Skip to main content

Realistic Stimulation Through Advanced Dynamic-Clamp Protocols

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3561))

Abstract

Traditional techniques to stimulate neurons in Neuroscience include current injection using several protocols. In most cases, although neurons are able to react to any stimulus in the physiological range, it is difficult to assess to what extent the response is a natural output to the processing of the input or just an awkward reaction to a foreign signal. In experiments that try to study the precise temporal relationships between the stimulus and the output pattern, it is crucial to use realistic stimulation protocols. Dynamic-clamp is a relatively recent method in electrophysiology to mimic the presence of ionic or synaptic conductances in a cell membrane through the injection of a controlled current waveform. Here we present a set of advanced dynamic-clamp protocols for realistic stimulation of cells that allow from the addition of single and multiple ionic or synaptic conductances, to the reconfiguration of circuits and bidirectional communication of living cells with model neurons including plasticity mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robinson, H.P.C.: Kinetics of synaptic conductances in mammalian central neurons. Neurosci. Res. 16:VI (1991)

    Google Scholar 

  2. Robinson, H.P.C., Kawai, N.: Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Methods 49, 157–165 (1993)

    Article  Google Scholar 

  3. Sharp, A.A., O’Neal, M.B., Abbott, L.F., Marder, E.: Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol. 69, 992–995 (1993)

    Google Scholar 

  4. Ma, M., Koester, J.: The role of potassium currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic clamp analysis. J. Neuroscience 16, 4089–4101 (1996)

    Google Scholar 

  5. Kiehn, O., Kjaerulff, O., Tresch, M.C., Harris-Warrick: Contributions of intrinsic motor neurons properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res. Bull 53, 649–659 (2000)

    Article  Google Scholar 

  6. Chance, F.S., Abbott, L.F., Reyes, A.D.: Gain modulation from background synaptic input. Neuron. 35, 773–782 (2002)

    Article  Google Scholar 

  7. Szucs, A., Varona, P., Volkovskii, A.R., Abarbanel, H.D.I., Rabinovich, M.I., Selverston, A.I.: Interacting Biological and Electronic Neurons Generate Realistic Oscillatory Rhythms. NeuroReport 11(3), 563–569 (2000)

    Article  Google Scholar 

  8. Pinto, R.D., et al.: Extended Dynamic Clamp: controlling up to four neurons using a single desktop computer and interface. J. Neuroscience Methods 108, 39–48 (2001)

    Article  Google Scholar 

  9. Pinto, R.D., Varona, P., Volkovskii, A.R., Szucs, A., Abarbanel, H.D.I., Rabinovich, M.I.: Synchronous behavior of two coupled electronic neurons. Physical Review E 62(2), 2644–2656 (2000)

    Google Scholar 

  10. Nowotny, T., Zhigulin, V.P., Selverston, A.I., Abarbanel, H.D., Rabinovich, M.I.: Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J. Neurosci. 23(30), 9776–9785 (2003)

    Google Scholar 

  11. Szucs, A., Rozsa, K.S., Salanki, J.: Presynaptic modulation of Lymnaea neurons evoked by computer-generated spike trains. Neuroreport 9(12), 2737–2742 (1998)

    Google Scholar 

  12. Prinz, A.A., Abbott, L.F., Marder, E.: The dynamic clamp comes of age. Trends in Neurosciences 27, 218–224 (2004)

    Article  Google Scholar 

  13. LeMasson, G., LeMasson, S., Moulins, M.: From conductances to neural network properties: analysis of simple circuits using the hybrid network method. Prog. Biophys. Molec. Biol. 64, 201–220 (1995)

    Article  Google Scholar 

  14. Sorensen, M., DeWeerth, S., Cymbalyuk, G., Calabrese, R.L.: Using a Hybrid Neural System to Reveal Regulation of Neuronal Network Activity by an Intrinsic Current. Journal of Neuroscience 24, 5427–5438 (2004)

    Article  Google Scholar 

  15. Dorval, A.D., Christini, D.J., White, J.A.: Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering 29, 897–907 (2001)

    Article  Google Scholar 

  16. Raikov, I., Preyer, A., Butera, R.J.: MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments. Journal of Neuroscience Methods 132, 109–123 (2004)

    Article  Google Scholar 

  17. Kullmann, P.H., Wheeler, D.W., Beacom, J., Horn, J.P.: Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. J. Neurophysiol. 91(1), 542–554 (2004)

    Article  Google Scholar 

  18. Muller, K., Nicholls, J., Stent, G.: Neurobiology of the Leech. Cold Spring Harbor Laboratory, New York (1981)

    Google Scholar 

  19. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Philos, Trans. R Soc. London B221, 87–102 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muñiz, C., Arganda, S., de Borja Rodríguez, F., de Polavieja, G.G. (2005). Realistic Stimulation Through Advanced Dynamic-Clamp Protocols. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_10

Download citation

  • DOI: https://doi.org/10.1007/11499220_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26298-5

  • Online ISBN: 978-3-540-31672-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics