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Abstract. Network operators would like their network to support cur-
rent and future traffic matrices, even when links and routers fail. Not
surprisingly, no backbone network can do this today: It is hard to ac-
curately measure the current matrix, and harder still to predict future
ones. Even if the matrices are known, how do we know a network will
support them, particularly under failures? As a result, today’s networks
are designed in a somewhat ad-hoc fashion, using rules-of-thumb and
crude estimates of current and future traffic.

Previously we proposed the use of Valiant Load-balancing (VLB) for
backbone design. It can guarantee 100% throughput to any traffic ma-
trix, even under link and router failures. Our initial work was limited
to homogeneous backbones in which routers had the same capacity. In
this paper we extend our results in two ways: First, we show that the
same qualities of service (guaranteed support of any traffic matrix with
or without failure) can be achieved in a realistic heterogeneous back-
bone network; and second, we show that VLB is optimal, in the sense
that the capacity required by VLB is very close to the lower bound of
total capacity needed by any architecture in order to support all traffic
matrices.

1 Introduction

A network operator would like their backbone network to serve customers’ de-
mands at all times. But most networks have grown in an ad-hoc fashion, which –
when considering failures and maintenance that frequently change the network –
makes it impractical to systematically provision links so they have the capacity
to carry traffic both during normal operation and under failures. To compensate,
network operators tend to grossly over-provision their networks (typically below
20% utilization), because it is hard to know where new customers will join, what
new applications will become popular, and when links and routers will fail.

It would help if we knew the traffic matrices the network will have to carry
throughout its lifetime. Though the usual practice is to measure the current
demand, and then extrapolate it to the future, the approach does not work for
many reasons.
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First, Internet traffic is hard to measure. The number of entries in a traffic
matrix is roughly quadratic in the number of nodes, so it is usually impractical
to obtain all the measurements directly. To estimate the traffic matrix from
incomplete measurements, the best techniques today give errors of 20% or more
[6] [9]. More importantly, the traffic demand fluctuates over time, and it is hard
to determine when the peak usage of the network is. In practice, the “peak” is
determined in an ad-hoc manner – by inspection, or some rules-of-thumb.

Second, even if we could accurately measure the current traffic matrix, it
is hard to extrapolate to the future. Typically, estimates are based on historic
growth rates, and adjusted according to marketing forecasts. But it’s hard to
predict future growth rates and what new applications will become popular.
Even if the total growth rate is estimated correctly, the growth may not be
uniform across the whole network, and the introduction of new applications
may change traffic patterns. For example, peer-to-peer traffic has demonstrated
how quickly usage patterns can change in the Internet. The widespread use of
voice-over-IP and video-on-demand may change usage patterns again over the
next few years. What’s more, the growth rate does not take into account large
new customers which may bring new demands. So network design has always
used a wrong estimate of the future traffic matrix, and the designed network
cannot guarantee to support the actual demand. It’s therefore not surprising
that operators so heavily over-provision their networks.

In summary, existing networks, which have evolved in an ad-hoc fashion, have
unpredictable performance. With current design techniques, it is hard to design
a network with throughput guarantees because it is impossible to obtain a good
estimate of the future traffic matrix. Once built, a network may have to work
with a range of traffic conditions, but it is unknown to network operators as to
how to design a network for a wide range of traffic matrices.

We recently proposed Valiant Load Balancing (VLB) [10], so that backbone
networks can be designed to give strong guarantees on the support for an ar-
bitrary set of traffic matrices, even under failure, and operate at much higher
utilization (and hence higher efficiency and lower cost) than today. We assume
that each backbone node in the network, or Point-of-Presence (PoP), has con-
strained capacity, such as the aggregate capacity of the access network it serves,
and design a backbone network to guarantee 100% throughput for any traffic
matrix.

The limitations of designing a network for a specific traffic matrix, and the
necessity to design for a wide range of traffic matrices, have been realized by
some researchers recently, and a few schemes have been proposed [1] [5] [10] [7].
Most of these schemes use some type of load-balancing.

The VLB architecture makes the job of estimating the future traffic much
simpler. While obtaining a traffic matrix estimation is hard, it is easier to mea-
sure, or estimate, the total amount of traffic entering (leaving) a backbone node
from (to) its access network. When a new customer joins the network, we add
their aggregate traffic rate to the node. When new locations are planned, the
aggregate traffic demand for a new node can be estimated from the population



that the node serves. While still not trivial, it is a lot easier than estimating the
traffic from every node to every other node.

The Valiant load-balancing architecture has simple and efficient fault toler-
ance so that only a small fraction of extra capacity is required to guarantee
service under a number of failures in the network. The failure recovery can be
quick because no new paths need to be established on the fly.

In this paper, we extend the result of [10] to networks with arbitrary node
capacities. We will focus on deriving the optimal capacity allocation in this net-
work and leave fault tolerance for future work. The rest of the paper is organized
as follows: Section 2 introduces the VLB architecture and the notation used in
this paper; Section 3 derives the lower bound on the required capacity to sup-
port all traffic matrices and two load-balancing schemes which achieve capacity
requirements close to the lower bound; We then relate our work to others’ and
conclude the paper.

2 Valiant Load-Balancing

The Valiant load-balancing architecture was first proposed by L. G. Valiant
for processor interconnection networks [8], and has received recent interest for
scalable routers with performance guarantees [2] [4]. Keslassy et al. proved that
uniform Valiant load-balancing is the unique architecture which requires the
minimum node capacity in interconnecting a set of identical nodes [3]. We applied
the VLB architecture to designing a predictable Internet backbone which can
guarantee throughput to all traffic matrices, and can tolerate a number of link
and router failures with only a small amount of excess capacity [10]. We will re-
introduce the architecture and re-state the relevant results here before extending
it to the more general scenario in backbone network design.

2.1 Previous Results

Consider a network consisting of multiple backbone nodes, or PoPs, intercon-
nected by long-haul links. The network is arranged as a hierarchy, and each PoP

Fig. 1. A hierarchical network with N backbone nodes. The backbone nodes are con-

nected by a (logical) full mesh, and each node serves an access network
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connects an access network to the backbone (see Figure 1). For now, assume that
there are N backbone nodes, and all of them are connected to access networks
of the same aggregate capacity, r.

A full mesh of logical links of capacity 2r
N are established among the N back-

bone nodes. Traffic entering the backbone is load-balanced equally across all N
two-hop paths between ingress and egress. A packet is forwarded twice in the
network: In the first stage, a node uniformly load-balances each of its incoming
flows to all the N nodes, regardless of the packet destination. Load-balancing
can be done packet-by-packet, or flow-by-flow at the application flow level. As-
sume we can achieve perfect load-balancing, i.e., we can split traffic at the exact
ratio we desire, then each node receives 1/N -th of every node’s traffic in the first
stage. In the second stage, all packets are delivered to the final destination.

Uniform load-balancing leads to a guaranteed 100% throughput in this net-
work. We consider the two packet forwarding stages. Since the incoming traffic
rate to each node is at most r, and the traffic is evenly load-balanced to N nodes,
the actual traffic on each link due to the first stage routing is at most r

N . The
second stage is the dual of the first stage. Since each node can receive traffic
at a maximum rate of r, and it receives 1/N -th of the traffic from every node,
the actual traffic on each link due to the second stage routing is also at most
r
N . Therefore, a full-mesh network where each link has capacity 2r

N is sufficient
to guarantee 100% throughput for any valid traffic matrix among N nodes of
access capacity r.

This is perhaps a surprising result – a network where each pair of nodes are
connected with a link of capacity 2r

N can serve traffic matrices where a node can
send traffic to another node at rate r. This shows the power of load-balancing.
Valiant load-balancing makes sure that each flow is carried by N paths, and
each link carries a fraction of many flows, therefore a large flow is evened out
by other small flows. If all the traffic were to be sent through direct paths, we
would need a full-mesh network of link capacity r. Therefore load-balancing is
N
2 times more efficient than direct routing. Although it may seem inefficient that
every packet should traverse the network twice, it has been proved that in order
to serve all traffic matrices in a network of identical nodes, the uniform Valiant
load-balancing architecture provides the unique optimal interconnection pattern
which requires the lowest capacity at each node [3]. An even more surprising
result is that the VLB network only requires a small fraction of extra capacity
in order to tolerate failures in the network [10].

