
Input Distance and Lower Bounds for

Propositional Resolution Proof Length

Allen Van Gelder

University of California, Santa Cruz CA 95060, USA,
WWW home page: http://www.cse.ucsc.edu/~avg

Abstract. Input Distance (�) is introduced as a metric for proposi-
tional resolution derivations. If F = Ci is a formula and D is a clause,
then �(D;F) is de�ned as minijD � Cij. The � for a derivation is the
maximum � of any clause in the derivation. Input Distance provides
a re�nement of the clause-width metric analyzed by Ben-Sasson and
Wigderson (JACM 2001) in that it applies to families whose clause width
grows, such as pigeon-hole formulas. They showed two upper bounds on
(W � width(F)), where W is the maximum clause width of a narrow-
est refutation of F . It is shown here that (1) both bounds apply with
(W �width(F)) replaced by �; (2) for pigeon-hole formulas PHP(m;n),
the minimum� for any refutation is
(n). A similar result is conjectured
for the GT (n) family analyzed by Bonet and Galesi (FOCS 1999).

1 Introduction

The reader is assumed to be generally familiar with the propositional satis�a-
bility problem, CNF formulas, and resolution derivations. Some de�nitions are
brie
y reviewed in Section 2, but are not comprehensive.

Ben-Sasson and Wigderson [3] showed that, if the minimum-length general
resolution refutation for a CNF formula F has S steps, and if the minimum-
length tree-like refutation of F has ST steps, then there is a (possibly di�erent)
refutation of F using clauses of width at most:

w(F ` ?) � w(F) + c
p
n lnS; (1)

w(F ` ?) � w(F) + lgST : (2)

Note that the w(F) terms were omitted from their statement in the introduction,
but appear in their statements of the theorems. The notation for this expression
is:

{ n is the number of propositional variables in F ;
{ w(F) is the width of the widest clause in F ;
{ w(F ` ?) denotes the minimum resolution width of � ranging over all res-
olution derivations that refute F , where the resolution width of �, denoted
wF (�), is the width of the widest clause in �;

{ c is a constant, independent of F ;

{ ln and lg denote natural and binary logs, respectively.

All formulas and clauses are propositional, clauses are disjunctions of literals,
formulas are in CNF, unless speci�ed otherwise.

Our main results essentially eliminate the w(F) terms in the Ben-Sasson
and Wigderson theorems [3], and replace resolution width by �F (�), the input

distance, as de�ned next, in Section 1.1. For families of formulas whose widest
clause is bounded by a constant, input distance and resolution width are essen-
tially equivalent measures.

1.1 Input Distance

We de�ne input distance for nontautologous clauses (primarily derived clauses
in a resolution proof) for input CNF formula F .
De�nition 1.1. (input distance) All clauses mentioned are non-tautologous.
Let D be a clause; let C be an input clause, i.e., a clause of formula F . The
input distance of D from C is jD�Cj, treating D and C as sets of literals, and
using \�" for set di�erence. The input distance of D from F , denoted �F (D),
is the minimum over C 2 F of the input distances of D from C.

For a resolution proof � the input distance of � from F , denoted �F (�), is
the maximum over D 2 � of the input distances of D from F .

When F is understood from the context, �(D) and �(�) are written. Follow-
ing Ben-Sasson and Wigderson [3], �(F ` D) denotes the minimum of �F (�)
over all � that are derivations of D from F .

1.2 Summary of Results

The theorems shown here are that, if � is a resolution refutation of F and � uses
all clauses of F and the length of � is S, then there is a refutation of F using
clauses that have input distance from F that is at most:

�(F ` ?) � c
p
n lnS; (3)

�(F ` ?) � lgST : (4)

Also, we show that the pigeon-hole family of formulas PHP(m;n) require
refutations with input distance
(n), although they contain clauses of width
n. This result suggests that input distance provides a re�nement of the clause-
width metric as a measure of resolution diÆculty. That is, when a family of
formulas with increasing clause-width, such as PHP(m;n), is transformed into
a bounded-width family, such as EPHP(m;n), and the bounded-width family
has large resolution width, this is not simply because they rederive the wide
clauses of the original family, then proceed to refute the original family. Rather,
it is the case that wide clauses substantially di�erent from those in the original
family must be derived. However, note that input distance
(n) does not imply
any useful lower bound on general resolution refutation length for PHP(m;n),
at least not through any known theorem.

Table 1. Summary of notations.

a; : : : ; z Literal; i.e., propositional variable or negated propositional variable.
:x Complement of literal x; ::x is not distinguished from x.
jxj The propositional variable in literal x; i.e., jaj = j:aj = a.
A; : : : ; Z Disjunctive clause, or set of literals, depending on context.
A; : : : ;H CNF formula, or set of literals, depending on context.
� Resolution derivation DAG.
� Total assignment, represented as the set of true literals.

[p1; : : : ; pk] Clause consisting of literals p1; : : : ; pk.
? The empty clause, which represents false.
> The tautologous clause, which represents true ; (see De�nition 2.2).
�; : : : ; Æ Subclause, in the notation [p; q; �], denoting a clause with literals p,

q, and possibly other literals, �.
C� Read as \C, or some clause that subsumes C".

p In a context where a unit clause is expected, [p] may be abbreviated
to p.

C, p In a context where a formula is expected, fCg may be abbreviated to
C and f[p]g may be abbreviated to p.

+, � Set union and di�erence, as in�x operators, where operands are for-
mulas, possibly using the abbreviations above.

res(q; C;D) Resolvent of C and D, where q and :q are the clashing literals (see
De�nition 2.2).

CjA, FjA,
�jA

C (respectively F , �) strengthened by A (see De�nition 2.4).

2 Preliminaries

2.1 Notation

This section collects notations and de�nitions used throughout the paper. Stan-
dard terminology for conjunctive normal form (CNF) formulas is used. Notations
are summarized in Table 1. Although the general ideas of resolution and deriva-
tions are well known, there is no standard notation for many of the technical
aspects, so it is necessary to specify our notation in detail.

De�nition 2.1. (assignment, satisfaction, model) A partial assignment is
a partial function from the set of variables into ffalse ; trueg. This partial func-
tion is extended to literals, clauses, and formulas in the standard way. If the
partial assignment is a total function, it is called a total assignment, or simply
an assignment.

A clause or formula is satis�ed by a partial assignment if it is mapped to true;
A partial assignment that satis�es a formula is called a model of that formula.

ut
A partial assignment is conventionally represented by the (necessarily con-

sistent) set of unit clauses that are mapped into true by the partial assignment.
Note that this representation is a very simple formula.

2.2 Resolution as a Total Function

De�nition 2.2. (resolution, subsumption, tautologous) A clause is tau-

tologous if it contains complementary literals. All tautologous clauses are con-
sidered to be indistinguishable and are denoted by >.

If C = [q; �] and D = [:q; �] are two non-tautologous clauses (� and � are
subclauses), then

res(q; C;D) = res(q;D;C) = res(:q; C;D) = res(:q;D;C) = [�; �]

de�nes the resolution operation, and [�; �] is called the resolvent, which may be
tautologous. Resolution is extended to include > as an identity element:

res(q; C;>) = C

provided C contains q or :q.
Resolution is further extended to apply any two non-tautologous clauses and

any literals, as follows. Fix a total order on the clauses de�nable with the n
propositional variables such that ? is smallest, > is largest, and wider clauses
are \bigger" than narrower clauses. Other details of the total order are not
important.

If C = [�] does not contain q and D = [:q; �] is non-tautologous, then
res(q; C;D) = res(q;D;C) = res(:q; C;D) = res(:q;D;C) = [�]

If C = [�] and D = [�] and neither contains q or :q, and both are non-
tautologous, then

res(q; C;D) = res(q;D;C) = res(:q; C;D) = res(:q;D;C)
= the smaller of C and D.

