A Branch-and-Bound Algorithm
for Extracting
Smallest Minimal Unsatisfiable Formulas

Maher Mneimneh?, Inés Lynce?, Zaher Andraus,
Jodo Marques-Silva?, Karem Sakallah?

1University of Michigan
{ maherm, zandrawi, karem} @umich.edu

2Technical University of Lisbon, Portugal
{ines,jpms} @sat.inesc-id.pt

Abstract. We tackle the problem of finding a smallest-cardinality MUS
(SMUS) of agiven formula. The SMUS provides a succinct explanation of
infeasibility and is valuable for applications that rely on such explanations.
We present a branch-and-bound algorithm that utilizes iterative MAXSAT
solutions to generate lower and upper bounds on the size of the SMUS, and
branch on specific subformulasto find it. We report experimental results on
formulas from DIMACS and DaimlerChrysler product configuration suites.

1 Introduction

Explaining the causes of infeasibility of Boolean formulas has practical applicationsin
numerous fields: electronic design, formal verification, and artificial intelligence. In
design applications, for example, alarge Boolean function is formed such that a feasi-
ble design is obtained when the function is satisfiable, and design infeasibility isindi-
cated when the function is unsatisfiable. An example of this is the routing of signal
wiresin an FPGA. We are usually interested in a“minimal” explanation of infeasibil-
ity that excludes irrelevant information. For Boolean formulas in conjunctive normal
form (CNF), the notion of minimality is defined as follows. Consider an unsatisfiable
CNF formula ¢ . An unsatisfiable subformula (a US) of ¢ isa minimal-unsatisfiable
subformula (MUS) if it becomes satisfiable whenever any of its clauses is removed.
Algorithms for finding MUSes are presented in [1, 2, 7].

Since an unsatisfiable formula might have many MUSes, specific ones might be of
greater value based on the application. For example, in verification applications the
quality of refinement affects the number of iterations in the abstraction-refinement
flow. Whilea US represents a set of spurious behaviors, an MUS representsalarger set
of spurious behaviors. Thus, an MUS in general, and a smallest cardinality MUS
(SMUS) in particular, tend to be more effective in reducing the number of refinement
steps. Lynce et a. [4] presented an algorithm that computes an SMUS by implicitly
searching all USes of aformula.

In this paper, we tackle the problem of finding an SMUS by a branch-and-bound
algorithm that utilizesiterative MAXSAT solutionsto generate lower and upper bounds
on the size of the SMUS, and branch on specific subformulas to find it. The paper is
organized asfollows. In Section 2, we review basic definitions and notations. In Section
3, we present our algorithm for finding the SMUS. Results on unsatisfiable formulas

MUS1 MUS2 MUS3

We Wg Wio
(=%, O~ x)\(x, Ox, Ox,) (*a 0% 0x7)

W, W,
(X, DXGQD-'X7) (X, Dﬂx;lD—'x

Figure 1 The formula ¢ of (1) and its MUSes.

from DIMACS and DaimlerChrysler Automotive Product Configuration benchmarks
are presented in Section 4.

2 Preliminaries

Consider an unsatisfiable formula ¢ = w;w,...w,,. A US a of ¢ is an MUS if
removing every clause resultsin aformulathat is satisfiable. a isan SMUSIf itisan
MUS and for all other MUSes 3 of ¢, |a] <|B| . We denote the set of MUSes of ¢ by
Muses(¢) . The MAX-SAT problem finds a satisfiable subformula a of ¢ with the
maximum number of clauses;, we call $ —a a MAX-SAT solution of ¢ . We solve
MAX-SAT by reducing it to an integer optimization problem as follows. We define a
set of m new Boolean clause selector variables Y = {y,, Y,, ..., ¥+ ., and construct a
new formula ¢' = (=y; Owy) (=Y, OW,)... (=Y, Ow,,) . The MAX-SAT solution is
obtained by maximizing the objective y, +y, + ... +y,, subject to the clauses of ¢'.
Consider the Boolean formula:

O = (X O%) (7%q %) (7%, OXg) (=X, O =1X5) (Xp + X4) (7% O =X5) (=X UXs)

(X Oxg X7) (Xq OXgd 1%7) (X4 X X7) (X4 Haxdd —x7)
We call w; 1<i<11 the ith clause of ¢. ¢ has three MUSes that are illustrated
with a Venn diagram in Figure 1. MUSL is an SMUS. There are several possible
MAX-SAT solutionsfor ¢ . Two of them are { wg, w7} , and {w,, wg .

3 Computing a Smallest MUS

A simple approach to compute an SMUS of a formula is to generate all MUSes and
then select the smallest MUS. This approach is hindered by the fact that the number of
MUSes of aformula can be exponential in the number of its variables. To solve this
problem efficiently, we present a branch-and-bound algorithm to compute the SMUS.

3.1 Lower and Upper Bounds

We utilize iterative MAX-SAT solutionsto get alower bound on the size of the SMUS.
Let usconsider ¢ in (1) and its extended ¢' with selector variables. We have seen that
one possible MAX-SAT solution is { ws, w7} . From this, and the properties of MAX-
SAT, we can conclude that every MUS of ¢ contains w; or wy (or both), and conse-
quently contains at least one clause. To improve thislower bound, we repeat the above
process by finding another MAX-SAT solution that contains clauses other than w; and
w; . This can be achieved by adding the constraints (y;) and (y;) to the MAX-SAT
optimization problem to get: Maximize lelz i subject to (¢")(y3)(y;) - {wy Wg is

3.

a possible solution. Thus, every MUS must contain one of these clauses. In the third
iteration, we have the following optimization problem: Maximize ZIH: i subject to
(6)(¥3)(¥7)(Ya)(¥e) Which hasthe solution {wy, ws, wg} -

After adding the congtraints (y,), (ys) and (yg) . the optimization problem be-
comesUNSAT because of theMUS { w;, w,, ws, W, W5} . The aggregated set of claus-
esfrom MAX-SAT solutionsis ¢ axear = { Wy W3, Wy, Wg, Wg, W, , Wgt . At thispoint,
we can conclude that any MUS contains at least 3 clauses since:

OaO¢ aisMUS - {wg, w,, w} Oo O{wsg, w,, wg Dol

{wg, wy,wgt o O.. O {wy, wg,wy} DaO ..0O 2
{wo, wg, wgt Do
Thus, the number of iterations of MAX-SAT is alower bound (LB) on the number of
clauses of the SMUS of ¢ .

To obtain an upper bound on the size of the SMUS, we can generate all the MUSes

of the subformula ¢ ,,,,<5: - The upper bound on the size of the SMUS is the size of the

smallest MUS found in ¢ ,,ysa - FOr our example ¢ ,,..cor has asingle MUS of size 5,
and consequently the upper bound is 5.

3.2 Branch-and-Bound

Given Muses(¢ ,.4sqt) @nd theinitial LB and UB, if LB is equal to UB, then an MUS
whose size is UB isan SMUS for ¢ . If thisis not the case, we search the remaining
MUSesof ¢ (theonesnotin ¢ ,..sqr) fOr an MUS (if any) whose size is smaller than
UB. We achieve this by recursively branching on specific subformulas of ¢, and
bounding the search using LB and UB. The subformulas we branch on are ¢ —9;
where 8, O A andA isthe set of all MAX-SAT solutions of |,,,<a: - Each of the sub-
formulasin thisrecursion returnsits SMUSIf it is smaller than the one currently found
in ¢ (and consequently ¢ 's UB is updated). Otherwise, an empty set is returned. For
the running example, all MAX-SAT solutions of ¢, &€ {Wg , {wg , {wg ,
{wg and {w}. Thus, five recursive calls are made on the subformulas ¢ —{ w3 ,
o—{wg ., o—-{wg ,¢—-{wg ,and ¢ —{wz .

To understand why this approach efficiently searches the space of
Muses(d) — Muses(d maxsat) » We have to address the following questions. Why will
branching on all the specified subformulas “implicitly” search every MUS in
Muses($) — Muses(d naxsat) ? How does a child subformula use its parent’s lower
bound and MAX-SAT solution to compute its own lower bound? Finally, why isthisan
efficient solution? The first question addresses completeness, and its answer is omitted
due to space limitations. We address the last two questionsin what follows.

We use parent lower bound (pLB) and parent upper bound (pUB) to designate the
upper and lower bounds of the parent formula, and current upper bound (cUB) and cur-
rent lower bound (cLB) to designate the upper and lower bounds of a subformula
¢ —9,;. To understand how to compute ¢ —5,’s cLB, let us consider the subformula
¢ —{wg . Itiseasy to verify that Muses(¢ —{w}) includesal MUSesof ¢ except
the ones that contain w;. Since Muses(¢ —{wg) O Muses(¢), then MUSes of
¢ —{wg satisfy (2), and pLB (that of ¢) holds for ¢ —{wg . In fact, since all the
MUSesof ¢ —{wg do not contain w;, they have to satisfy a stricter version of (2):

Algorithm 1 FindSMUS
F ndSMUS(¢)
smus = FindSMJSRec(¢, ¢, 0, ¢kize());
if(smus == @) print “NOMJS. Formula is Satisfiable”;
el se print snus;
Fi ndSMUSRec(set ¢, set pMaxSat, int pLB, int pUB)
if(lsSat(d)) return o;
(conp, num ter, cMaxSat) =l t er at eMaxSat (¢ , pMaxSat , pUB- pLB) ;
if(!conp) return o;
cLB = pLB + numter;
® naxsat = CMaxSat + pMaxSat ;
(rmuses, all MaxSats) = Fi ndAl | Muses(¢ maxsat)
cMJS = Smal | est (nuses);
cWB = cMS. si ze();
smallestTillNow = (cUB < pUB)? cUB: pUB;
set smallestMJS = (cUB < pUB)? cMJS: o;
if(smallestTill Now<=cLB+1) return snallest MJS
foreach (ns in all MaxSats)

¢new - ¢ ms
maxsat rec. — ¢maxsat

r ecMJS=Fi ndSMJUSRec (d)new, maxsat, .., cLB, snal |l estTill Now);
if(recMJSI = @)
smal | estTi || Now = recMis. si ze();
snal | est MUS = recMJS;
if(smallestTill Now == cLB + 1) return snal | est MS;
return snal | est MJS;

Figure 2 The algorithm for finding an SMUS
OoO¢ —{wg aisMUS - {w,,w,,w} Oo O{wy, w, wg OoO...0
©)
{ wg, w7, wgt Ot

We can continue the iterations of MAX-SAT on the formula ¢ —{wg} starting with
the set ¢paxsat—{Wg . In other words, the initial optimization problem for
® maxsat — { W3t is: Maximize Vit VYot Vs +Yg subject to
(0" —{ (=¥ 0%, D~X3)})(¥7)(Y4) (Y6) (Y1) (¥)(¥s) . A possible solution for this
problem is {wg . By combining this with (3), we know that the current lower bound
for ¢ —{wg isfour. The next solutionsare {w,5} and {w,;} (at thispoint, the opti-
mization problem is unsatisfiable). Following the above reasoning, we have cLB =
pLB + numlter where numlter is the number of MAX-SAT iterations in the subfor-
mula. Thus, cLB for ¢ —{ w3} is6, and consequently, the smallest MUSin ¢ —{ w3}
has at least 6 clauses. In fact, ¢ —{wg has a single MUS of size 6. As a resullt,
¢ —{wg doesnot contain an MUS smaller than the best we havetill now (5 clauses).
The above conclusion can be reached with fewer computations by noting that numlter
must be at most pUB - pLB. If the optimization problem remains satisfiable after pUB
- pLB iterations, the current subformula does not contain an MUS smaller than pUB
and the search is bound.