A common concern with load-balancing is that packets may incur a longer
delay. In a Valiant load-balanced network, propagation delay is bounded by
traversing twice the network diameter. Within the continental US, it’s been
measured that this delay is well below 100ms, which is acceptable for all appli-
cations we know of. We believe that VLB gives a reasonable tradeoff of increased
fixed propagation delay for improved predictability, and lower delay variance.

In this paper, we consider Valiant load-balancing in a more general and more
realistic case – we remove the assumption that all access networks have the
same capacity. Once the backbone network is no longer symmetric, the first



stage load-balancing should no longer be uniform, and it is not clear what the
optimal load-balancing scheme should be. In the rest of the paper, we will search
for a scheme that is optimal in a similar sense as the uniform network case, i.e.,
a scheme which minimizes the interconnection capacity at each node.

2.2 Notations

We consider a backbone network consisting of N ≥ 3 nodes of access capacities
r1, r2, . . ., rN , where access capacity is the aggregate capacity of the access
network a backbone node serves. This means, node i can initiate traffic to the
other backbone nodes at a rate up to ri, and can receive traffic from the other
backbone nodes at a rate up to ri. Without loss of generality, we assume that
the nodes have been sorted according to decreasing access capacities, i.e., r1 ≥
r2 ≥ . . . ≥ rN .

A traffic demand matrix Λ is an N×N matrix where the entry λij represents
the traffic rate from node i to node j. A valid traffic matrix is one such that
no node is over-subscribed, i.e.,

∑
j λij ≤ ri, and

∑
j λji ≤ ri, ∀i. We will only

consider valid traffic matrices in this paper and our goal is to guarantee 100%
throughput to all valid traffic matrices.

We start with a full-mesh interconnecting the N nodes, where the link capac-
ity between node i and node j is represented by cij . Let C be the link capacity
matrix {cij}. We are interested in finding the minimum values of cij that are
required to serve all traffic matrices. If linkij is not needed, then we simply set cij

to zero. We assume that a node can freely send traffic to itself without requiring
any network resource, so we set cii = ∞, ∀i, and will not try to optimize them.
Given any traffic matrix Λ, we can also set all its diagonal entries to zero.

The interconnection capacity of node i is the sum of the link capacities
through which it connects to the other nodes, and is represented by li =

∑
j:j 6=i cij .

The sum of all nodes’ interconnection capacities is the total interconnection ca-
pacity of the network, and is represented by L =

∑N
i=1 li =

∑
(i,j):i 6=j cij . For

convenience, let R =
∑N

i=1 ri be the total access capacity of all the nodes. We
further define the fanout of node i to be fi = li/ri, the ratio of a node’s inter-
connection capacity to its access capacity. Define the network fanout f to be the
maximum fanout among all nodes, f = maxi fi.

Under these definitions, in the uniform network where every node has access
capacity r, the optimal link capacities are cij = 2r

N , for i 6= j. The interconnection
capacity of a node is li = 2r

N (N − 1), ∀i, so the fanout of a node is fi = li
r =

2(N−1)
N , ∀i. Thus the network fanout is fu = 2(N−1)

N . The total interconnection
capacity is L = 2(N − 1)r and the total access capacity is R = Nr.

3 Optimal Interconnect for a Heterogeneous Network

In this section we investigate the interconnection capacities required to serve
any traffic matrix among N backbone nodes. To find the optimal interconnect,
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we can use the total capacity as the criteria and minimize L, or we can use the
network fanout as the criteria and minimize f . Both may be of importance in
network design. Minimizing the total capacity is more reasonable if the same
amount of capacity costs the same in different places of the network. But by
minimizing the network fanout, or the maximum fanout of all nodes, we try to
make the fanouts of the nodes close to each other. This way, the interconnection
capacity of a node is roughly proportional to its access capacity. This criteria
is more sensible if the nodes in the network differ widely. The following lemma
ties the two criteria together, and the minimum total capacity L gives a lower
bound on the network fanout.

Lemma 1.

f = max
i

fi = max
i

li
ri
≥

∑
i li∑
i ri

=
L

R

The inequality can be proved by induction and [11] has the details.
In the rest of this section, we will first derive the minimum total capacity

required to serve all traffic matrices in any architecture, to give a lower bound on
the network fanout. Then we propose a simple “gravity” load-balancing scheme
which achieves a network fanout within a factor 2 of the lower bound. Finally
we derive the minimum network fanout under oblivious load-balancing in the
network, and show that it’s within a constant factor 1.2 from the lower bound.

3.1 Minimum Total Capacity: Lower Bound on Network Fanout

Given a demand matrix Λ and we want to know whether an interconnection
capacity matrix C can serve the demand. Load-balancing is allowed, so we do
not require that cij ≥ λij for all (i, j) pairs. For example, if there is not enough
capacity from node s to node t to serve the demand, i.e., cst < λst, we can
send part of the flow through an alternative route, say, route s-k-t. Suppose we
send amount x of flowst through route s-k-t, then the actual load carried on the
network is Λ′ which is obtained from Λ by subtracting x from λst and adding
x to both λsk and λkt. We call this the load-balancing transformation of traffic
matrix Λ, and the resulting matrix Λ′ the load matrix. The traffic matrix Λ can
be served by the capacity matrix C, if we can load-balance flows in Λ and obtain
a load matrix Λ′ such that λ′ij ≤ cij , ∀i, j.

Before we state the theorem of minimum total capacity, we prove the following
lemma.

Lemma 2. Load balancing cannot reduce the sum of the entries in the upper
triangle of Λ, i.e.,

∑
i<j λ′ij ≥ ∑

i<j λij for any load matrix Λ′ obtained by
load-balancing transformation of Λ. Same is true for the lower triangle.

Proof. Suppose we route the amount x of flowi1ik
, i1 < ik, through the route

i1-i2-. . .-ik. Then we subtract x from λi1ik
and add x to each one of λi1i2 , λi2i3 ,

. . . , λik−1ik
to obtain the load matrix Λ′. Since i1 < ik, and i1, i2, . . . , ik ∈



{1, 2, . . . , N}, there must exist some j : 1 ≤ j ≤ k − 1 such that ij < ij+1.
Thus the sum of the upper triangle of Λ does not decrease after the transfor-
mation, and we have

∑
i<j λ′ij ≥

∑
i<j λij . By induction, further load-balancing

transformation will keep this inequality.
The proof for the lower triangle is similar. ut

Corollary 1. A necessary condition for capacity matrix C to be able to serve
traffic matrix Λ is

∑

i<j

cij ≥
∑

i<j

λij and
∑

i>j

cij ≥
∑

i>j

λij . (1)

The proof follows from Lemma 2 and the details are in [11].
Remark: The intuition of the above lemma is, if we line up the nodes from left

to right according to their node numbers, then the upper triangle of the traffic
matrix Λ represents the traffic that needs to go from left to right. No matter
how we load-balance the demand, the amount of traffic that needs to be sent
from left to right does not decrease. The upper triangle of the capacity matrix
C represents the capacity that can carry traffic from left to right, and this has
to be at least the amount of traffic that needs to be sent from left to right. Same
is true for the traffic that needs to go the other direction.

Theorem 1. (minimum capacity) In order to serve any valid traffic matrix
among N nodes of capacities r1 ≥ r2 ≥ . . . ≥ rN , the minimum total intercon-
nection capacity required is 2(

∑
i ri −maxi ri) = 2

∑N
i=2 ri.

Outline of proof. Necessity is shown by applying Corollary 1 to the following
traffic matrix and its transpose:

Λ(1) =




0 r2 0 . . . 0
0 0 r3 . . . 0
...

...
. . .

...
0 0 0 . . . rN

0 0 0 . . . 0




.

Sufficiency is shown by arranging the nodes in a “star” topology as in Figure 2.
For details, please see [11]. ut

Theorem 1 together with Lemma 1 gives a lower bound on the network fanout:

f ≥ L

R
≥ 2(

∑
i ri −maxi ri)

R
= 2

(
1− r1

R

)
. (2)

This lower bound can be less than 1 if r1 > R
2 , or equivalently, if r1 >

∑N
i=2 ri.