With this generalized de�nition of resolution, we have an algebra, and the
set of clauses (including >) is a lattice, based on �, with the convention that
every clause is a subset of >. We shall see later that the bene�t of this struc-
ture is that resolution \commutes up to subsumption" with strengthening (see
De�nition 2.4), so strengthening can be applied to any resolution derivation to
produce another derivation.

If clause C � D, we say C properly subsumes D; if C � D, we say C subsumes

D. Also, any non-tautologous clause properly subsumes >. Notation D� is read
as \D, or some clause that subsumes D". ut
De�nition 2.3. (derivation, refutation) A derivation (short for propositional
resolution derivation) from formula F is a rooted, directed acyclic graph (DAG)
in which each vertex is labeled with a clause and possibly with a clashing literal.
Let D be the clause label of vertex v. If D = C 2 F , then v has no out-edges
and no clashing literal, and is called a leaf. Otherwise v is called a resolution

vertex, has two out-edges, say to vertices with clause labels D1 and D2, and is
also labeled with the clashing literal q such that

D = res(q;D1; D2);

where res is the total function de�ned in De�nition 2.2. In much of the discus-
sion, vertices are referred to by their clause labels.

A derivation derives its root clause. When the root clause is ?, the derivation
is called a refutation. ut

2.3 The Strengthening Operation

De�nition 2.4. (strengthened formula, strengthened derivation) Let A
be a partial assignment for formula F . Let � be a derivation from F . The clause
CjA, read \C strengthened by A", and the formula FjA, read \F strengthened
by A", are de�ned as follows.

1. CjA = >, if C contains any literal that occurs in A.
2. CjA = C � fq j q 2 C and :q 2 Ag, if C does not contain any literal that

occurs in A. This may be the empty clause.
3. FjA =

�
CjA �� C 2 F	; i.e., apply strengthening to each clause in F .

Usually, occurrences of > (produced by part (1)) are deleted in FjA.
4. �jA is the same DAG as � structurally, but the clauses labeling the vertices

are changed as follows. If a leaf (input clause) of � contains C, then the
corresponding leaf of �jA contains CjA. Each derived clause of �jA uses
resolution on the same clashing literal as the corresponding vertex of �.

The operation Fjp (i.e., Fjf[p]g) is sometimes called \unit simpli�cation". ut
The term \strengthen" comes from the theorem-proving community [7]. Ben-

Sasson and Wigderson [3] and others in the proof-complexity community use the
term \restriction" for \unit simpli�cation" or \strengthening by a single literal";
several di�erent terms for this operation may be found in the literature.

Example 2.5. Let F consist of clauses C1 = [a; b], C2 = [:a; c], C3 = [:b; e],
and C4 = [:c;:d]. Let � consist of leaves C1, C2 and C4 and the derived clauses

D1 = res(a; C1; C2) = [b; c] ;

D2 = res(c;D1; C4) = [b;:d] ;
D3 = res(b;D2; C3) = [e;:d] :

Then Fja = f[c] ; [:b; e] ; [:c;:d]g, Also, Fjfa; cg = f[:b; e] ; [:d]g.
Now consider �ja. The leaves are C1ja = >, C2ja = [c], C3ja = C3, and

C4ja = C4. The derived clauses are E1, E2 and E3, where:

E1 = res(a;>; [c]) = [c] ;

E2 = res(c; [c] ; [:c;:d]) = [:d] ;
E3 = res(b; [:d] ; [:b; e]) = [:d] :

Notice that Ei 6= Dija in any case, but Ei = (Dija)� in all cases. Also notice
that the clashing literal is absent from one operand in the resolution for E3, so
the resolvent is just the other operand. ut