Let us consider the next recursive call on the subformula ¢ —{ wg and the MAX-
SAT solution ¢ kst —{ Web - We know that pLB and pUB are 3 and 5 respectively.
The optimization problem is: Maximize y; + ... +yg +y; + ... +y;; subject to

(0" —{(=Ye Ux %)})(¥a)(Y7) (Ya) (Y1) (Ys)(Yg) - {W3} is a solution. At this

5.

point, the optimization problem is unsatisfiable; consequently cLB = 4. Next, we gen-
erate all MUSes of the current MAX-SAT solution: {w;, W, Wy, Ws, Wo, Wo} . We get
the MUS: {wy, w,, w;, w,} . Since the size of this MUS is equal to cLB, we have
found the smallest MUS in ¢ —{ wg} . Sincethis MUS is smaller than cUB for ¢ , we
update cUB to reflect the smallest MUS we have up to this point. The recursive calls
on the remaining subformula can proceed with pLB = 3 and pUB = 4. No smaller MUS
isfound in these formulas. Thus the smallest MUSfor ¢ is { wy, Wy, W, Wy} .

An additional optimization can be applied to enhance the above algorithm. Consid-
er ¢ again. From (2), we know that each MUS contains at least 3 clauses. If thereisan
MUS that contains exactly three clauses then it must be in ¢ ,,4cq: - Since we did not
find an MUS of size 3in ¢, then we know that the SMUS of ¢ has size at |east
cLB + 1. Using this observation, and after returning from the branch of the subformula
¢ —{wg , and updating cUB of ¢ to 4, we conclude that we have found the SMUS
sincecUB =cLB + 1.

The pseudo code for algorithm that follows from the above descriptionisillustrated
in Figure 2. FindMusRec() is the recursive procedure for finding the SMUS. It takes as
arguments the formula ¢ , the parent’'s MAX-SAT clauses pMaxSat, the parent lower
bound pLB, and the parent upper bound pUB. If ¢ is satisfiable, it contains no MUS
and the empty set is returned. Otherwise, the procedure calls IterateM axSat() using the
arguments ¢, pMaxSat, and pUB-pLB. IterateMaxSat() returns three values. The
Boolean variable comp is set to 0 if the optimization problem remains satisfiable after
running pUB-pL B iterations, and is set to 1 otherwise. If compisset to 1, numlter isthe
number of iterations, and is cMaxSat is the set current MAX-SAT clauses. If compisO
then the formula does not contain an MUS smaller than cUB and the empty set is re-
turned. Otherwise, cLB isset to pLB + numiter, and all the MUSes and MAX-SAT so-
lutions of ¢ ,4xsar &€ cOMputed. If the smallest of theseMUSesisequal tocLB or cLB
+1,itisreturned asthe sMUSfor ¢ . If thisisnot the case, webranchon all MAX-SAT
solutions of ¢ axsat 1N @ depth-first manner. After each branch terminates, we update
thesmallest MUS of ¢ and designateit asan SMUSIf itssizeisequal to cLB + 1. After
all recursive calls end, the SMUS is returned.

4 Experimental Results

To experimentally evaluate the effectiveness of our algorithm, we implemented it in
C++ and used Satzoo [6] to solve MAX-SAT problems. For generating all MUSes we
use the algorithms in [3]. All experiments were conducted on a 2 GHz Pentium 4
machine having 1 GB of RAM and running the Linux operating system.

Table 1 lists the results for representative aim benchmarks from the DIMACS set.
The number of clauses of the SMUS range between 10% and 40% of the total number
of clauses. The short run time is due to the fact that the total number of MUSesin these
formulasisvery small.

