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Abstract. In this survey we discuss different state-of-the-art approaches
of combining exact algorithms and metaheuristics to solve combinatorial
optimization problems. Some of these hybrids mainly aim at providing
optimal solutions in shorter time, while others primarily focus on getting
better heuristic solutions. The two main categories in which we divide the
approaches are collaborative versus integrative combinations. We further
classify the different techniques in a hierarchical way. Altogether, the
surveyed work on combinations of exact algorithms and metaheuristics
documents the usefulness and strong potential of this research direction.

1 Introduction

Hard combinatorial optimization problems (COPs) appear in a multitude of
real-world applications, such as routing, assignment, scheduling, cutting and
packing, network design, protein alignment, and many other fields of utmost eco-
nomic, industrial and scientific importance. The available techniques for COPs
can roughly be classified into two main categories: exact and heuristic meth-
ods. Exact algorithms are guaranteed to find an optimal solution and to prove
its optimality for every instance of a COP. The run-time, however, often in-
creases dramatically with the instance size, and often only small or moderately-
sized instances can be practically solved to provable optimality. In this case, the
only possibility for larger instances is to trade optimality for run-time, yielding
heuristic algorithms. In other words, the guarantee of finding optimal solutions
is sacrificed for the sake of getting good solutions in a limited time.

Two independent heterogeneous streams, coming from very different scientific
communities, had significant success in solving COPs:

– Integer Programming (IP) as an exact approach, coming from the operations
research community and based on the concepts of linear programming [11].

– Local search with various extensions and independently developed variants,
in the following called metaheuristics, as a heuristic approach.

Among the exact methods are branch-and-bound (B&B), dynamic program-
ming, Lagrangian relaxation based methods, and linear and integer programming
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based methods, such as branch-and-cut, branch-and-price, and branch-and-cut-
and-price [30].

Metaheuristics include, among others, simulated annealing [21], tabu search
[18], iterated local search [26], variable neighborhood search [20], and various
population-based models such as evolutionary algorithms [3], scatter search [19],
memetic algorithms [28], and various estimation of distribution algorithms [24].

Recently there have been very different attempts to combine ideas and meth-
ods from these two scientific streams. Dumitrescu and Stützle [13] describe ex-
isting combinations, focusing on local search approaches that are strengthened
by the use of exact algorithms. In their survey they concentrate on integration
and exclude obvious combinations such as preprocessing.

Here, we present a more general classification of existing approaches com-
bining exact and metaheuristic algorithms for combinatorial optimization. We
distinguish the following two main categories:

– Collaborative Combinations: By collaboration we mean that the algorithms
exchange information, but are not part of each other. Exact and heuristic
algorithms may be executed sequentially, intertwined or in parallel.

– Integrative Combinations: By integration we mean that one technique is a
subordinate embedded component of another technique. Thus, there is a dis-
tinguished master algorithm, which can be either an exact or a metaheuristic
algorithm, and at least one integrated slave.

In the following sections this classification is further refined and examples
from the literature are presented, reflecting the current state-of-the-art. Figure 1
gives an overview of this classification.

2 Collaborative Combinations

The different algorithms and approaches described in this section have in com-
mon that they are top-level combinations of metaheuristics and exact tech-
niques; no algorithm is contained in another. We further distinguish whether
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the algorithms are executed sequentially or in an intertwined or even paral-
lel way.

2.1 Sequential Execution

Either the exact method is executed as a kind of preprocessing before the meta-
heuristic, or vice-versa. Sometimes, it is difficult to say if the first technique is
used as initialization of the second, or if the second is a postprocessing of the
solution(s) generated by the first.

Clements et al. [7] propose a column generation approach in order to solve a
production-line scheduling problem. Each feasible solution of the problem con-
sists of a line-schedule for each production line. First, the squeaky wheel opti-
mization (SWO) heuristic is used to generate feasible solutions to the problem.
SWO is a heuristic using a greedy algorithm to construct a solution, which is
then analyzed in order to find the problematic elements. Higher priorities, such
that these elements are considered earlier by the greedy algorithm, are assigned
to them, and the process restarts until a termination condition is reached. SWO
is called several times in a randomized way in order to generate a set of diverse
solutions. In the second phase, the line-schedules contained in these solutions
are used as columns of a set partitioning formulation for the problem, which is
solved using MINTO1. This process always provides a solution which is at least
as good as, but usually better than the best solution devised by SWO. Reported
results indicate that SWO performs better than a tabu-search algorithm.