Lemma 2.6. Given formula F , and a strengthening literal p,

res(q;D1jp;D2jp) � res(q;D1; D2)jp:
Proof. The principal case that requires checking is when q = p and q 2 D1 and
:q 2 D2 (or vice versa). In this case,

res(q;D1; D2)jp = res(q;D1; D2) = (D1 � p) [(D2 �:p):
Then res(q;D1jp;D2jp) = D2jp = (D2�:p). Therefore,D2jp � res(q;D1; D2)jp.

ut
Lemma 2.7. Given formula F , and a strengthening literal p, if � is a derivation
of C from F , then �jp is a derivation of (Cjp)� (a clause that subsumes Cjp)
from Fjp.
Proof. The proof is by induction on the structure of � with edge v ! w inter-
preted to mean that v is greater than w. Thus, the base cases are the vertices
that are clauses in F , called the leaves. By Lemma 2.6, if a vertex of � contains
the derived clause C, and the two adjacent operand vertices satisfy the lemma,
then the corresponding vertex of �jp contains (Cjp)�. ut

If C is the root of � and Cjp 6= >, then a >-free derivation of (Cjp)� can be
constructed from �jp by changing all resolution vertices that have exactly one >
operand to \copy" vertices that use the non-> operand, then deleting all the >
vertices, then compressing out all the copy vertices. Finally, the resulting DAG
might have multiple sources, so delete all vertices that cannot be reached from
the original root, which now contains (Cjp)�. This procedure does not change
the clause in any vertex of �jp.

Notice that Ben-Sasson and Wigderson [3] de�ne �jp di�erently, as clause-by-
clause strengthening (restriction, in their terminology) of the originally derived
clauses. As Example 2.5 showed, this de�nition does not necessarily produce a
derivation; they do not discuss this issue. The de�nitions used herein do ensure
that the strengthening of a derivation is a derivation, without using weakening.
The point of Lemma 2.7 is that the clauses derived from the strengthened formula
are at least as strong as the clause-by-clause strengthenings of the originally
derived clauses.

2.4 Input Distance and Strengthening

A few properties of input distance on clauses that result from strengthening are
stated.

Lemma 2.8. Let C be a clause of F and let A be a partial assignment. If
CjA 6= > (i.e., A does not satisfy C), then �F (CjA) = 0.

Proof. j(CjA) � Cj = 0. ut
Lemma 2.9. Let D be a clause of F , let A be a partial assignment, and let
G = FjA. IfDjA 6= > (i.e., A does not satisfyD), then �F(D) � �G(DjA)+jAj.
Proof. Suppose CjA 2 G is a clause for which �G(DjA) = j(DjA) � (CjA)j.
Then jD � Cj � jD � (CjA)j � j(DjA)� (CjA)j + jAj. ut

3 Size vs. Input Distance Relationships

Ben-Sasson andWigderson [3] derived size-width relationships that they describe
as a \direct translation of [CEI96] to resolution derivations." Their informal
statement, \if F has a short resolution refutation then it has a refutation with
a small width," applies only when F has no wide clauses.

This section shows that by using input distance rather than clause width,
the restriction on the width of F can be removed. That is, the relationships are
strengthened by removing the additive term, width(F).

The use of strengthening for recursive construction of refutations with special
properties originates with Anderson and Bledsoe [2], who used it as a uniform
framework for showing completeness of various restrictions on resolution, in-
cluding linear resolution, set-of-support strategy, positive resolution, and others.
Clegg et al. [5] used it in connection with Groebner-basis refutations. Ben-Sasson
and Wigderson [3] used it to construct resolution refutations of small width. We
use it here to construct resolution refutations of small input distance, closely
following Ben-Sasson and Wigderson.

Lemma 3.1. Given formula F , and a strengthening literal p, let G = Fjp. If
derivation �1 derives clause D from G with input distance �G(�1) = (d � 1),
then there is a derivation �2 that derives (D+:p)� from F with input distance
�F (�2) � d.