Table 2 presents the results for representative unsatisfiable formulas from the
DaimlerChryder Automotive Product Configuration Benchmarks [5]. To our knowl-
edge, there exists no previouswork that showsthe sizes of the SMUSesfor these bench-
marks. The last column reports the number of MUSes obtained by running the algo-
rithmin [3]. In some cases, the algorithm does not terminate and consequently either no

Table 1: Results on Representative Aim Benchmarks

Benchmark Variables | Clauses | SMUSSize | Time (sec)
am-50-1_6-no-2 o0 a0 32 0.05
aim-50-2_0-no-1 50 100 22 0.01
aim-100-1_6-no-1 100 160 a7 0.14
aim-100-2_0-no-2 100 200 39 0.1
aim-200-1_6-no-1 200 320 55 0.36
aim-200-2_0-no-1 200 400 53 0.3

Table 2: Results on DaimlerChrysler Benchmarks

Benchmark Varnables | Claises | SMUS Size | Time (Se0) | EMUSES
CI68 FW SZ 107 | 1583 5039 a7 5654 | NA
CI68_FW _SZ 4T 1583 777 76 25739 | NA
CI68_FW _SZ 66 1583 4751 16 1884 NA
CI68 FW UT 2463 [1804 6756 35 35041 [NA
CI68_FW UT 2469 | 1804 6767 32 83146 | NA
CI68 FW UT 714 [1804 6754 9 14.49 NA
CI68_FW UT 851 [1804 6758 8 59.91 102
CI70_FR RZ 32 1528 2067 227 12133 | 32768
CI70 FR SZ 58 1528 2083 75 15329 [>16140
CI70 FR SZ 92 1528 2195 131 15.12 T
CI70 FR_SZ 96 1528 2068 53 30276 [SI72032
C202 FS RZ 44 1556 5399 18 13104 | >79336
C207_FS SZ_104 1556 5405 24 299 STI09330
C207_FS SZ_12T 1556 5387 22 25 Z
C202_FS SZ_127 1556 5385 33 384 T
C202_FS. SZ 74 1556 5561 150 36.43 NA
C202_FS SZ &4 1556 5479 213219 38783 [NA
C202_FS SZ 97 1556 5452 28 62.13 >63936
C202_FW RZ 57 1561 7434 213 58.34 T
C202_FW _SZ_100 | 1561 7484 23 17397 | NA
C202 FW _SZ 103 [1561 9024 147155 86061 | NA
C202_FW SZ 173 [1561 7437 36 1474 Z
C202_FW _SZ 61 1561 7490 18 16384 | NA
C202_FW _SZ_77 1561 7611 156 37.16 NA
C202_FW_SZ_98 1561 7433 7 58.16 NA
C208_FA_RZ 43 1516 2754 8 76.88 S9547
C208_FA_SZ 120 1516 a247 34 38)
C208_FA_SZ 87 1516 2755 18 15.10 12854
C208_FA _UT 3254 [1805 6153 70 95.27 17408
C208_FA _UT 3255 [1805 6156 0 94.59 52736
C21I0_FS RZ 23 1608 2911 31 26630 | NA
C2I0_FS RZ 38 1607 2900 25 26192 | >188688
C210_FS RZ 40 1607 2891 140 36.24 15
C2I0_FS SZ_103 1607 2915 75 38638 | NA
C210_FS_SZ_107 1607 2902 15 25.29 NA
C210 FS SZ 173 1607 5062 176 140197 | 5972463
C2I0_FS SZ 78 1607 5071 170 56.72 NA
C21I0_FW RZ 57 1628 6390 25 35500 | S129272
C2I0_FW RZ 59 1628 6381 140 56.69 15
C2I0 FW SZ 106 [1628 6405 79 78958 [NA
C2I0 FW SZ_ TIT [1628 6393 15 35.17 NA
C2I0 FW SZ 178 [1628 6401 22 5133 |[NA
C2I0_FW _SZ_90 1628 6977 27T277 640418 | NA
C2I0_FW _SZ 9T 1628 6709 267281 632901 | NA
C220 FV RZ 12 1530 2017 T 50.58 S56872
C220 FV RZ 13 1530 2014 10 33.35 6772
C220 FV RZ 14 1530 2013 T 33.89 80