This is the case when the largest node can initiate more traffic than all the
other nodes combined can receive. But if we only allow valid traffic matrices,
the largest node cannot initiate traffic at its maximum rate because that would
overload some of the other nodes. So we can replace the capacity of node 1
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with min(r1,
∑N

i=2 ri) and will not change any property of the network. This
is equivalent to introducing 1 as another lower bound for f . Since the network
fanout f is the maximum of all the nodes’ fanouts, this lower bound of 1 can
also be obtained by considering the smallest node, whose fanout has to be at
least 1. So we now have the following:

Corollary 2. In order to serve all valid traffic matrices, the network fanout of
an interconnection network is lowered bounded by 2

(
1− maxi ri

R

)
and 1, i.e.,

f ≥ max(1, 2
(
1− maxi ri

R

)
). (3)

The lower bound on network fanout can be achieved in some cases. When r1 ≥∑N
i=2 ri, a network fanout of 1 can be achievable by the star topology in Figure

2, where Node 1 has a fanout of at most 1 and the other nodes have a fanout
of 1. But when r1 <

∑N
i=2 ri, the star topology does not minimize the network

fanout. (The schemes presented in Sections 3.2 and 3.3 achieve better network
fanouts.)

In the uniform case where all the nodes have the same capacity r, the lower
bound in Equation (2) can also be achieved: fu = 2(1− 1

N ). So the uniform full
mesh architecture minimizes the network fanout.

Both the uniform full mesh and the star topologies have a total interconnec-
tion capacity of 2r(N − 1). So in order to minimize the total interconnection
capacity of the network, both uniform full mesh and star topologies are optimal.
But if the goal is to minimize the network fanout, the full mesh is the only topol-
ogy that is optimal, as proved in [3]. From the network design point of view, the
full mesh topology is better, because the star topology has many single points of
failure, and it requires a lot of processing power from the center node. Therefore,
we will use network fanout as the optimization criteria in designing the backbone
network.

3.2 Gravity Full Mesh: 2-Approximation of Optimal Fanout

The star topology in Figure 2 does not give a good network fanout, because
the node fanouts are f1 =

∑N
i=2 ri/r1 and fi = 1 for i > 1, and the fanout of
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Fig. 2. The star topology which achieves the minimum total interconnection capacity.

Node 1 has the highest access capacity



the center node can be large. For example, when all the nodes have the same
capacity, we have f1 = N − 1, which is much larger than the optimal network
fanout 2(1− 1

N ).
We can easily obtain a much better network fanout by extending the load-

balancing scheme of the uniform case. Suppose all the nodes’ access capacities
are integer multiples of some capacity “granularity” r, i.e., ri = kir for some
integer ki, ∀i. Then node i can be treated as ki nodes of capacity r located
together. Now if we count all the imaginary “nodes” of capacity r, there are
M =

∑
i ki = R

r of them. Between each pair of such “nodes” should be a link of
capacity 2r

M . Now between the real nodes i and j, which are clusters of ki and
kj imaginary “nodes”, there should be ki × kj links of capacity 2r

M , i.e.,

cij =
2r

M
kikj =

2r2

R
kikj =

2rirj

R
. (4)

The link capacity between node i and node j is proportional to the product
of capacities of the two nodes, therefore we call this the “gravity full mesh”.
Note that the capacity granularity r, which has dropped out of the expression
in Equation (4), can be arbitrarily small, so we actually do not require any
relationship among the nodes’ capacities.

The load-balancing scheme in the gravity full mesh is: in the first stage traffic
is spread proportionally to the capacity of the intermediate nodes, i.e., a pro-
portion ri/R of traffic is load-balanced to node i; in the second stage, traffic
is delivered to the final destination. This network can be viewed as a uniform
network of M nodes of capacity r, some of which have been clustered together,
so the link capacities given in Equation (4) are sufficient to guarantee 100%
throughput for any traffic matrix.

In the gravity full mesh, the fanout of node i is

fi =
li
ri

=

∑
j 6=i 2rirj/R

ri
= 2

∑
j 6=i rj

R
= 2(1− ri

R
).

So
f = max

i
fi = 2(1− mini ri

R
) = 2(1− rN

R
) < 2. (5)

The optimal network fanout f is at least 1 (Corollary 2), so we have obtained a 2-
approximation to the optimal network fanout. In most cases, the approximation
is much better than 2.

3.3 Minimum Network Fanout Under Oblivious Load-Balancing

We will now directly minimize the network fanout f , in the cases when the
optimal network fanout is not easily known. In Section 3.1 we have shown that
the minimum fanout min f = 1 when r1 ≥

∑N
i=2 ri, so we will only consider the

case when r1 <
∑N

i=2 ri in this subsection.
If we want to find the optimal interconnection to minimize f , the load-

balancing scheme should take into account all system information, such as traffic
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matrix and node capacities. Let pst
i (Λ) be the portion of the flow from node s to

node t that is load-balanced to node i when the traffic matrix is Λ. By definition,
pst

i (Λ) ≥ 0 and
∑

i pst
i (Λ) = 1. In general, the traffic matrix may not be easily

available to the nodes, and even if it is available, it can change with time. So we
are only interested in the load-balancing schemes that are independent of the
traffic pattern, i.e., we let pst

i (Λ) = pst
i .

Given the load-balancing ratios pst
i and the traffic matrix Λ, we can calculate

the amount of outbound traffic from node n:

Tn(Λ) =
∑

i 6=n

λni +
∑

i,j 6=n

pij
n λij . (6)

The first sum is due to the traffic that originates from node n destined for the
other nodes. The second sum is the amount of traffic that “passes by” node n,
i.e., the traffic that is load-balanced to node n from the other nodes which node
n needs to forward to the destination. The inbound traffic to node n has similar
properties as the outbound traffic so we only need to consider one of them.

The network should support any valid traffic matrix, so the outbound link
capacity of node n needs to be at least maxΛ Tn(Λ). Thus maxΛ Tn(Λ)/rn gives
a lower bound on the fanout of node n, and the lower bound is in terms of pst

i .
Since f = maxi fi, the maximum of these lower bounds gives a lower bound on
the network fanout f . So we can formulate an optimization problem to find the
values of pij

n which give the best lower bound on f , and if the lower bound is
also achievable, we have found the optimal network fanout:

minimize f = maxn{maxΛ Tn(Λ)/rn}
subject to pst

i ≥ 0,
∑

i pst
i = 1,∀s 6= t

where Tn(Λ) is given by Equation (6). But the number of variables here is on
the order of N3, and the optimization problem is not easy to solve.

So we further simplify the load-balancing scheme and only consider oblivious
load-balancing, where the load-balancing ratio is independent of the flow source
and destination. That is, we set pij

n = pn, and a proportion pn of every flow is
load-balanced to node n. We can find a closed form expression for min f under
oblivious load-balancing schemes.

Theorem 2. Under oblivious load-balancing schemes, the minimum network
fanout fo is

fo = min f = 1 +
1∑N

j=1
rj

R−2rj

, (7)

if maxN
i=1 ri < R

2 ; and fo = min f = 1 if maxN
i=1 ri ≥ R

2 , where R =
∑N

i=1 ri.

Proof. We will first show that the expression in Equation (7) is a lower bound,
and then show that it is achievable. Some details are omitted here and can be
found in [11].

Replacing pst
i with pi, we can rewrite Equation (6) as

Tn(Λ) =
∑

i 6=n

λni +
∑

i,j 6=n

pnλij = (1− pn)
∑

i 6=n

λni + pn

∑

j 6=n

∑

i

λij .



We maximize Tn(Λ) over all valid traffic matrices:

max
Λ

Tn(Λ) = max
Λ


(1− pn)

∑

i 6=n

λni + pn

∑

j 6=n

∑

i

λij


 = rn + pn(R− 2rn).

From maxΛ Tn(Λ) we can obtain a lower bound on fn, which we denote by gn:

gn =
rn + pn(R− 2rn)

rn
= 1 + pn

R− 2rn

rn
. (8)

The maximum of these lower bounds is a lower bound of the network fanout:
f = maxn fn ≥ maxn gn.

The load-balancing ratios pn satisfy
∑

n pn = 1, so combining with Equation
(8), we have the following equation for the lower bounds gn:

1 =
∑

n

pn =
∑

n

(gn − 1)
rn

R− 2rn
. (9)

This means that the positive linear combination of gn is a constant (note that
we only consider the case when R > 2r1), so to minimize maxn gn, we must have
g1 = g2 = . . . = gn = g, and Equation (9) gives

g = 1 +
1∑

n
rn

R−2rn

. (10)

Equation (10) is a lower bound on f . We now show that this lower bound
is achievable. Equation (8) gives the load-balancing probabilities: pn = (g −
1) rn

R−2rn
. Consider the link from node i to node j. The traffic that traverses the

link consists of two parts: the traffic that originates from node i and is load-
balanced to node j of at most ripj ; and the traffic that is destined to node j and
is load-balanced to node i of at most rjpi. So the link capacity required from

node i to node j is cij = ripj + rjpi = (g − 1)
(

rirj

R−2rj
+ rirj

R−2ri

)
.

With the link capacities given above, we can show fi =
∑

j 6=i
cij

ri
= g, which

means f = g. This means that there exists a bandwidth allocation cij and
oblivious load-balancing ratio pn such that the lower bound g of the network
fanout f is achieved. Therefore, under oblivious load-balancing schemes, fo =
g = 1 + 1/

∑
j

rj

R−2rj
.

Although we have assumed that r1 <
∑N

i=2 ri in the above derivation, the case
r1 ≥

∑N
i=2 ri can be analyzed by the same method. We first set r1 =

∑N
i=2 ri

because we only consider valid traffic matrices. Then from Equation (8), we
obtain g1 = 1 and gn ≥ 1 for n ≥ 2. To minimize maxn gn, the optimal solution
is p1 = 1 and pn = 0 for n ≥ 2, in which case we obtain gn = 1, ∀n, and
g = maxn gn = 1. This gives the star topology and fo = 1. ut
The network fanout given in Theorem 2 is always greater than one when r1 <∑N

i=2 ri. This is because we want the network to support all traffic matrices. A
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Fig. 3. A comparison of the optimal oblivious network fanout and the upper and lower

bounds. The network has 16 nodes, and all nodes take either one of two capacities of

ratio 10:1. The x-axis shows the number of nodes taking the higher capacity

network fanout of 1 can be achieved if the exact traffic matrix is known and we
provision just enough capacity on each link to directly route the traffic. But if the
traffic matrix changes, such a network may not provide throughput guarantees.
In order to serve all valid traffic matrices, we need a minimum network fanout
of more than 1, as proved in Theorem 1. In fact, it is a nice surprise that the
capacity required to carry all traffic matrices is only less than twice the absolute
minimum capacity required in a network, given the traffic matrix.

Note that the gravity full mesh presented in the last subsection is also an
oblivious load-balancing scheme, so we expect that the optimal network fanout
under oblivious load-balancing given by Theorem 2, is between the network
fanout obtained by the “gravity full mesh” given in Equation (5), which we
treat as an upper bound, and the lower bound for any architecture given in
Corollary 2. We can verify this. Since all the nodes are sorted according to their

access capacity, we have
∑

j
rj

R−2rj
≤

∑
j

rj

R−2r1
= R

R−2r1
. So

fo = 1 +
1∑

j
rj

R−2rj

≥ 1 +
R− 2r1

R
= 2(1− r1

R
).

That is, the optimal network fanout under oblivious load-balancing is greater
than the lower bound. We can similarly show that

fo = 1 +
1∑

j
rj

R−2rj

≤ 2(1− rN

R
).

In the uniform network case where all nodes have the same access capacity
r, the lower and the upper bounds of the optimal network fanout become the
same, thus we have fu = 2(1− 1

N ).
Now let’s consider another example, a network of 16 nodes. The nodes take

either one of two access capacities of ratio 10:1. We change the number of nodes
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with high or low capacities and plot the network fanout in Figure 3. We can
see that the oblivious optimal fanout is very close to the lower bound. In fact,
as will be shown next, the ratio is bounded by 1.2. So restricting ourselves to
oblivious load-balancing does not cause a big loss in capacity efficiency, and we
can simplify the load-balancing scheme greatly.

3.4 Oblivious Optimal Network Capacity and the Lower Bound

In the optimal oblivious load-balancing scheme, all the nodes have the same
fanout, which is equal to the network fanout, so the total interconnection ca-
pacity in the network is Lo = Rfo, where fo is given by Theorem 2. The lower
bound on the total capacity required by any network in order to serve all traffic
matrices is given by Theorem 1: Ll = 2(R − r1), where node 1 has the highest
access capacity amongst all N nodes. When r1 ≥

∑N
i=2, we have Lo = Ll, so

we will only consider the case r1 <
∑N

i=2. Let α be the ratio of the minimum
capacity in oblivious load-balancing and the lower bound for any network:

α =
Lo

Ll
=

R(1 + 1∑
i

ri
R−2ri

)

2(R− r1)
=

1 + 1∑
i

ri
R−2ri

2(1− r1
R )

. (11)

We study the value of α in this section.
We have shown that Lo = Rfo < 2R and Ll > R, so α is between 1 and 2.

We’d like to find out the maximum value of α. Equation (11) shows that α is a
smooth function of ri, so the maximum value of α is achieved when

∂α

∂ri
= 0, ∀i. (12)

We can solve for the values of r∗i from the above set of equations. But note that
the variables ri, i = 2, 3, . . . , N , are completely symmetric in the equations, so in
the solution, they should have the same value. Since α is only a function of the
ratios of the ri’s, we let r∗2 = r∗3 = . . . = r∗N = 1. Now Equation (11) becomes

α =
1 + 1

r1
N−r1−1+ N−1

r1+N−3

2 N−1
r1+N−1

=
(N + r1 − 1)(N − 2)
N2 − 2N + (r1 − 1)2

.

Now we solve for r∗1 : ∂α
∂r1

= 0 gives

r∗1 = 1−N +
√

2N(N − 1) (13)

and

α∗ =
(N − 2)

√
N(N − 1)

2N(
√

2(N − 1)−
√

N(N − 1))
. (14)

As N increases, α∗ increases and when N → ∞, α∗ → 1
2 (
√

2 + 1) ≈ 1.207.
At the same time, r1 → (

√
2 − 1)N = 0.414N . Thus, the ratio of the capacity

required by optimal oblivious load-balancing and the capacity lower bound is
upper bounded by Equation (14), which is at most 1.2. This shows that in order
to serve all valid traffic matrices, oblivious load-balancing requires a total link
capacity very close to the minimum total capacity required by any architecture.
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4 Related Work

The papers by Applegate et al. [1] and Kodialam et al. [5] both studied using
load-balancing to guarantee throughput for a wide range of traffic matrices,
from a traffic engineering point of view. Given a capacitated network, they
both compared the efficiency of providing service for all traffic matrices vs.
for a specific traffic matrix. Applegate et al. [1] used maximum link utiliza-
tion ratio as the performance measure and optimization criteria; Kodialam et
al. [5] used the maximum traffic which can be carried by the network. The two
measures are equivalent and a ratio of less than 2 was achieved in all their
experiments.

Our paper looks at the problem from a network design point of view and tries
to find the optimal capacity allocation. We analytically derived that in order to
guarantee throughput for all traffic matrices, about twice as much capacity is
required compared to the case when the exact traffic matrix is known. This
result gives theoretical justification to the upper bound of 2 which has appeared
in experiments.

Our work is also complimentary to the above two pieces of work. When
designing a network from scratch, or expanding a network’s capacity, our results
provide guidelines to the optimal capacity allocation, and can lead the network
to grow in an optimal direction. If a network has been built and cannot be
changed on a short time scale, the traffic engineering approach can help utilize
the network resources more efficiently and alleviate congestion in the network.

5 Conclusion

At first glance, it appears that the VLB architecture is inefficient (because it is
based on a full mesh) and introduces long delays (because each packet traverses
the network twice). But we believe these fears are probably unfounded. First,
we can show that the network is surprisingly efficient – in fact, essentially the
most efficient network that can support 100% throughput. We suspect that the
actual deployed link capacity of such a network could be much lower than cur-
rent networks that can make no such guarantees of service. Second, we believe
that the additional delay is unlikely to be a problem to end-user applications.
The additional delay is a fixed propagation delay, and so adds nothing to delay
variation. In fact, given the efficiency of the network, the queueing delay (and
hence delay variation) is likely to be lower than today.

We believe the Valiant Load-Balancing architecture opens up a new dimen-
sion in network design. It enables us to design efficient networks that can guar-
antee 100% throughput for any traffic matrix, and can continue to do so under
a number of element failures. The load-balancing scheme is simple and easy to
implement. What’s more, as demonstrated in [10], the amount of excess capac-
ity required for fault tolerance is surprisingly small. With VLB, we can build
networks to efficiently provide high availability under various traffic conditions
and failure scenarios.
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