Proof. Since G contains neither p nor :p, we can assume w.l.o.g. that no vertices
of �1 have p or :p as the clashing literal. De�ne �2 to have the same DAG
structure as �1, and the same clashing literal at each vertex, but wherever a
leaf of �1 is labeled with Cjp, label the corresponding leaf of �2 with C. Each
clause of F has at most one additional literal, :p, compared to the corresponding
clause of G, or else contains p. But no clauses of F containing p are leaves of
�2. Complete the clause labeling of �2 according to the de�nition of resolution.
Clearly �2 derives (D+:p)�. For each clause E in �2, the corresponding clause
in �1 is Ejp. By Lemma 2.9, �F(E) � �G(Ejp) + 1. So �F (�2) � d. ut
Lemma 3.2. Given formula F , and a strengthening literal p, let G = Fjp and
H = Fj:p. If derivation �1 derives ? from G with input distance �G(�1) = d�1,
and derivation �2 derives ? from H with input distance �H(�2) = d, then there
is a derivation �3 that derives ? from F with input distance �F (�3) � d.

Proof. Using Lemma 3.1, there is a derivation �4 that derives [:p]� from G with
input distance �F (�4) � d. If the root of �4 is ?, let �3 = �4 and we are done.
Otherwise, construct �3 as follows:

1. Use �4 as the initial part of �3. This part of �3 has input distance at most
d from F .

2. Resolve every clause of F that contains p with the root of �4, which contains
[:p]. Call this set of resolvents F1. All of these resolvents have input distance
0 from F (Lemma 2.8), so they do not contribute to �F (�3); also, they and
are in H.

3. Let F2 consist of those clauses in F that contain neither :p nor p. Note that
F1 +F2 = H.

4. Complete the derivation �3 according to the derivation �2, using clauses from
F1 and F2 in place of H at the leaves of �2. Since jD � Cj � j(D � Cj:p)j
for any clauses, C, D, this part of �3 has input distance at most d from F .

Thus �F (�3) � d. ut
Theorem 3.3. Let F be an unsatis�able formula on n � 1 variables and let
d � 0 be an integer. Let ST be the size of the shortest tree-like refutation of F .
If ST � 2d, then F has a refutation � with input distance �F (�) � d.

Proof. The proof is by induction on the pair (n; d) with the component-wise
partial order, and follows Ben-Sasson and Wigderson [3], except that it uses
input distance and Lemma 3.2 above. The bases cases are d = 0 or n = 1, and
are immediate. For d > 0 and n > 1 assume the theorem holds for smaller pairs.
Let x be the clashing literal at the root of �, a shortest tree-like refutation of
F . The children of the root are themselves the roots of tree-like derivations of
x and :x; call them �1 and �0. Assume the size of �1 is at most 2d�1. But
�1j:x is a tree-like refutation of G = Fj:x. By the inductive hypothesis, G has
a refutation �2 with input distance �G(�2) � d� 1. Also, H = Fjx has at most
n � 1 variables, so by the inductive hypothesis, H has a refutation with input
distance �H(�1) � d. By Lemma 3.2, F has a refutation � with input distance
�F (�) � d. ut
Corollary 3.4. ST (F) � 2�(F`?).

Theorem 3.5. Let F be an unsatis�able formula on n � 1 variables and let
d � 0 be an integer. Let S(F) be the size of the shortest refutation of F . If
S(F) � e

d
2

8n , then F has a refutation �1 with �F (�1) � d.

Proof. The proof is by induction on the pair (n; d) with the component-wise
partial order, and follows Ben-Sasson and Wigderson [3], except that it uses
input distance and Lemma 3.2 above. Their local variable d is renamed to f
here and denotes the input distance that causes a clause to be classi�ed as fat ;
f = dp2n lnS(F)e. For any derivation �, let �� be the set of clauses D 2 �
with �F (D) > f . De�ne a = 2n=(2n� f). The theorem follows from this claim:

Claim: For all b � 0 and 1 � m � n, if formula G has m variables and � is a
refutation of G and j��j < ab, then �(G ` ?) � f + b.

Setting b = f and G = F , and using the identity � ln(1�f=2n) > f=2n, ensures
that ab � S(F), so ensures the hypothesis, j��j < ab, is true. Setting d = 2f
proves the theorem.

The claim is proved by induction on on the pair (m; b) with the component-
wise partial order. The base cases are b = 0 or m = 1, for which the claim is
immediate, as j��j = 0. For b > 0 and m > 1, there is some literal x that appears
in at least j��j f=2n clauses of ��. Let �jx be as de�ned in De�nition 2.4. By

Lemma 2.7 and the discussion following it, there is a >-free derivation �1 with
the same nontautologous clauses as �jx. Then j��1 j � (1�f=2n)j��j � ab�1. But
�1 refutes Gjx, so by the inductive hypothesis, �(Gjx ` ?) � f + b� 1. Let �0
be the >-free version of �j:x, which refutes Gj:x. Since Gj:x has fewer than
m variables and j��0 j � ab, by the inductive hypothesis, �(Gj:x ` ?) � f + b.
Applying Lemma 3.2 proves the claim. ut

Corollary 3.6. S(F) � e
�(F`?)2

8n .

4 Pigeon-Hole Formulas

The well-known family of Pigeon-Hole formulas for m pigeons and n holes
(PHP(m;n)) is de�ned by these clauses:

Ci = [xi;1; : : : ; xi;n] for 1 � i � m

Bijk = [:xi;k ;:xj;k] for 1 � i � m; 1 � j � m; 1 � k � n:

For the standard version, m = n + 1. We shall show that any refutation of
PHP(m;n) with m > n has input distance
(n). An (already known) exponen-
tial lower bound for tree-like refutations follows by Corollary 3.4, but no useful
lower bound for general refutations follows by Corollary 3.6, since the \n" in
that corollary is the number of variables, which is nm in the notation of this
section. The method follows Ben-Sasson and Wigderson [3], except that it uses
input distance and the original PHP clauses of width n.

Theorem 4.1. Any refutation of PHP(m;n) with m > n has input distance at
least n=3� 2.

Proof. For 1 � i � m, de�ne

Ai = fCi; Bijk ; 1 � j � m; 1 � k � ng

which consists of all the constraints on pigeon i. De�ne �(D), the complexity of
a clause D, as the minimum number of Ai's needed to logically imply D. Then
�(?) = n+1 and �(C) = 1 where C is any input clause. Suppose I is the index
set for a minimum-cardinality set of Ai's that imply D and n=3 � jI j < 2n=3.
That is,

�^
i2I

Ai

�
! D (5)

is a tautology. Such an I must exist, because �(res(q;D1; D2)) � �(D1)+�(D2).
Equation (5) holds if and only if the following is unsatis�able (note that :(D)

constitutes a set of unit clauses):

�^
i2I

Ai

�
^ :(D) (6)

Let P0 be the set of pigeons (�rst index of variables) that have negative literals
in D; let P1 be the set of pigeons that have positive literals in D. If D has at
least n=3 negative literals, then its input distance is at least n=3�2; assume this
is not the case. Therefore, I � P0 is nonempty.

The plan of the proof is to show that, if I �P0 is nonempty and D has fewer
than n=3 negative literals, either there is an assignment that satis�es (6) or P1

has at least n=3� 1 pigeons. Table 2 illustrates some of the notation.
Since I �P0 is nonempty, let p 2 I �P0 and let I� = I �fpg. Thus p is some

pigeon whose hole is not forced by :(D). By the minimality of I there is an
assignment � that makes :(D) true, makes Ap false and satis�es Ai for i 2 I�.
W.l.o.g. let � be chosen to have as few positive literals as possible. Then � sets
all xik = 0 for i not in I [P0 [P1 and 1 � k � n. Further, � sets all xpk = 0,
1 � k � n, since none of these positive literals occur in :(D). Choose a function
k(i) for i 2 I� such that xi;k(i) = 1 in �. Necessarily, k(i1) 6= k(i2) for distinct
i1; i2 2 I�. Let K be the set of indexes in the range 1 through n that are not

in the range of k(i); jKj � n=3 + 2. These are the holes that are available for
pigeon p.

Recall that � sets xpk = 0 for all k 2 K. Also, � sets xik = 1 for i 2 I�

and k 6= k(i) only if xik 2 :(D). If, for any k 2 K, xpk can be
ipped to 1
and xik can be set to 0 for all i 6= p without falsifying :(D), that would create
a satisfying assignment for (6). Therefore, for each k 2 K, :(D) contains :xpk
or xik for some i 6= p. Since jKj > n=3 and we assumed D has fewer than n=3
negative literals, it must be the case that :(D) contains :xpk for some k 2 K.

Finally, we argue that since :(D) contains :xpk , for some k 2 K, it must
contain :xik for all i 2 I�. Suppose this fails for some i. Then modify � by setting
xp;k(i) = 1, xp;k = 0, xi;k(i) = 0, and xi;k = 1 (see Table 2). This produces a
satisfying assignment for (6).

To summarize, if :(D) contains :xpk for some k 2 K, then D contains
positive literals for at least n=3� 1 di�erent pigeons, i.e.,jP1j � n=3� 1, giving
D an input distance of at least n=3� 2. ut

Table 2. Changing � to expose a faulty index set I, in proof of theorem.

D = [:x11; x32; x52] ; :(D) = [x11] ^ [:x32] ^ [:x52] ; I = f2; 3; 5g; I� = f2; 3g:

Original �

pige{ holes

ons 1 2 3 4

1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

p = 5 0 0 0 0
6 0 0 0 0

i k(i)

2 3
3 4

K = f1; 2g

Modi�ed �

pige{ holes

ons 1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 0

p = 5 0 0 1 0
6 0 0 0 0

5 Conclusion

We proposed the input distance metric as a re�nement of clause width for study-
ing the complexity of resolution. For families with wide clauses, the trade-o� be-
tween resolution refutation size and input distance is sharper than the trade-o�
between resolution refutation size and clause width.

We showed that any refutation of PHP(m;n) requires input distance at least
n=3 � 2. Moreover, the proof showed that this input distance can arise in two
possible ways: by having n=3 negative literals in a derived clause, or by having
n=3� 1 positive literals that refer to distinct pigeons.

We conjecture that a similar exercise can be carried out for the family called
GT(n) [6], which has general refutations of polynomial size [8], but for which tree-
like refutations are exponential [4]. This family can be modi�ed so that regular
refutations are also exponential [1]. Bonet and Galesi introduced a bounded-
width variant called MGT(n), and showed that refutations of MGT(n) have
width
(n) [4]. However, the complexity function they used does not transfer
straightforwardly to a lower bound on input distance, as there are clauses with
input distance zero and complexity between n=3 and 2n=3.

Some open problems remain. Can input distance improve the lower bound for
weak PHP(m;n), where m >> n? Ben-Sasson and Wigderson [3] transformed
this problem into a family with clause width proportional to logm. Are there
other natural families to which input distance can be applied? Is there a trade-o�
between regular refutation size and input distance?

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and unrestricted resolution. In: Proc. 34th ACM Symposium
on Theory of Computing. (2002) 448{456

2. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and a
new technique for establishing completeness. Journal of the ACM 17 (1970) 525{534

3. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow | resolution made simple.
JACM 48 (2001) 149{168

4. Bonet, M., Galesi, N.: A study of proof search algorithms for resolution and poly-
nomial calculus. In: Proc. 40th Symposium on Foundations of Computer Science.
(1999) 422{432

5. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to �nd
proofs of unsatis�ability. In: Proc. 28th ACM Symposium on Theory of Computing.
(1996) 174{183

6. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22 (1985)
253{274

7. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection
tableau calculi. Journal of Automated Reasoning 13 (1994) 297{337

8. St�almarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta
Informatica 33 (1996) 277{280