Applegate et al. [2] propose an approach for finding near-optimal solutions to
the traveling salesman problem. They derive a set of diverse solutions by multiple
runs of an iterated local search algorithm. The edge-sets of these solutions are
merged and the traveling salesman problem is finally solved to optimality on
this strongly restricted graph. In this way a solution is achieved that is typically
superior to the best solution of the iterated local search.

Klau et al. [22] follow a similar idea and combine a memetic algorithm with
integer programming to heuristically solve the prize-collecting Steiner tree prob-
lem. The proposed algorithmic framework consists of three parts: extensive pre-
processing, a memetic algorithm, and an exact branch-and-cut algorithm applied
as post-optimization procedure to the merged final solutions of the memetic al-
gorithm.

Plateau et al. [31] combine interior point methods and metaheuristics for solv-
ing the multiconstrained knapsack problem. The first part is an interior point
method with early termination. By rounding and applying several different as-
cent heuristics, a population of different feasible candidate solutions is gener-
ated. This set of solutions is then used as initial population for a path-relinking
(scatter search) algorithm. Extensive computational experiments are performed
on standard multiconstrained knapsack benchmark instances. Obtained results
show that the presented combination is a promising research direction.

1 http://www.isye.gatech.edu/faculty/Martin Savelsbergh/software
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Sometimes, a relaxation of the original problem is solved to optimality and
the obtained solution is repaired to act as a promising starting point for a subse-
quent metaheuristic. Often, the linear programming (LP) relaxation is used for
this purpose, and only a simple rounding scheme is needed. For example, Feltl
and Raidl [36] solve the generalized assignment problem using a hybrid genetic
algorithm (GA). The LP-relaxation of the problem is solved using CPLEX2 and
its solution is used by a randomized rounding procedure to create a population
of promising integral solutions. These solutions are, however, often infeasible;
therefore, randomized repair and improvement operators are additionally ap-
plied, yielding an even more meaningful initial population for the GA. Reported
computational experiments suggest that this type of LP-based initialization is
effective.

Vasquez and Hao [43] heuristically solve the multiconstrained knapsack prob-
lem by reducing and partitioning the search space via additional constraints that
fix the total number of items to be packed. The bounds for these constraints are
calculated by solving a modified LP-relaxation of the multiconstrained knap-
sack problem. For each remaining part of the search space, parallel tabu-search
is finally performed starting with a solution derived from the LP-relaxation of
the partial problem. This hybrid algorithm yields excellent results also for large
benchmark instances with up to 2 500 items and 100 constraints.

Lin et al. [25] describe an exact algorithm for generating the minimal set of
affine functions that describes the value function of the finite horizon partially
observed Markov decision process. In the first step a GA is used to generate
a set Γ of witness points, which is as large as possible. In the second step a
component-wise domination procedure is performed in order to eliminate redun-
dant points in Γ . The set generated so far does, in general, not fully describe the
value function. Therefore, a Mixed Integer Program (MIP) is solved to gener-
ate the missing points in the final third step of the algorithm. Reported results
indicate that this approach requires less time than some other numerical proce-
dures.

Another kind of sequential combination of B&B and a GA is described by
Nagar et al. [29] for a two-machine flowshop scheduling problem in which solution
candidates are represented as permutations of jobs. Prior to running the GA
B&B is executed down to a predetermined depth k and suitable bounds are
calculated and recorded at each node of the explicitly stored B&B tree. During
the execution of the GA the partial solutions up to position k are mapped onto
the correct tree node. If the bounds indicate that no path below this node can
lead to an optimal solution, the permutation is subjected to a mutation operator
that has been specifically designed to change the early part of the permutation
in a favorable way.

Tamura et al. [40] tackle a job-shop scheduling problem and start from its
IP formulation. For each variable, they take the range of possible values and
partition it into a set of subranges, which are then indexed. The chromosomes

2 http://www.ilog.com
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of the GA are defined so that each position represents a variable, and its value
corresponds to the index of one of the subranges. The fitness of a chromosome is
calculated using Lagrangian relaxation to obtain a bound on the optimal solution
subject to the constraints that the values of the variables fall within the correct
ranges. When the GA terminates, an exhaustive search of the region identified
as the most promising is carried out to produce the final solution.

2.2 Parallel or Intertwined Execution

Instead of a strictly sequential batch approach, exact and heuristic algorithms
may also be executed in a parallel or intertwined way. Such peer-to-peer combi-
nations of exact/heuristic techniques are less frequent. An interesting framework
for this purpose was proposed by Talukdar et al. [38, 39] with the so-called asyn-
chronous teams (A-Teams). An A-Team is a problem solving architecture con-
sisting of a collection of agents and memories connected into a strongly cyclic
directed network. Each of these agents is an optimization algorithm and can
work on the target problem, on a relaxation—i.e., a superclass—of it, or on a
subclass of the problem. The basic idea of A-Teams is having these agents work
asynchronously and autonomously on a set of shared memories. These shared
memories consist of trial solutions for some problem (the target problem, a su-
perclass, or a subclass as mentioned before), and the action of an agent consists
of modifying the memory by adding a solution, deleting a solution, or altering a
solution. A-Teams have been successfully utilized in a variety of combinatorial
optimization problems, see e.g. [5, 39].

Denzinger and Offerman [12] present a similar multi-agent based approach for
achieving cooperation between search-systems with different search paradigms.
The TECHS (TEams for Cooperative Heterogenous Search) approach consists
of teams of one or more agents using the same search paradigm. The communi-
cation between the agents is controlled by so-called send- and receive-referees,
in order to filter the exchanged data. Each agent is in a cycle between searching
and processing received information. In order to demonstrate the usefulness of
TECHS, a GA and a B&B based system for job-shop scheduling is described. The
GA and B&B agents exchange only positive information (solutions), whereas the
B&B agents can also exchange negative information (closed subtrees). Computa-
tional experiments show that the cooperation results in finding better solutions
given a fixed time-limit and in finding solutions comparable to the ones of the
best individual system alone in less time.

3 Integrative Combinations

In this section we discuss approaches of combining exact algorithms and meta-
heuristics in an integrative way such that one technique is a subordinate embed-
ded component of another technique.
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3.1 Incorporating Exact Algorithms in Metaheuristics

We start by considering techniques where exact algorithms are incorporated into
metaheuristics.

Exactly Solving Relaxed Problems. The usefulness of solutions to relax-
ations of an original problem has already been mentioned in Section 2.1. Besides
exploiting them to derive promising initial solutions for a subsequent algorithm,
they can be of great benefit for heuristically guiding neighborhood search, re-
combination, mutation, repair and/or local improvement. Examples where the
solution of the LP-relaxation and its dual were exploited in such ways are the
hybrid genetic algorithms for the multiconstrained knapsack problem from Chu
and Beasley [6] and Raidl [35].

Exactly Searching Large Neighborhoods. A common approach is to search
neighborhoods in local search based metaheuristics by means of exact algorithms.
If the neighborhoods are chosen appropriately, they can be relatively large and
nevertheless an efficient search for the best neighbor is still reasonable. Such
techniques are known as Very Large-Scale Neighborhood (VLSN) search [1].

Burke et al. [4] present an effective local and variable neighborhood search
heuristic for the asymmetric traveling salesman problem in which they have
embedded an exact algorithm in the local search part, called HyperOpt, in order
to exhaustively search relatively large promising regions of the solution space.
Moreover, they propose a hybrid of HyperOpt and 3-opt which allows to benefit
from the advantages of both approaches and gain better tours overall. Using
this hybrid within the variable neighborhood search metaheuristic framework
also allows to overcome local optima and to create tours of high quality.

Dynasearch [8] is another example where exponentially large neighborhoods
are explored. The neighborhood where the search is performed consists of all
possible combinations of mutually independent simple search steps and one Dy-
nasearch move consists of a set of independent moves that are executed in paral-
lel in a single local search iteration. Independence in the context of Dynasearch
means that the individual moves do not interfere with each other; in this case,
dynamic programming can be used to find the best combination of independent
moves. Dynasearch is restricted to problems where the single search steps are
independent, and it has so far only been applied to problems, where solutions
are represented as permutations.

For the class of partitioning problems, Thompson et al. [41, 42] defined the
concept of a cyclic exchange neighborhood, which is the transfer of single ele-
ments between several subsets in a cyclic manner; for example, a 2–exchange
move can be seen as a cyclic exchange of length two. Thompson et al. showed
that for any current solution to a partitioning problem a new, edge-weighted
graph can be constructed, where the set of nodes is split into subsets accord-
ing to a partition induced by the current solution of the partitioning problem. A
cyclic exchange for the original problem corresponds to a cycle in this new graph
that uses at most one node of each subset. Exact and heuristic methods that
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solve the problem of finding the most negative-cost subset-disjoint cycle (which
corresponds to the best improving neighbor of the current solution) have been
developed.

Puchinger et al. [34] describe a combined GA/B&B approach for solving a
real-world glass cutting problem. The GA uses an order-based representation,
which is decoded using a greedy heuristic. The B&B algorithm is applied with a
certain probability enhancing the decoding phase by generating locally optimal
subpatterns. Reported results indicate that the approach of occasionally solving
subpatterns to optimality may increase the overall solution quality.

The work of Klau et al. [22] has already been mentioned in Section 2.1 in the
context of collaborative sequential combinations. When looking at the memetic
algorithm we encounter another kind of exact/heuristic algorithm combination.
An exact subroutine for the price-collecting Steiner tree problem on trees is used
to locally improve candidate solutions.

Merging Solutions. Subspaces defined by the merged attributes of two or
more solutions can, like the neighborhoods of single solutions, also be searched
by exact techniques. The algorithms by Clements et al. [7], Applegate et al. [2],
and Klau et al. [22], which were already discussed in Section 2.1, also follow this
idea, but are of sequential collaborative nature. Here, we consider approaches
where merging is iteratively applied within a metaheuristic.

Cotta and Troya [9] present a framework for hybridizing B&B with evolu-
tionary algorithms. B&B is used as an operator embedded in the evolutionary
algorithm. The authors recall the necessary theoretical concepts on forma anal-
ysis (formae are generalized schemata), such as the dynastic potential of two
chromosomes x and y, which is the set of individuals that only carry informa-
tion contained in x and y. Based on these concepts the idea of dynastically
optimal recombination is developed. This results in an operator exploring the
potential of the recombined solutions using B&B, providing the best possible
combination of the ancestors’ features that can be attained without introducing
implicit mutation. Extensive computational experiments on different benchmark
sets comparing different crossover operators with the new hybrid one show the
usefulness of the presented approach.

Marino et al. [27] present an approach where a GA is combined with an exact
method for the Linear Assignment Problem (LAP) to solve the graph coloring
problem. The LAP algorithm is incorporated into the crossover operator and
generates the optimal permutation of colors within a cluster of nodes, hereby
preventing the offspring to be less fit than its parents. The algorithm does not
outperform other approaches, but provides comparable results. The main con-
clusion is that solving the LAP in the crossover operator strongly improves the
performance of the GA compared to the GA using crossover without LAP.

Exact Algorithms as Decoders. In evolutionary algorithms, candidate so-
lutions are sometimes only incompletely represented in the chromosome, and
an exact algorithm is used as decoder for determining the missing parts in an
optimal way.
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Staggemeier et al. [37], for example, present a hybrid genetic algorithm to
solve a lot-sizing and scheduling problem minimizing inventory and backlog
costs of multiple products on parallel machines. Solutions are represented as
product subsets for each machine at each period. Corresponding optimal lot
sizes are determined when the solution is decoded by solving a linear pro-
gram. The approach outperforms a MIP formulation of the problem solved using
CPLEX.

3.2 Incorporating Metaheuristics in Exact Algorithms

We now turn to techniques where metaheuristics are embedded within exact
algorithms.

Metaheuristics for Obtaining Incumbent Solutions and Bounds. In
general, heuristics and metaheuristics are often used to determine bounds and
incumbent solutions in B&B approaches. For example, Woodruff [44] describes
a chunking-based selection strategy to decide at each node of the B&B tree
whether or not reactive tabu search is called in order to eventually find a better
incumbent solution. The chunking-based strategy measures a distance between
the current node and nodes already explored by the metaheuristic in order to
bias the selection toward distant points. Reported computational results indicate
that adding the metaheuristic improves the B&B performance.

Metaheuristics for Column and Cut Generation. In branch-and-cut and
branch-and-price algorithms, the dynamic separation of cutting-planes and the
pricing of columns, respectively, is sometimes done by means of heuristics in-
cluding metaheuristics in order to speed up the whole optimization process.

Filho and Lorena [14] apply a heuristic column generation approach to graph
coloring. They describe the principles of their constructive genetic algorithm
and give a column generation formulation of the problem. The GA is used
to generate the initial columns and to solve the slave problem (the weighted
maximum independent set problem) at every iteration. Column generation is
performed as long as the GA finds columns with negative reduced costs. The
master problem is solved using CPLEX. Some encouraging results are
presented.

Puchinger and Raidl [32, 33] propose new integer linear programming for-
mulations for the three-stage two-dimensional bin packing problem. Based on
these formulations, a branch-and-price algorithm was developed in which fast
column generation is performed by applying a hierarchy of four methods: (a) a
greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of
the pricing problem using CPLEX, and finally (d) solving the complete pricing
problem using CPLEX. Computational experiments on standard benchmark in-
stances document the benefits of the new approach. The combination of all four
pricing algorithms in the proposed branch-and-price framework yields the best
results in terms of the average objective value, the average run-time, and the
number of instances solved to proven optimality.
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Metaheuristics for Strategic Guidance of Exact Search. French et al.
[16] present a GA/B&B hybrid to solve feasibility and optimization IP problems.
Their hybrid algorithm combines the generic B&B of the MIP-solver XPRESS-
MP3 with a steady-state GA. It starts by traversing the B&B tree. During this
phase, information from nodes is collected in order to suggest chromosomes to
be added to the originally randomly initialized GA-population. When a certain
criterion is fulfilled, the GA is started using the augmented initial population.
When the GA terminates, its fittest solution is passed back and grafted onto
the B&B tree. Full control is given back to the B&B-engine, after the newly
added nodes were examined to a certain degree. Reported results on MAX-SAT
instances show that this hybrid approach yields better solutions than B&B or
the GA alone.

Kotsikas and Fragakis [23] determine improved node selection strategies
within B&B for solving MIPs by using genetic programming (GP). After run-
ning B&B for a certain amount of time, information is collected from the B&B
tree and used as training set for GP, which is performed to find a node selection
strategy more appropriate for the specific problem at hand. The following second
B&B phase then uses this new node selection strategy. Reported results show
that this approach has potential, but needs to be enhanced in order to be able
to compete with today’s state-of-the-art node selection strategies.

Applying the Spirit of Metaheuristics. Last but not least, there are a few
approaches where it is tried to bring the spirit of local search based techniques
into B&B. The main idea is to first search some neighborhood of incumbent solu-
tions more intensively before turning to a classical node selection strategy. How-
ever, there is no explicit metaheuristic, but B&B itself is used for doing the local
search. The metaheuristic may also be seen to be executed in a “virtual” way.

Fischetti and Lodi [15] introduced local branching, an exact approach combin-
ing the spirit of local search metaheuristics with a generic MIP-solver (CPLEX).
They consider general MIPs with 0-1 variables. The idea is to iteratively solve
a local subproblem corresponding to a classical k-OPT neighborhood using the
MIP-solver. This is achieved by introducing a local branching constraint based
on an incumbent solution x, which partitions the search space into the k-OPT
neighborhood and the rest: ∆(x, x) ≤ k and ∆(x, x) ≥ k + 1, respectively, with
∆ being the Hamming distance of the 0-1 variables. The first subproblem is
solved, and if an improved solution could be found, a new subproblem is devised
and solved; this is repeated as long as an improved solution is found. If the
process stops, the rest of the problem is solved in a standard way. This basic
mechanism is extended by introducing time limits, automatically modifying the
neighborhood size k and adding diversification strategies in order to improve the
performance. Reported results are promising.

Danna et al. [10] present an approach called Relaxation Induced Neighbor-
hood Search (RINS) in order to explore the neighborhoods of promising MIP

3 http://www.dashoptimization.com/
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solutions more intensively. The main idea is to occasionally devise a sub-MIP at
a node of the B&B tree that corresponds to a certain neighborhood of an incum-
bent solution: First, variables having the same values in the incumbent and in
the current solution of the LP-relaxation are fixed. Second, an objective cutoff
based on the objective value of the incumbent is set. Third, a sub-MIP is solved
on the remaining variables. The time for solving this sub-MIP is limited. If a
better incumbent could be found during this process, it is passed to the global
MIP-search which is resumed after the sub-MIP termination. CPLEX is used
as MIP-solver. The authors experimentally compare RINS to standard CPLEX,
local branching, combinations of RINS and local branching, and guided dives.
Results indicate that RINS often performs best.

4 Conclusions

We gave a survey on very different, existing approaches for combining exact
algorithms and metaheuristics. The two main categories in which we divided
these techniques are collaborative and integrative combinations. Some of the
combinations are dedicated to very specific combinatorial optimization problems,
whereas others are designed to be more generally useful. Altogether, the existing
work documents that both, exact optimization techniques and metaheuristics,
have specific advantages which complement each other. Suitable combinations
of exact algorithms and metaheuristics can benefit much from synergy and often
exhibit significantly higher performance with respect to solution quality and
time. Some of the presented techniques are mature, whereas others are still in
their infancy and need substantial further research in order to make them fully
developed. Future work on such hybrid systems is highly promising.
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