C220 FV_SZ 46 1530 4014 7 7844 S5160
C220 FV_SZ 65 1530 2014 23 18.85 S8A943

7.

information or a lower bound on the number of MUSes is provided. The total number
of MUSes for these formulas ranges from 1 to more than a million. The size of the
SMUSrangesfrom 0.1%to 5.5% (the average sizeis 1%) of the size of itsformula. This
shows that the SMUSes for these formulas are very small. Even in the cases where the
number of MUSes is extremely large, our algorithm was able to efficiently find the
SMUS. This shows the effectiveness of the implicit search utilized by the branch-and-
bound process. For C202_FS SZ 84, C202_FW_SZ_103, C210 FW_SZ 90, and
C210 FW_SZ_91 the number of MUSes in ..o Was very large. To limit the run
time, a cut-off of 500 seconds was used when generating all MUSes. The size column
for these benchmarks has the format n1:n2 where nl isthe LB and n2 is the smallest
MUS found before time-out. The difference between the best MUS found in the time
limit and the lower bound for these formulasis 6, 8, 6, and 14 respectively. Thus, even
when the number of MUSesisvery large, our algorithm provides useful information by
generating an MUS whose sizeis close to the lower bound. We can see alargerun time
for these formulas. Most of this run time was spent computing ¢ ,aysat -

5 Conclusions

Understanding the causes of infeasibility of Boolean formulas is of interest in various
theoretical and practical areas of computer science. Minimal unsatisfiable subformulas
provide useful explanations of infeasibility. We have presented an algorithm to find an
SMUS of aBoolean formula: an MUS with the least number of clauses. The algorithm
utilizes the relation between MAX-SAT and MUSes to construct lower and upper
bounds on the size of the SMUS. These bounds are the basis for a branch-and-bound
procedure that finds the SMUS by recursively branching on specific subformulas. We
have presented novel experimental results on two benchmark suites.

Acknowledgment

This work was funded in part by the National Science Foundation under ITR grant
number No. 0205288.

References

[1] R.Bruni and A. Sassano, “Restoring Satisfiability or Maintaining Unsatisfiability by find-
ing small Unsatisfiable Subformulae,” in Electronic Notesin Discrete Mathematics, vol. 9,
2001.

[2] J. Huang, “MUP: A Minimal Unsatisfiability Prover,” in Proceedings of Asia South Pacif-
ic Design Automation Conference, 2005.

[3] M.Liffiton, Z. Andraus, and K. Sakallah, “From MAX-SAT to Min-UNSAT: Insightsand
Applications,” Technical Report CSE-TR-506-05, University of Michigan, 2005.

[4] 1.LynceandJ. Marques-Silva, “On Computing Minimum Unsatisfiable Cores’, in Seventh
International Conference on Theory and Applications of Satisfiability Testing (SAT), 2004.

[5] SAT benchmarks from Automotive Product Configuration,
http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/

[6] Satzoo,
http://www.cs.chalmers.se/~een/Satzoo/

[71 L.ZhangandS. Malik, “Extracting Small Unsatisfiable Cores from Unsatisfiable Boolean
Formula,” in Sixth International Conference on Theory and Applications of Satisfiability
Testing (SAT 2003), S. Margherita Ligure - Portofino, Italy, 2003.

	A Branch-and-Bound Algorithm for Extracting Smallest Minimal Unsatisfiable Formulas
	1 Introduction
	2 Preliminaries
	3 Computing a Smallest MUS
	3.1 Lower and Upper Bounds
	3.2 Branch-and-Bound

	4 Experimental Results
	5 Conclusions

