now, let us use it as a black box probability space
that can be used to draw permutations π of [n] at random so that the following
lemma is satisfied, which is proved in Section 4.4:

Lemma 2. Let d and L be integers and let G be a uniquely satisfiable k-CNF
G with more than d variables. Fix some variable v of G. Assume that Algo-
rithm PPSZ reaches variable v and all variables before v in π were set according
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to β. At this step, there will be a unit clause for v with probability at least λk,d,L

with

λk,d,L =
µk

k − 1
− εk,d,L and

µk =

∞
∑

j=1

1

j(j + 1
k−1 )

where εk,d,L can be made arbitrary small positive by choosing L and d large
enough.

Using linearity of expectation, we can expect to have λk,d,Ln unit clauses
on the average. Because we try all elements of Ω(n, w, L), we must encounter at
least on permutation π, where the number of unit clauses is at least λk,d,Ln. Now,
assume that the bit string b is chosen so that all bits used for variables agree
with β. But, because at least λk,d,Ln variables are determined using unit clauses,
we only need at most n − λk,d,Ln bits from b. So, if we set t = dn − λk,d,Lne ,
we will face that good bit string.

Enumerating all bit strings of length t takes time at most O(2t). In Sec-
tion 4.2, we will prove that Ω(n, w, L) can be constructed and enumerated in
polynomial time in O(nLw/2) which is a polynomial in n for constant k, d, and
L. Formulas which do not satisfy the precondition of Lemma 2, i.e. which have at
most d variables, can be solved in polynomial time since d is a constant. Finally,
we can state:

Proposition 3. For a uniquely satisfiable k-CNF on n variables, integers d > 0,
L > 0, and t = dn − λk,d,Lne , Algorithm PPSZ finds the satisfying assignment
in deterministic running time at most

O
(

2(1− µk
k−1 )n+εk,d,Ln)

)

where εk,d,L can be made arbitrary small positive by choosing L and d large
enough.

Corollary 4. For a uniquely satisfiable 3-CNF resp. 4-CNF on n variables,
the satisfying assignment can be found in deterministic running time at most
O(1.3071n) resp. O(1.4699n).

4.2 w-wise Independent Probability Space for n Reals With
Precision L

The original algorithm of [PPSZ98] chooses a permutation π uniformly at ran-
dom. In Section 4.3, we will see that we only need randomness with respect to
a subset of the variables which has size bounded by a constant w. So, we could
just draw n integers from a finite pool (to have a finite probability space) of
w-wise independent integers and order π according to the rank of these. But,
what do we do if we draw the same integer for two variables? Fortunately, the
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bigger the pool is, the less likely it is for two variables to clash. Guided by this
idea, we will discuss a handy construction of π and show some useful properties.

Our basic tool is Theorem 2.1 from [AS92, Chapter 6]:

Theorem 5. For every n ≥ w ≥ 1 there exists a probability space Ω(n, w) of
size O(nw/2) and w-wise independent random variables y1, ..., yn over Ω each of
which takes 0 or 1 with probability 1/2. Ω(n, w) can be constructed in polynomial
time.

Let us start with a mapping α which assigns each integer in [n] a real value
in [0, 1). We construct a random α in the following way. Define integers w > 0,
L > 0. For each l ∈ [L] and independently from each other, draw n w-wise
independent random variables y1,l, ..., yn,l as stated in the theorem using Ω(n, w).
Define

α(v) =
∑

l∈[L]

2−lyv,l,

i.e. yi,. is seen as a binary encoding for α(v) with length L. Let A(L) be the set
of all possible real values α(.) can take. For fixed v, the random variables yv,.

are fully independent since they are drawn from independent probability spaces.
Hence, each value in A(L) has equal probability to be chosen for α(v). On the
other hand, for fixed l, the random variables y.,l are w-wise independent since
they are drawn using Ω(n, w). Because this holds for every l independently, the
values of α are w-wise independent.

Therefore, the construction above yields w-wise independent α values where
each of them takes a value from A(L) uniformly at random. We call this proba-
bility space a w-wise independent probability space for n reals with precision L,
denoted by Ω(n, w, L). We have:

Lemma 6. Ω(n, w, L) can be constructed with size O(nLw/2) and in polynomial
time in its size.

Given α, we construct a permutation π = π(α) of [n] so that α(u) < α(v)
implies that u occurs before v in π. Such a permutation can clearly be constructed
in a deterministic way by ordering [n] due to the values α takes on them with
some arbitrary deterministic rule if two take the same value.

Fix some arbitrary v ∈ [n] and fix some arbitrary V ⊆ [n] − v with |V | < w.
We want to have a lower bound for the probability that a variable u in V occurs
before v in π. The fact that α(u) = α(v) could hold, makes the analysis a little
bit complicated. Fortunately, this is not very likely. So, we call v unique with
respect to V if α(u) 6= α(v) holds for all u ∈ V. Clearly, the probability that v is
unique with respect to V is (1 − 2−L)|V |.

Now, assume that we already know that v is unique with respect to V. Still
all α(u) for u ∈ V can be seen as being drawn independently at random from
A(L) − α(v). Again, fix a variable u in V. Under the condition that v is unique
with respect to V , the probability that α(u) < α(v), i.e. that u occurs before v in
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π, is equal to α(v) · 2L/(2L − 1). This comes from the fact that we have α(v) · 2L

elements in A(L) which are strict less than α(v) and because the condition allows
all 2L − 1 elements of A(L) − α(v) to be chosen for α(u) uniformly at random.

Let us sum up:

Lemma 7. Let v ∈ [n] be a variable and V ⊆ [n] be a set of variables with
|V | < w and v 6∈ V. Then the following are true:

1. The probability that v is unique is (1 − 2−L)|V |.
2. Given that v is unique, all α(u) with u ∈ V are independent, and for each

u ∈ V, the probability that α(u) < α(v) holds is equal to α(v) · 2L/(2L − 1).

4.3 Admissible Trees

Before we can go back to Unique-k-SAT, we need the notion of an admissible
tree and have to prove some important properties.

Let T be a tree where the root is labeled by v. Each node of the tree can
have a label in [n] or it is unlabeled. Moreover, for each path from a leaf to the
root no integer occurs more than once as a label. Then T is called an admissible
tree. The depth of T is the maximum distance from any leaf to the root, e.g. a
tree containing only one node has depth 0. We limit the depth of an admissible
tree to d and we limit the number of children of each node to k− 1. Then T has
at most (k − 1)d+1 − 1 nodes. A cut A is a set of nodes that does not include
the root, and every path from the root to a leaf includes a node in A.

Let π = π(α) where α is drawn from Ω(n, (k − 1)d+1 − 1, L) at random. We
say a cut A happens if all variables corresponding to labeled nodes of A occur
before v in π.

Given that v is unique and a subtree T0 of T, we denote with QT0
(r) the

probability that at least one of the possible cuts of T0 happens and conveniently,
where we use r to stand for α(v) · 2L/(2L − 1). We will establish a lower bound
for QT0

(r) :

Lemma 8. Given an admissible tree T with root labeled by v, let T0 be some
subtree of T with more than one node and let T1, ..., Tt be the subtrees rooted
at the labeled children of the root of T. Let u1, ..., ut be the labels of their roots.
Then it is true that

QT0
(r) ≥

t
∏

i=1

(r + (1 − r)QTi
(r))

where the empty product is interpreted as 1.

Proof. 1 Consider the case that t = 0. Since T0 has at least one child, there
is a cut in the tree. But because, no child is labeled, the cut is empty, which
corresponds to an empty event, which occurs with probability 1. So, assume
t > 1.

1 Note that this proof is almost the same like the one for Lemma 7 in [PPSZ98].
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Let U be the set of variables occurring as labels in T. Since |U | ≤ (k−1)d+1−1
and since we haven chosen α from Ω(n, (k−1)d+1−1, L), we can except all α(u)
for u ∈ U to be independent. So, we can apply Lemma 7 by using U − v for V.

Consider the event that α(ui) < α(v), which has probability r, and the event
that a cut in Ti occurs. Because a subtree of an admissible tree is also admissible,
ui does not occur anywhere else in Ti. Thus, both events are independent, causing
their union, denoted with Ki, to have probability r + (1 − r)QTi

(r).
To finish the proof, we have to show that P[

⋂t
i=1 Ki] ≥

∏t
i=1 P[Ki]. At first,

let us recall some standard correlation inequality, which is a special case of the
FKG-inequality (cf. Theorem 3.2 in [AS92, Chapter 6]):

Lemma 9. Let N be a finite set and let A and B be two monotone increasing
families of subsets of N, i.e. each super-set of an set in A resp. B is also contained
in A resp. B. Draw a random set M ⊆ N by choosing each u in N independently
with probability p. Then it is true that

P[M ∈ A ∩ B] ≥ P[M ∈ A]P[M ∈ B].

We set N to be the set of all variables occurring as labels in T0, but we
exclude v. Moreover, we determine M as follows. For all u ∈ N, we include u
in M if it occurs before v in π. These events occur independently each with
probability r. Let Wi denote the family of all subsets of N that imply Ki, i.e.
all sets of variables W ⊆ [n] for which holds that Ki happens when all u ∈ W
occur before v in π. Because Ki only depends on variables in N, M is a member
of Wi if and only if the event Ki happens. Clearly, Wi is monotone increasing
since all supersets of a set that implies Ki also implies Ki, i.e. more variables
than necessary before v in π is not bad. The set Vi =

⋂i−1
j=1 Wi is also monotone

increasing. We plug Vi and Wi as A and B in the Lemma and obtain

P[M ∈ Vi+1] ≥ P[M ∈ Vi]P[M ∈ Wi]

=
∏

j<i

P[M ∈ Wi].

Because M ∈ Vt+1 means that the event
⋂t

i=1 Ki happens, we can conclude that

P

[

t
⋂

i=1

Ki

]

≥

t
∏

i=1

P[Ki]

is true, which completes the proof. ut

Let us multiply the probability for the event that v is unique with QT (r) to
obtain:

Corollary 10. Given an admissible tree T of depth d with root labeled by v and
given that α(v) = r′ is true, the probability that a cut of T occurs is at least
Q′

T (r) with

Q′
T (r) = QT (r′ · 2L/(2L − 1)) · (1 − 2−L)(k−1)d+1−1.
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To calculate the probability that at least one cut occurs, we have to average
Q′

T (r′) with respect to all possible values r′ ∈ A(L). This is given by:

2−L
2L−1
∑

l=0

Q′
T (l/2L) = 2−L

2L−1
∑

l=0

QT (l/(2L − 1)) · (1 − 2−L)(k−1)d+1−1

Some simple calculations show that

lim
L→∞

2−L
2L−1
∑

l=0

QT (l/(2L − 1)) · (1 − 2−L)(k−1)d+1−1 =

∫ 1

0

QT (r′)dr′.

Clearly, the difference between the integral and the sum can be made arbi-
trary small positive by chosing L large enough. From Lemma 10 in [PPSZ98],
we have that

∫ 1

0

QT (r′)dr′ ≥
µk

k − 1
−

3

(d − 1)(k − 2) + 2
.

Putting this inequality in the equation before yields the following result:

Lemma 11. The probability that at least one cut occurs is at least λk,d,L with

λk,d,L =
µk

k − 1
− εk,d,L

where εk,d,L can be made arbitrary small positive by choosing L and d large
enough.

4.4 Critical Clause Trees

So, let us draw the connection between Unique-k-SAT and our abstract admis-
sible trees.

We call a clause C ∈ G a critical clause for v if the only true literal in C
with respect to β is the one corresponding to v, i.e. flipping the value assigned
to v in β would make C instantly false.

Algorithm PPSZ applies kd-bounded resolution to G and then steps through
the variables ordered by a permutation π. Assume that the bit string b is chosen
so that all bits used for variables agree with β. When the algorithm reaches a
variable v and there is a critical clause C for v so that the variables vars(C)− v
occur before v in π, C has been reduced to a unit clause for v so that the
algorithm can immediately determine the right assignment to v. But, when is
there a clause C meeting this condition? We need the notion of a critical clause
tree:

We call an admissible tree T with root labeled by v a critical clause tree for v
if for each cut A in T, there exists a critical clause for v in G where vars(C)− v
contains only variables which occur as labels in A. The existence of a critical
clause tree is given by Lemma 4 in [PPSZ98]:
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Lemma 12. [PPSZ98] Let G be a uniquely satisfiable k-CNF with more than d
variables. Apply kd-bounded resolution to G. For each v ∈ vars(G), there exists
a critical clause tree for v with depth d.

So, if a cut of a critical clause tree of v happens with respect to π, there
must be a critical clause C corresponding to that cut meeting the condition. By
Lemma 11, this has probability at least λk,d,L, and we have proved what was
claimed in Lemma 2.

5 Conclusion

We derandomized the uniquely satisfiability case of [PPSZ98] using an approxi-
mation of the uniform distribution on [0, 1] using a discrete subset of [0, 1] and
showed that we can come arbitrary close to the randomized bound by making
the discrete subset large enough.

We can also conclude that a sufficient pseudo-random number generator can
be used for the original algorithm of [PPSZ98] instead of true randomness for
the unique satisfiability case.
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