Skip to main content

Auditory Nerve Encoding of High-Frequency Spectral Information

  • Conference paper
Mechanisms, Symbols, and Models Underlying Cognition (IWINAC 2005)

Abstract

We have recently shown [1] that our ability to discriminate between a flat-spectrum noise and a similar noise with a high-frequency spectral notch deteriorates for levels around 70-80 dB SPL. The present paper explores an underlying physiological mechanism for this result. The hypothesis is that discriminability relies on the sensitivity of the auditory nerve to changes in the stimulus spectrum. A good correlation was found between behavioural results and sensitivity functions for two auditory nerve fibers with different dynamic ranges and with characteristic frequencies within the notch band. Although preliminary, these results suggest that the sensitivity of the auditory nerve to spectral notches is a non-monotonic function of stimulus level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves-Pinto, A., Lopez-Poveda, E.A.: Detection of high-frequency spectral notches as a function of level. J. Acoust. Soc. Am. (submitted)

    Google Scholar 

  2. Arthur, R.M., Pfeiffer, R.R., Suga, N.: Properties of ’two-tone inhibition’ in primary auditory neurones. J. Physiol. 212, 593–609 (1971)

    Google Scholar 

  3. Butler, R.A., Belendiuk, K.: Spectral cues utilized in the localization of sound in the median sagittal plane. J. Acoust. Soc. Am. 61, 1264–1269 (1977)

    Article  Google Scholar 

  4. Butler, R.A., Humanski, R.A.: Localization of sound in the vertical plane with and without high-frequency spectral cues. Percept. Psychophys. 51, 182–186 (1992)

    Article  Google Scholar 

  5. Delgutte, B., Kiang, N.Y.S.: Speech coding in the auditory nerve: III. Voiceless fricative consonants. J. Acoust. Soc. Am. 75, 887–896 (1984)

    Article  Google Scholar 

  6. Evans, E.F., Palmer, A.R.: Relationship between the dynamic range of cochlear nerve fibers and their spontaneous activity. Exp. Brain Res. 40, 115–118 (1980)

    Article  Google Scholar 

  7. Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)

    Google Scholar 

  8. Hancock, K.E., Delgutte, B.: A physiologically based model of Interaural Time difference discrimination. The Journal of Neuroscience 24, 7110–7117 (2004)

    Article  Google Scholar 

  9. Hebrank, J., Wright, D.: Spectral cues used in the localization of sound sources on the median plane. J. Acoust. Soc. Am. 56, 1829–1834 (1974)

    Article  Google Scholar 

  10. Johnson, D.H.: The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J. Acoust. Soc. Am. 68, 1115–1122 (1980)

    Article  Google Scholar 

  11. May, B.J.: Physiological and psychophysical assessments of the dynamic range of vowel representations in the auditory periphery. Speech Communication 41, 49–57 (2003)

    Article  Google Scholar 

  12. Poon, P.W.F., Brugge, J.F.: Sensitivity of auditory nerve fibers to spectral notches. J. Neurophysiol. 70, 655–666 (1993)

    Google Scholar 

  13. Rice, J.J., Young, E.D., Spirou, G.A.: Auditory-nerve encoding of pinna-based spectral cues: Rate representation of high-frequency stimuli. J. Acoust. Soc. Am. 97, 1764–1776 (1995)

    Article  Google Scholar 

  14. Sachs, M.B., Abbas, P.J.: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J. Acoust. Soc. Am. 56, 1835–1847 (1974)

    Article  Google Scholar 

  15. Sachs, M.B., Young, E.D.: Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate. J. Acoust. Soc. Am. 66, 470–479 (1979)

    Article  Google Scholar 

  16. Winter, I.M., Robertson, D., Yates, G.K.: Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear. Res. 45, 191–202 (1990)

    Article  Google Scholar 

  17. Sumner, C., Lopez-Poveda, E.A., O’Mard, L.O.P., Meddis, R.: A revised model of the inner hair cell and auditory nerve complex. J. Acoust. Soc. Am. 111, 2178–2188 (2002)

    Article  Google Scholar 

  18. Zhang, X., Heinz, M.G., Bruce, I.C., Carney, L.H.: A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J. Acoust. Soc. Am. 109, 648–670 (2001)

    Article  Google Scholar 

  19. Robert, A., Eriksson, J.L.: A composite model of the auditory periphery for simulating responses to complex sounds. J. Acoust. Soc. Am. 106, 1852–1864 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alves-Pinto, A., Lopez-Poveda, E.A., Palmer, A.R. (2005). Auditory Nerve Encoding of High-Frequency Spectral Information. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_24

Download citation

  • DOI: https://doi.org/10.1007/11499220_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26298-5

  • Online ISBN: 978-3-540-31672-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics