
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-864667

Wolfgang Lehner

Data Management Support for Notification Services

Erstveröffentlichung in / First published in:

Theo Härder, Wolfgang Lehner, Hgg., 2005. Data Management in a Connected World.
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

DOI: https://doi.org/10.1007/11499923 7

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-864667
https://doi.org/10.1007/11499923_7

Data Management Support

for Notif icat ion Services

Wolfgang Lehner

Technische Universität Dresden, Germany
lehner@inf.tu-dresden.de

Abstract. Database management systems are highly specialized to efficient-
ly organize and process huge amounts of data in a transactional manner. Dur-
ing the last years, however, database management systems have been evolv-
ing as a central hub for the integration of mostly heterogeneous and autono-
mous data sources to provide homogenized data access. The next step in
pushing database technology forward to play the role of an information mar-
ketplace is to actively notify registered users about incoming messages or
changes in the underlying data set. Therefore, notification services may be
seen as a generic term for subscription systems or, more general, data stream
systems which both enable processing of standing queries over transient data.
This article gives a comprehensive introduction into the context of notifica-
tion services by outlining their differences to the classical query/response-
based communication pattern, it illustrates potential application areas, and it
discusses requirements addressing the underlying data management support.
In more depth, this article describes the core concepts of the PubScribe
project thereby choosing three different perspectives. From a first perspec-
tive, the subscription process and its mapping onto the primitive publish/sub-
scribe communication pattern is explained. The second part focuses on a hy-
brid subscription data model by describing the basic constructs from a struc-
tural as well as an operational point of view. Finally, the PubScribe
notification service project is characterized by a storage and processing mod-
el based on relational database technology.
To summarize, this contribution introduces the idea of notification services
from an application point of view by inverting the database approach and
dealing with persistent queries and transient data. Moreover, the article pro-
vides an insight into database technology, which must be exploited and
adopted to provide a solid base for a scalable notification infrastructure, us-
ing the PubScribe project as an example.

1 Introduction

The technological development in recent years has created an infrastructure which en-
ables us to gather and store almost everything that can be recorded. However, the stored

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

1

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

data gets frequently lost in the existing varieties of databases. The main reason is that
nobody is willing to browse multiple databases and specifically search these databases
for certain entries.

Multiple methods from a database-technological point of view are trying to lever-
age this very general problem. The context of information integration [26] tries to come
up with an either logically (multi-database systems or virtual database systems) or phys-
ically integrated data set, often seen in data warehouse environments [16]. From a more
application-oriented point of view, methods and techniques coming from the area of
knowledge discovery in databases try to generate hypotheses which might be of some
interest for the users of the data set. The real benefit of this approach is that a user may
specifically focus on these results as a starting point for an interactive analysis [10, 19,
9].

A completely different approach is taken when inverting the current way of inter-
acting with databases by moving from a system-centric to a data-centric behavior [22,
23]. The query-based approach follows the request/response paradigm, where the user
(or client) is posing a query and the (database) system tries to execute the query as fast
as possible. The result is delivered via basic interfaces (like ODBC, JDBC, or CLI) to
the user’s application context. Fig. 1a illustrates this interaction pattern with database
management systems on the one side acting as data providers and clients on the other
side acting as data consumers. Both parties are in a close relationship with each another,
i.e. every client has to know the location and the context of the specific database.

1.1 Publish/Subscribe as the Base for Notification Systems

Inverting the "request/response" idea leads to the communication pattern very well
known as "publish/subscribe" [5], which is used in various situations. For example,
publish/subscribe is utilized in software engineering as a pattern [12] to connect indi-
vidual components. In the same vein, publish/subscribe may be used to build a data-cen-
tric notification service. Notification services consist of publishers, subscribers, and fi-
nally, a (logically single) notification brokering system. Fig. 1b gives a conceptual
overview of the scenario. On the one side, publishing systems (or publishers) are acting
as data providers, generating information and sending data notifications to the broker-
ing component as soon as the information is available. Notifications are collected, trans-
formed into a pre-defined or pre-registered schema and merged into a global database.
Depending on the type of subscriptions (section 3.1), notifications may remain in the
database only for the time span required to notify interested subscribers.

On the other side, subscribers—acting as data consumers—are registering "inter-
est" (information template, profile, ...) providing the delivery of certain notifications us-
ing specific formats and protocols with a pre-defined frequency. The notion of interest
is manifold and will be further discussed in the following section. Furthermore, query
specification and result transmission are decoupled from a subscriber’s point of view.
Once a query is formulated, the user is no longer in contact with the notification system
but receives a notification only if new messages of interest have arrived at the database
system or if a given time interval has passed. The advantage for the user is tremendous:

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

2

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

once a query (in form of a subscription) is specified, the user does not have to wait for
the answer of the query, because the result will be delivered automatically according to
the pre-defined delivery properties.

Obviously, publisher and subscriber are roles associated with certain applications
or (human) users implying that, for example, received notification messages may be
forwarded to another notification system. In this scenario, a single component is then
acting as subscriber and publisher at the same time. The benefit of notification services
from an application point of view consists in the following facts:

• Data providers and data consumers are decoupled and do not know each other—the
connection is purely data-driven.

• Profiles articulating a subscriber’s interest allow (depending on the current system)
a very detailed specification of the requested piece of information.

• Information is delivered only if certain delivery criteria are fulfilled. Therefore, no-
tification systems may be regarded as a core mechanism to tackle the problem of a
general information flood.

1.2 Data-Centric Versus System-Centric Data Delivery

From a database point of view, notification services exhibit properties which have a dra-
matic impact on the way data is treated and queries are executed. Fig. 2 illustrates the
basic principle of the different prerequisites compared to the request/response-driven
querying model. While database queries are executed within transactions and therefore
isolated from each other, the notification evaluation queries are now clustered together
and executed simultaneously [27, 20], thus decreasing the overall query run time and

a) "request/response" paradigm b) "publish/subscribe" paradigm

Fig. 1 Comparison of "Request/Response" and "Publish/Subscribe" Paradigm

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

3

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

increasing the overall capacity of a notification system. Obviously, handling thousands
of subscriptions within a single system requires specific support from a database system
[30, 3, 20].

To put it in a nutshell, the main difference from a database point of view consists in
the fact that data structures no longer reflect the main object of management. In con-
trast, queries are now efficiently stored, indexed, and transformed, providing the basis
for optimizations with regard to the set of standing queries, which have to be applied to
the stream of incoming event messages. Furthermore, a notification system may com-
prise multiple local (and only partially integrated) schemas according to the registration
of the publisher. Because a publisher may come and go, the set of local schemas is high-
ly volatile, implying an integration process either on-the-fly during the registration of a
standing query or partially by the user itself.

1.3 Application Scenarios

In most application scenarios, notification systems can be seen as an add-on and not as
a full substitute for a regular query-driven database management system. Notification
systems are used in applications requiring a pro-active propagation of information to
specific consumers. In the following, three very different application scenarios are dis-
cussed:

• News service
A very popular and already prospering service implementing a very limited kind of
notification technique may be seen in news services, which send e-mails or short
messages containing abstracts of various news articles on a regular basis (one of the
first was [35] followed by many others like [25]). The functionality of news notifi-
cation services highly varies from system to system. For instance, notifications could
depend only on time stamps or time periods since the last delivery, or they might be
based on the evaluation of specified predicates within subscription templates. For ex-
ample, a notification can be generated if the stock price of IBM reaches a certain val-
ue. Simple news services are often synonymous to the "push service" of documents.

a) "request/response" paradigm b) "publish/subscribe" paradigm

Fig. 2 Query-driven vs. Data-driven Execution

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

4

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

• Business intelligence applications
Combining the idea of a notification service and the concept of data warehousing
[16] leads to the pro-active support of decision support systems. A data warehouse
system provides an integrated, long-term, and logically centralized database to re-
trieve information necessary for decision support, supply chain management, cus-
tomer relationship management, etc. Due to the nature of data warehousing, these da-
tabase applications exhibit specific characteristics with regard to data volume, up-
date characteristics, and aggregation-oriented organization of data. Information
stored in a data warehouse are usually exploited by using pre-defined reports printed
on a regular basis, by interactive exploration using standard OLAP tools, or by ex-
portation into special statistical software packages . In such a scenario, for example,
all sales orders are flowing through a notification system. The system keeps track of
the sold products of a certain category within a specific region and can automatically
re-order the required products. This application domain highly correlates with the at-
tempt of building active data warehouse systems. Notification systems are a neces-
sary requisite.

• Production monitoring
Notification systems in the small (also called streaming systems) are able to monitor
the manufacturing quality of a machine within a long assembly line. The streaming
system has to ensure that incoming event notifications are analyzed and evaluated
against the set of standing queries within a certain period of time. If tolerances are
too high or if a pattern of irregular behavior within the assembly line is discovered,
notification messages are sent out to slow or shut down some machines.
It can be seen that notification services, on the one hand, cover a broad spectrum of

applications and, on the other hand, exhibit a strong impact on the evaluation strategies
for answering multiple standing queries. Moreover, the application areas shown above
motivate the classification of notification systems into the following two classes:

• Subscription systems
A subscription system is used to evaluate a huge number of potentially complex-
structured standing queries on incoming data. In comparison to the characteristics of
a data stream system, each publication reflects an isolated action, i.e. publications of
a single publisher are (except for the schema) not related to each other—which espe-
cially holds for their time stamps. Typical publications, for example, may consist of
large XML documents [32].

• Data stream systems
A data stream system is used to analyze continuous streams of data typically coming
from data sensors. Publications usually arrive periodically and comprise single indi-
vidual values (like temperature values).
In the following, we focus on subscription systems which typically require more ad-

vanced functionality from a modeling as well as an architectural point of view as pro-
posed for example in [31]. For further information on application scenarios in the con-
text of data stream technology, we refer our readers to [15, 2, 6, 4]. Notification systems
and subscription systems are therefore used synonymously.

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

5

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

1.4 Structure of the Contribution

The remainder of this contribution is focusing on the notification management system
PubScribe, which aims to build a notification system solely based on the publish/sub-
scribe communication pattern and exploits advanced database technology. Therefore,
the following section outlines the basic characteristics of PubScribe in the context of a
general architecture and communication pattern scheme. Section 3 then discusses the
subscription data model used by PubScribe, which will be mapped to a processing mod-
el in section 4. Section 5 finally summarizes and closes the contribution with an outlook
on further work to be done in this context.

2 General Architecture and Characteristics

In this section, we identify and explain a number of different characteristics, which ap-
ply to the family of notification systems, and provide a general overview of the compo-
nents required to build a notification system.

2.1 General Architecture

A notification system basically consists of three major components (back-end, front-
end, and brokering component), which can be seen in Fig. 3. In general, a notification
system accepts event messages and cleans, transforms, and combines these messages
with other data available to the notification system. Finally, individual notification mes-
sages are generated and delivered to the consumer, i.e. subscriber. The general struc-
tures and their functions are as follows:

• Event message provider
The component of an event message provider accepts incoming event messages and
transforms them into a shape which can be processed by the underlying notification
engine (similar to wrapper technology as described in [26]). Usually, each message
is decomposed into multiple rows spread over multiple relational database tables. In
Fig. 3, an event message provider exists for XML documents, for the result of SQL
statements (e.g. in the context of the execution of stored procedures), and for a ser-
vice that periodically crawls specific web sites to retrieve data and propagate them
to the notification system. The output of an event message goes into a message table,
which is exploited by the subscription system.

• Notification message delivery component
The notification message delivery component extracts the results provided by the no-
tification engine and creates appropriate notification messages, personalized either
for a human user or—according to a given message schema—for an application as
consumer. Fig. 3 depicts three different delivery handlers to forward notification
messages via the HTTP-protocol for web access, the SMTP-protocol for use of elec-
tronic mail, and a generic file protocol to store messages in a regular file.

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

6

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

More sophisticated push-based delivery methods require either an adequate network
infrastructure or a cooperating client software. Whenever pushing data to a client is
not directly supported by the underlying transport protocols (i.e. TCP, HTTP, ...),
push services are implemented in an extended pull style. In this case, a specific piece
of software is running in the background on the client side, permanently polling for
new information, and thus, pretending a server push to the client. Such strategies are
called smart pull or pull++. Another technique for simulating push is server-initiated
pull. In this case, the server sends a short notification to the client stating that there
is new data ready for delivery. The client then downloads the notification message
using a regular pull operation. It is worth mentioning here that a notification service
which is logically based on the publish/subscribe paradigm can be implemented us-
ing push as well as pull techniques for data delivery.

• Notification brokering component / notification engine
The central piece of a notification system consists of the brokering component which
is tightly integrated into an underlying database engine to efficiently answer the reg-
istered standing queries for incoming messages. Because the event message provider
and the notification message delivery component are of little interest from a database
perspective, we focus on the brokering component in the remainder of this contribu-
tion.

2.2 General Communication Pattern

Within the PubScribe system we pursue a communication pattern on two different lev-
els. From a user (publisher and subscriber) point of view, the notification service con-
sists of five service primitives, as depicted in Fig. 4.

In a very first step, publishers are requested to register their publications at the no-
tification system (REGISTER primitive), which will set off the initiation of the appro-
priate event message provider and the creation of the appropriate message tables for this
specific publishing component. Even more important, each publisher must submit a
schema definition of the proposed messages. After registration, publishers use the pub-
lish/service primitive to submit event messages for further processing.

Fig. 3 General Architecture of a Notification System

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

7

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

On the subscriber side, a potential user may issue an INQUIRE primitive to learn
about publishers currently present and their local schemas. The consumer may then de-
cide to place a subscription (standing query) based on their schemas including start,
stop, and delivery conditions (section 3.1) using the SUBSCRIBE primitive. Once a no-
tification message is ready, the notification message delivery component is using the
NOTIFY primitive on the consumer side to deliver the result.

On a lower (communication) level, describing the interaction mechanisms of differ-
ent components within a network of notification systems, the PubScribe system applies
the publish/subscribe paradigm and maps the five service primitives on the application
level to the publish/subscribe communication pattern. The REGISTER and INQUIRE
primitives are mapped onto a so-called one-shot publish/subscribe pattern, implying
that a subscription is only valid as long as a single notification message has not arrived.
More interestingly, the PUBLISH and SUBSCRIBE/NOTIFY primitives are also trans-
lated into a publish/subscribe pattern. After registering, the PubScribe notification sys-
tem subscribes at the publisher and places a subscription to ask for event messages. The
PUBLISH primitive on the application level then corresponds to the PUBLISH primi-
tive on the communication level. Similarly, the SUBSCRIBE primitive of a consumer
is mapped to the SUBSCRIBE primitive at the lower level, and the NOTIFY primitive
is treated as a PUBLISH primitive issued by the notification delivery component (tak-
ing on the role of a publisher with regard to the subscriber).

2.3 Classification of Notification Systems

As a final consideration with regard to the general perspective of notification systems,
we provide some properties which might be used to classify the very broad set of noti-
fication systems. It is worth mentioning that these properties are not completely orthog-

Fig. 4 Communication Pattern in Publish/Subscribe-Notification Systems

Publisher Subscriber

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

8

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

onal to each other, i.e. certain combinations may not make that much sense from an ap-
plication point of view.

Document-Based Versus Data-Stream-Based Notification Systems
The most distinctive feature of a notification system lies in the differentiation between
document-based and data-stream-based characteristics. In the context of document-
based systems, each message consists of an individual entity and is treated separately
from every other message. Especially the "birth" of the message in a document-based
environment is not related to the "birth" of other messages of the same publisher. This
means that from an application point of view, there is no system-relevant correlation of
the publication of individual messages. Typical examples of document-based notifica-
tion systems are news tickers that report on current developments.

The other extreme is characterized by data streams. In this case, the publication of
a message happens periodically in the sense that a message does not reflect an individ-
ual entity, but is comprised of on-going data either to complete or to bring the current
state up-to-date. In the former case, data is added to the message, while in the latter case,
data is overwritten, thus implying that the notification system holds the most current
state with regard to some real-life object. An example for streaming systems is the con-
trol procedure of an assembly line, where sensors are reporting the current state of a ma-
chine on a periodic basis [7, 29].

PubScribe, which serves as an example within this contribution, is a classic repre-
sentative of a document-based notification system. Streaming systems dealing with an
infinite set of tuples are not discussed. The reader is referred to excellent literature like
[15, 24, 3, 14] that focuses on this topic from an architectural point of view.

Time-Driven Versus Data-Driven Notifications
The second characteristic with regard to information delivery is the classification of the
kind of "event" which has to happen in order for a notification to be sent out to the cli-
ent. Notifications are either dispatched periodically after a specified amount of time or
they are initiated due to a data-driven event. A typical example for the first case is to
send out an electronic newsletter every day at 6 p.m. A new letter (or a collection of
accumulated single news articles) is simply sent out after another 24 hours have passed.
Alternatively, a subscriber may be interested in getting notified by the notification sys-
tem aperiodically, i.e. only when a certain event occurs, e.g. a certain stock value passes
a certain threshold. Data-driven events are usually connected to insert or update opera-
tions in the underlying database and result in aperiodic notifications. They are closely
related to the trigger concept of active and relational database systems [21]. In practice,
the combination of both notification modes is most interesting. For example, a user
might want to be informed immediately if the IBM stock falls below a certain value, and
additionally, get a weekly summary for its performance throughout the week.

Full Update Versus Incremental Update
For the subscription management system, it is important to know what to do with data
which was already received by the client through a previous delivery. In case of a thin
client like a simple web browser without any application logic and local storage capac-

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

9

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

ity, the server always has to deliver a full update to the client. However, if the client is
only interested in the current value of a business figure, e.g. a certain stock value, or if
it is able to combine the values already received with the latest value on its own, the
server system should choose an incremental update strategy, i.e. it will only send the
delta changes and thus save network bandwidth and perhaps server memory as well.
The combination of complex-structured context and the required functionality of delta
propagation leads, for example, to the hybrid data model proposed within PubScribe
(section 3.2).

3 Subscription Message Data Model

In this section, we briefly outline the underlying data model and the operators used to
formulate standing queries. These operators are then subject of optimization and map-
pings to relational database systems, which will be shown in the subsequent section.

3.1 Types and Conditions of Subscriptions

From a theoretical point of view, a subscription may be represented as a mathematical
function which is not yet saturated, i.e. the result of this function is still being computed
or, in other words, the data which the computation of the function is based on is either
not yet complete or changing over time. The bottom line for subscription systems from
a database perspective is that a user registers a query once and regularly receives a no-
tification of the query result derived from the actual state of the underlying data set.
Therefore, the query may be considered the "body" of a subscription, which is subject
to evaluation, if a corresponding delivery condition is met. Furthermore, subscriptions
are instantiated, if corresponding opening conditions are satisfied. Analogously, sub-
scriptions are removed from the system, if the present closing conditions evaluate to
true.

Different Types of Subscriptions
The set of subscriptions can be classified into feasible and non- or not yet feasible sub-
scriptions. A subscription on "the highest prime number twins" may be an example for
a not-yet feasible subscription, because it is (still) unknown whether such numbers exist
at all. Obviously, we have to restrict ourselves to feasible subscriptions. Moreover, we
are able to classify these types of subscriptions in more detail from a data point of view
into the following three categories:

• Snapshot subscriptions
A snapshot [1] subscription may be answered by referring only to the currently valid
information, i.e. the answer may be retrieved by processing only the most current
message of a publisher. Snapshot subscriptions require "update-in-place" semantics.
Example: A subscription regarding the current weather conditions only refers to the
last available information. Old data is no longer of interest.

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

10

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

• Ex-nunc (’from now on’) subscriptions
Ex-nunc subscriptions are based on a set of messages. This set of messages is con-
structed starting from an empty set at the time of the registration of a subscription.
Example: Computing the value of a three-hour moving average of a stock price
starts with a single value for the first hour, the average of two values for the second
hour, and the average of three values for all other hours.

• Ex-tunc (’starting in the past’) subscriptions
Ex-tunc subscriptions are based on data from the past plus current information.
Example: A subscription of the cumulative sum of trading information of a specific
stock needs an initial overall sum, which can be maintained using new messages.

The PubScribe system supports (classic) snapshot-based, ex-nunc and ex-tunc subscrip-
tions. To provide ex-tunc subscriptions, the system has to implement an initial evalua-
tion mechanism, which provides feedback to the user on whether or not this specific
subscription with the specified requirements can be instantiated.

Condition Evaluation Semantics
The evaluation of a subscription query (body of a subscription) is controlled by condi-
tions. The PubScribe system uses the following three conditions to control the execu-
tion and delivery of a result of a subscription:

• Opening condition
A subscription becomes active, i.e. the body and the following two conditions are in-
stantiated as soon as the opening condition is satisfied the first time.

• Closing condition
A subscription is removed from the system as soon as this condition evaluates to true.

• Delivery condition
If and only if the delivery condition evaluates to true, the body of the subscription
gets updated, i.e. messages which have arrived since the last delivery are "merged"
into the current state of the subscription.

Once the opening condition is satisfied, the delivery and closing conditions are evalu-
ated. If the delivery condition is satisfied, the subscription body is evaluated and the re-
sult is delivered to the corresponding subscriber.

If the closing condition evaluates to true, the subscription is removed from the sys-
tem. It is worth to note here that the system provides "at least once" semantics for the
execution of a subscription in the context of an initial evaluation for ex-tunc and one-
shot subscriptions: the delivery condition is checked before the closing condition is
evaluated. Thus, if the delivery condition is satisfied, the subscription body is evaluated
and delivered before a satisfied closing condition removes the subscription from the
system.

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

11

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

3.2 The PubScribe Message Data Structures

The data model of the PubScribe system consists of data structures and operators de-
fined on these structures to formulate standing queries. The very interesting point with-
in the hybrid modeling approach consists in the fact that the model reflects the duality
of state-based and consumption-based data management by introducing message se-
quences and message sets.

Messages and Message Attributes
The messages produced by registered publishers must follow a message scheme an-
nounced during the registration process of a publisher at the notification management
system. The scheme of a message M = (H, B) consists of a header H = (H1,...,Hn), a
(possibly empty) set of header attributes Hi (1 i n), and a message body B = (B1,...,Bm)
with at least one body attribute Bj (1 j m). Header attributes may be seen as an equiv-
alent to primary key attributes in a relational model [8] without the requirement of def-
initeness and minimality. The instances of attributes are valid XML documents [32, 17]
and must follow an XML-schema [33, 34] definition, locally defined by the publisher.
Attributes without further structuring are so-called basic or single-level attributes.
Moreover, complex-structured attributes are not allowed in the header. Fig. 5 shows a
single message regarding stock information. The complex attribute TRADINGINFO
holds a comment together with the source of the quote.

Message Sets and Message Sequences
Messages of the same type may be collected as sets (unordered with regard to their gen-
eration time) or sequences [28]:

• Message sequence (MSGSEQ)
The data structure of a message sequence holds a list of messages ordered by the ar-
rival time of the message in the system. Each message in a sequence is implicitly ex-
tended by a header attribute ValidTime.

• Set of sequences (MSGSET)
In order to reflect the stable set of information in addition to streaming data, MSG-

StockName StockExchange Price ChangeAbs TradingVolume TradingInfo

<StockName>
Oracle

</Stockname>

<StockExchange>
FSE

</StockExchange>

<Price>
97.50

</Price>

<ChangeAbs>
2.75

</ChangeAbs>

<TradingVolume>
3400

</TradingVolume>

<TradingInfo>
<InfoSource>

W. Lehner
</InfoSource>
<Comment>

buy or die....
</Comment>

</TradingInfo>

header attributes body attributes

Fig. 5 Example for a MSGSET Data Structure

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

12

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

SET structures represent descriptive data to annotate incoming messages. From a
logical point of view, a set of sequences reflects a consistent and (for that specific
moment) complete state at every point in time.

Sample Scenario
Throughout the remainder of this contribution, a consistent example refers to a stock
notification system about current trends, news, comments, and so on. A publisher
StockInfo periodically delivers information about the current stock price added to a
MEGSEQ structure. A second producer publishes comments on a fully incremental ba-
sis (section 2.3), i.e. the set of messages always reflects the current opinion of the pub-
lisher. Obviously, the messages go into a MSGSET structure. Fig. 5 shows an instance
of the StockInfo publisher; Fig. 6 holds an example for a MSGSET regarding comments
and rankings.

3.3 The PubScribe Message Operators

The data structure may be used by operators to specify complex queries. Fig. 7 illus-
trates the data model and the underlying message operators to formulate a subscription.
Within this query, only 5-star-ranked stocks after a join are considered. Based on the
trading information, a dynamic window operation of size 3 is defined. Finally the aver-
age and the total volumes are computed as a result for the user.

The different operators are only sketched within this context. The reader is referred
to [18] and [19] for a detailed description and a more comprehensive example:

• Filter operator
The FILTER() operator is defined for header attributes. Hence, the resulting data
structure holds only messages with values in the header attributes satisfying a given
predicate. A selection criterion is restricted to conjunctive predicates without nega-
tion. Each predicate only contains the operators =, < , > and ~= for textual attributes.
Example:

 [InterestedStocks] FILTER(StockName IN (’Oracle’, ’IBM’))[StockInfo]

• Attribute migration operator
The attribute migration (SHIFT()-) operator allows the transition of a body attribute
to the set of header attributes. The new header attribute must be of an atomic type. A
good example for attribute migration is the definition of groups. For example, an

Fig. 6 Example for a MSGSET Data Structure

StockName Ranking Comment

<StockName>
Oracle

</Stockname>

<Ranking>

</Ranking>

<Comment>
Oracle is a member of the NASDAQ since ...

</Comment>

<StockName>
IBM

</Stockname>

<Ranking>

</Ranking>

<Comment>
IBM has a long tradition and

</Comment>

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

13

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

EVAL() operator extracts the month out of a time stamp stored in a body attribute.
The SHIFT()-operator moves the newly created attribute to the set of header at-
tributes providing a way to identify values on a monthly basis.

• Internal message computation
The EVAL()-operator is used to perform computations within a single message. In
fact, the model distinguishes three categories of internal message operators:

The first category includes all regular binary scalar functions like PLUS(), MI-
NUS(), MULT(), DIV() and equality operators (GREATER(), ...). Additionally,
the class comprises a set of calendar functions like YEAR(), MONTH(), DAY().
The following example returns the relative change based on the current price, the
price difference, and the turnover.
[ExtendedStockInfo] EVAL(Price, TradingVolume,

ChangeRel:DIV(ChangeAbs, MINUS(Price, ChangeAbs)),
Turnover:MULT(Price, TradingVolume))[StockInfo]

The second category holds aggregation functions like MIN(), MAX(), SUM(), and
COUNT() which are usually used in combination with the COLLAPSE() operator
(see below).
The third category encompasses all operators used to work on the content of com-
plex-structured attributes. EXTRACT() is used to extract pieces of complex-struc-
tured attribute values. COMBINE() does the opposite: it merges two complex-
structured attribute values to a new attribute value.
[ExtractedStockInfo]

EVAL(CommentList:EXTRACT(Comment, TradingInfoList),
InfoSourceList:EXTRACT(InfoSource, TradingInfoList))[StockInfo]

(StockName, StockExchange),

MvgAvgPrice:DIV(MvgSumPrice, MvgCountPrice),

([StockName, StockExchange], ([StockName],
[Price, TradingVolume, TradingInfo])

MvgSumPrice:SUM(PriceGroup),

VolumeGroup:MESSAGES(CURRENT-3, CURRENT:TradingVolume))
(PriceGroup MESSAGES(CURRENT-3, CURRENT:Price),

MvgCountPrice:COUNT(PriceGroup),
MvgSumTradingVolume:SUM(PriceGroup)

([StockName, StockExchange],
[MvgAvgPrice, MvgSumTradingVolume])

Fig. 7 Example for a Subscription Body

MERGE

FILTER (Ranking ~=’****’)

WINDOW

StockInfo StockRanking

[Ranking, Comment])

EVAL

EVAL MvgSumTradingVolume

SWITCH
delivery
condition

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

14

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

The identity function can be seen as a special form of one of these two operators.
The syntax is abbreviated by just listing the attribute names.

• Generation of static groups
The COLLAPSE() operator allows the definition of static (or: partitioning) groups
with regard to a set of header attributes of a MSGSET or MSGSEQ structure. The
following example groups message entries by the name of the stock value:

GroupedStockInfo COLLAPSE((StockName),
(TradingVolumeGroup:TradingVolume,
 TradingInfoGroup:TradingInfo))[StockInfo]

The result of a COLLAPSE() operator consists of head attributes (first parameter)
and set body attributes (second parameter). A succeeding aggregation step has to
be done explicitly by calling an EVAL() operator. The following expression com-
putes the total sum as well as the number of contributing messages based on the
attribute TradingVolumeGroup. Other attributes are not affected by this opera-
tion.
SumStockInfo EVAL(TradingVolumeSum:SUM(TradingVolumeGroup),

TradingVolumeCount:COUNT(TradingVolumeGroup),
TradingInfoGroup)[GroupedStockInfo]

Furthermore, in contrast to the following dynamic group generation, the static
groups are defined without regard to time or any other ordering characteristics.

• Generation of dynamic groups
The main idea of dynamic grouping is that entities (i.e. messages) are grouped by a
certain order and not by specific values. This implies that the definition of the WIN-
DOW() operator is only based on MSGSEQ structures. The group definition can be
performed either according to the number of messages or according to a time inter-
val. The following example illustrates the effect of the operator, by defining an open
window ranging from the first to the current entry and a sliding window covering all
entries within a symmetrical 90-minutes slot:

[WindowedStockInfo] WINDOW((StockName),
(TrVolOpenWindow:

MESSAGES(BEGIN:CURRENT, TradingVolume),
 TrVolClosedWindows:

TIMESTAMPS(-45.00:+45.00, TradingVolume)))
[StockInfo]

Analogously to the principle of static groups, dynamic groups have to be evalu-
ated using an additional EVAL() operator, e.g.:
[MvgSumStockInfo] EVAL(TrVolCumSum:SUM(TrVolOpenWindow),

TrVolMvgSum:SUM(TrVolClosedWindow))
 [WindowedStockInfo]

• Merge operator
A merge operator joins two data structures of potentially different type and forms a
new structure. Because this operator is crucial for the creation of more sophisticated
results, it is described explicitly below.

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

15

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

• Switch operator
The special switch operator returns NULL as long as the control input (right input in
Fig. 10) representing the condition testing is FALSE. Otherwise, the switch operator
returns the messages from the data input. The SWITCH() operator is used to imple-
ment the test of various conditions.

Merging Two Message Data Structures
Within the PubScribe data model, a merge approach is applied relying on positions and
values. Content-based joins are possible whenever a MSGSET is involved. A positional
join is used to merge two MSGSEQ structures with multiple different join semantics.
The non-commutative MERGE() operator implies four combinations as outlined below:

• Join of messages in MSGSET structures
This case is comparable to a natural join in the relational model. More important,
however, is the distinction between symmetric and asymmetric joins. In the first
case, both messages exhibit the same set of header attributes. In the second case, one
partner holds a superset of header attributes. If H1 H2, H2 H1 with H1 H2
holds, then the join is not defined; otherwise:

SET(H1, B1 B2) SET1(H1, B1) SET2(H2, B2)
with the join condition:

(h2 h H1) h1 = h2

• Join of messages in MSGSEQ with messages of MSGSET structures
This cross-structural join reflects the most important join in notification systems; in-
coming messages are enriched with additional information coming from relational
sources using outer join semantics. If the set of header attributes in the MSGSET
structure H2 is not a subset of the header attributes of the MSGSEQ structure H1, the
join is not defined; otherwise:

SEQ(H1 {ValidTime}, B1 B2) SEQ(H1 {ValidTime},B1) SET(H2, B2)
with the join condition independent of the time stamp attribute:

(h2 h H1) h1 = h2

• Join of messages in MSGSET with messages of MSGSET structures
Joins between messages from sets enriched with messages from sequences are not
defined.

• Join of messages in MSGSEQ structures
In addition to a join between messages of MSGSET structures, a positional join with
H2 H1 is defined as follows:

SEQ(H1 {MAX(ValidTime1, ValidTime2)}, B1 B2)
SEQ(H1 {ValidTime1}, B1) SEQ(H2 {ValidTime2}, B2)

The new message has the same valid time as the younger join partner. The join
condition may be denoted as

(h2 h H1) h1 = h2 and (ValidTime1, ValidTime2).

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

16

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

The -operator implies a huge variety of possible bindings. Fig. 8 shows multiple
situations to find a join partner for a specific message M. A pointwise join fea-
tures the following variations:
- nearest neighbor: candidate with the minimal distance to the message
(M4 in Fig. 8)

- next recent: candidate with the minimal timely forward distance (M5)
- most recent: candidate with the highest time stamp values (M8)
Additionally, interval joins are defined within the PubScribe data model to com-
bine a single message with potentially multiple messages coming from the partner
sequence:
- all more recent: set of messages with a valid time equal to or younger than the
one of the reference message. In Fig. 8, message M would be combined with mes-
sages M5 to M8.
- all: a resulting message is produced for all members of the candidate sequence.
The following example shows a join between a MSGSEQ and a MSGSET; cur-
rent stock prices, etc. are complemented by comments and rankings coming from
a different source.
RankedStockInfo MERGE()[EVAL(Price, TradingVolume)[StockInfo],

 EVAL(Ranking)[StockRanking]]
The set of operators provides a solid base for a user to specify very complex de-

scriptions (see table in the appendix for an overview). The notification system has to
accept all feasible subscriptions and perform optimizations based on these structures.
The processing model is outlined in the following section.

Fig. 8 Different Semantics for SEQ-SEQ Joins

Time

(M, M4) mit T = T(M)

M8M7M6M5M4M3M2M1

M

t1 t2 t3 t4 t5 t6 t7 t8
t’

’nearest neighbor’:

’most recent’:

’next recent’:

’all more recent’:

’all ’:

(M, M8) mit T = T(M8)

(M, M5) mit T = T(M5)

(M, M5) mit T = T(M5)
(M, M6) mit T = T(M6)
(M, M7) mit T = T(M7)
(M, M8) mit T = T(M8)
(M, M1) mit T = T(M)
(M, M2) mit T = T(M)
(M, M3) mit T = T(M)
(M, M4) mit T = T(M)
(M, M5) mit T = T(M5)
(M, M6) mit T = T(M6)
(M, M7) mit T = T(M7)
(M, M8) mit T = T(M8)

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

17

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

4 Subscription Processing Model

Using the set of operators and the structure, this section outlines the processing model
of the PubScribe notification system, subdivided into a structural and an operational
part.

4.1 Structural Layout and Processing Phases

The overall goal of the proposed PubScribe approach is to clearly decouple incoming
messages from the resulting notifications as much as possible, and thus, to enable the
notification system to optimize the processing of the subscriptions by operator cluster-
ing [27] and materialization [13]. As an underlying storage (!) model, PubScribe uses
the relational model [8] and maps each message to a single row in a table. The system
comprises multiple processing stages, each using different sets of tables as outlined be-
low (Fig. 9):

• Integration phase
Event messages are stored in message staging tables, where they are kept in their
original (received) form. In a preliminary step, single messages may be integrated
into base tables via join or split. Several options are possible: a message contributes
to exactly one single base table; a message needs a join partner to generate an entry
for a base table; or a message feeds two or more base tables, i.e. the content of a mes-
sage is split into multiple entries in the base tables.

base tables subscription generalized
staging tables subscription

propagate apply

N
ot

ifi
ca

tio
n

M
es

sa
ge

 D
el

iv
er

y
C

om
po

ne
nt

tablesmessage staging
tables

integrate

join

split

join

join join

Fig. 9 PubScribe Message Processing Model

E
ve

nt
 M

es
sa

ge
 P

ro
vi

de
r

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

18

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

The generation of notification messages is subdivided into three phases, which are
introduced to share as much work as possible. For the coordination of this huge data
pipeline, the system additionally introduces two sets of temporary tables:

• Subscription staging tables
The purpose of staging tables is to keep track of all changes to the base tables, which
are not yet completely considered by all dependent subscriptions. It is worth to men-
tion here that a system may have multiple staging tables, and each staging table cov-
ers only these subscriptions which do only exhibit a lossless join. Lossy joins are de-
layed to the propagate or apply phase.

• Generalized subscription tables
A generalized subscription table serves as basis for the computations of the notifica-
tions for multiple subscriptions (i) referring to the same set of base tables (at least a
portion of them) and (ii) exhibiting similar delivery constraints. Each subscription
may either be directly answered from a generalized subscription table, or retrieved
from the generalized subscription table with either a join to another generalized sub-
scription table or a back-join to the original base table. It is worth to note here that it
must be ensured that the state of the base tables is the same as the state at the propa-
gation time of the currently considered message.
It is important to understand that subscription staging tables are organized from a

data perspective, whereas the set of generalized subscription tables is organized accord-
ing to delivery constraints, thus providing the borderline from incoming to outgoing da-
ta.

• Propagation phase
Comparable to the context of incremental maintenance of materialized views [13],
the PubScribe system exhibits a second phase of propagating the changes from base
tables to a temporary staging area. The resulting data is already aligned with the
schema of the outgoing message, i.e. the relational peers of message operators (joins,
selections, projections, and aggregation operations) have already been applied to the
delta information. We have to mention here that the propagation appears immediate-
ly after the update of the base table.

• Apply phase
The staging table holds accrued delta information from multiple updates. This se-
quence of delta information is collapsed, implying that the primary key condition is
satisfied again and the resulting data is applied to one or more generalized subscrip-
tion tables. In this phase, subscriptions exhibiting lossy joins are combined from en-
tries of multiple staging tables or a back-join to the base tables. The result of the ap-
ply phase is picked up by the notification message delivery component and propa-
gated to the subscriber.
Subdividing the process of subscription evaluation into multiple independent phas-

es implies that the system has a huge potential for optimization. The basic strategies and
the mapping to a relational query language are demonstrated below.

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

19

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

4.2 Subscription Optimization and Relational Mapping

The optimization of subscription evaluation during the compilation is again subdivided
into two phases. The first phase of local restructurings aims at the generation of a better
execution plan using mechanisms restricted to the individual subscription. In this phase,
the basic idea of optimizing relational queries is transferred to the subscription data
model. A partially more important goal of this phase consists of generating a normal
form, which reflects the working platform for the following inter-subscription optimi-
zation process. Fig. 10 shows a subscription plan with the same sub-expression before
(left branch) and after (right branch) the local restructuring. The local operators FIL-
TER(), EVAL(), and SHIFT() are pushed down to the leaf nodes.

The global subscription restructuring phase (second phase) targets the identification
and exploitation of common sub-expressions by merging a newly registered subscrip-
tion into an existing subscription network (first ideas published as Rete network in
[11]). The merging process relies on the concept of building compensations. For exam-

((StockName, StockExchange),
Price200Win:MESSAGES(-200:CURRENT, Price))

(Price200Sum:SUM(Price200Win),
Price200Cnt:COUNT(Price200Win))

(Price200Avg:DIV(Price200Sum, Price200Cnt))

WINDOW

EVAL

EVAL

StockRankingStockInfo

(Ranking = ’*****’)

(Price, MsgTime:TIME(ValidTime))

(MsgTime=’19:30’)

(MsgTime)

((StockName, StockExchange),
Price30Win:MESSAGES(-30:CURRENT, Price))

(Price30Sum:SUM(Price30Win),
Price30Cnt:COUNT(Price30Win))

(Price30Avg:DIV(Price30Sum, Price30Cnt))

MERGE

FILTER

EVAL

SHIFT

FILTER

WINDOW

EVAL

EVAL

MERGE

EVAL (Price30Avg, Price200Avg,
PriceFlag:SMALLER(Price30Avg, Price200Avg))

SHIFT (PriceFlag)

FILTER (PriceFlag = TRUE)

SWITCH

...

StockRanking

StockInfo

(Price, MsgTime:TIME(ValidTime))

(MsgTime=’19:30’)

(MsgTime)

EVAL

SHIFT

FILTER

MERGE

FILTER (Ranking = ’*****’)

Fig. 10 Local Restructuring of PubScribe Subscriptions

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

20

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

ple, if two expressions are of the same type and exhibit similar parameters, it might be
worthwhile to compute the most general form of the operator only once and add com-
pensation operators on top of the general form to produce the specific result for each
consuming operator. Fig. 11 illustrates the process of using the stacks of operators and
merging them step-by-step. As soon as a single pair matches at a specific level, the gen-
eral form of the new subsuming operator and the two compensation operators for the
individual subscription query are created. Additionally, the already generated compen-
sations (with the newly created compensation operator and the operaters still to be
matched on top of it) are now provided with data from the newly created subsuming op-
erator. Obviously, if the operator does not produce all messages required by the lowest
operator of the compensation, the whole matching procedure for that specific level fails.
The overall process starts bottom-up and continues as far as possible (ideally up to the
highest operator). The more similar the subscriptions are, the more operators can be
shared. To enable pairwise comparison, the general form of the subscription—produced
in the local restructuring phase—is extremely important.

The general process at a relational level is illustrated in [36, 20]. From the subscrip-
tion-specific standpoint, it is worth to consider each operator regarding the matchability
characteristic and the necessary compensations. Fig. 12 shows the most important op-
erators and their corresponding compensations. A FILTER() operator regarding a pred-
icate P1 can be replaced by another FILTER() operator with a weaker predicate P2 and
a compensation consisting again of a FILTER() operator with the original or a reduced
predicate to achieve the same result.

For a SHIFT() operator, the subsuming operator has to move only a subset of the
attributes required by the matching candidate, such that the compensation moves the at-
tributes still missing to the header of the message. The EVAL() operator can be easily
compensated, if the subsuming operator generates all attributes required for the com-
pensation, which introduces the scalar operations. In the case of a COLLAPSE() opera-
tor, a match is only successful, if the group-by attributes exhibit a subset relationship,
i.e. the subsuming operator generates data at a finer granularity; the final groups can
then be generated within the compensation. This first step is accomplished by a COL-
LAPSE() operator; the alignment of the grouping values requires an additional

already generated
subsuming
operators

already generated
compensations

<op>

<op>

already generated
subsuming
operators

already generated
compensations

<op-comp>

...

..
..

..

matching
candidate

current
operator

...

..

new
subsuming

new
compensation

matching
candidate

Fig. 11 Propagation of Multiple Operators

matching
candidate

pair

matching
candidate

further
further

..

further

further

..
<op>

operator(1)

operators
operators operators

operators

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

21

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

EVAL::EXTRACT() operator to compensate for the additional nesting within the aggre-
gation attributes.

For dynamic grouping, there is no easy way of building compensations [20]. A
match is only successfully recorded, if the two parameter sets are equal, i.e. show the
same window size and window characteristics. For MERGE() operators, a compensa-
tion depends on the similarity of the join predicates and the join type, i.e. the type
(MSGSEQ or MSGSET) of the join partners. To weaken these restrictions, the join
characteristics in the case of a MSGSEQ/MSGSEQ join can be exploited using the fol-
lowing partial ordering of the join characteristics:

ALL (NEXT NEIGHBOR |
 ALL NEXT RECENT (MOST RECENT | NEXT RECENT))

For example, a join with NEXT RECENT can be derived from a MERGE() operator
with join characteristic ALL NEXT RECENT or simply ALL.

After restructuring the subscription query network both locally and globally, the fi-
nal step consists in generating SQL expressions allowing the efficient mapping of the
operator network onto operators of the relational storage model. Fig. 13 also shows this
step for the branch next to the StockInfo publisher. In a last and final step, the database
objects in a relational system are subject of pre-computation, if the corresponding op-
erator in the subscription network has a potentially high number of consumers.

Fig. 13 illustrates the optimization process of a subscription operator network using
our current example of stock trading information. It can be seen that the lowest two
blocks (blocks denote relational database objects of either virtual or materialized views)
of the operator network are the result of the matching process and reflect the set of sub-
suming candidates. The two parallel blocks denote compensations built on top of the
commonly used query graph.

➢

➢

(P1)

Fig. 12 Rules for Generating Compensations

(P2)

(P1) bzw. (P1 \ P2)...

a) compensation for FILTER()

(X, Y, Z) (X, Y)

(Z)...

b) compensation for SHIFT()

(A:op(X),
(A:op(X), X, Y)

(A, B:op(X,Y))...

c) compensation for EVAL()

B:op(X,Y))
((X, Y),

...

d) compensation for COLLAPSE()

(AGrp:A)) ((X, Y, Z),
(AGrp:A, BGrp:B))

((X, Y),
(ATmp:AGrp))

(AGrp:
EXTRACT(A, ATmp))

EVAL EVAL

EVAL

COLLAPSE COLLAPSE

COLLAPSE

EVAL

FILTER FILTER

FILTER

SHIFT SHIFT

SHIFT

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

22

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

5 Summary and Conclusion

Notification systems reflect a special kind of data management systems working like a
huge data pipeline. Data items (documents) are entering the system, posted in form of
event messages. Within the system, standing queries (subscriptions) are forming a com-
plex-structured network of specific operators. Messages are routed through the operator
network in multiple phases and finally arrive as notification messages at the delivery
component responsible for sending out the messages in any supported format using a
huge variety of protocols. In order to make these data pipelines work very efficiently
and support a huge number of standing queries with similar structure, advanced data-
base technology has to be adopted and exploited to a large extent. From a more global
perspective with a database management system as an information provider, it is safe to

((StockName, StockExchange),
Price200Win:MESSAGES(-200:CURRENT, Price))

(Price200Sum:SUM(Price200Win),
Price200Cnt:COUNT(Price200Win))

(Price200Avg:DIV(Price200Sum, Price200Cnt))

WINDOW

EVAL

EVAL

((StockName, StockExchange),
Price30Win:MESSAGES(-30:CURRENT, Price))

(Price30Sum:SUM(Price30Win),
Price30Cnt:COUNT(Price30Win))

(Price30Avg:DIV(Price30Sum, Price30Cnt))

WINDOW

EVAL

EVAL

MERGE

EVAL (Price30Avg, Price200Avg,
PriceFlag:SMALLER(Price30Avg, Price200Avg))

SHIFT (PriceFlag)

FILTER (PriceFlag = TRUE)

SWITCH

...

StockRanking

StockInfo

(Price, MsgTime:TIME(ValidTime))

(MsgTime=’19:30’)

(MsgTime)

EVAL

SHIFT

FILTER

MERGE

FILTER (Ranking = ’*****’)

operator blocks for the
relational storage system

CREATE [MATERIALIZED] VIEW V1 AS
 SELECT StockName, StockExchange,

 Price,
 TIME(ValidTime) AS MsgTime,

 FROM StockInfo
 WHERE TIME(MsgTime) = ’19:30:00’

Fig. 13 Generating Subscription Execution Networks

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

23

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

say that notification systems help the user to efficiently filter the vast amount of avail-
able information to focus only on relevant pieces of information.

References

[1] Adiba, M., Lindsay, B.: Database Snapshots. In: Proceedings of the VLDB Conference,
1980, pp. 86-91

[2] Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom,
J.: STREAM: The Stanford Stream Data Manager. In: Proceedings of the SIGMOD Con-
ference, 2003, p. 665

[3] Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In: Pro-
ceedings of the SIGMOD Conference, 2000, pp. 261-272

[4] Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous
queries over streams. In: Proceedings of the SIGMOD Conference 2002, pp. 49-60

[5] Birman, K.P. : The Process Group Approach to Reliable Distributed Computing. In: Com-
munications of the ACM, 36(12), 1993, pp. 36-53

[6] Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. In: Proceedings
of the Mobile Data Management Conference, 2001, pp. 3-14

[7] Carney, D, Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data Management Ap-
plications. In: Proceedings of VLDB Conference, 2002, pp. 215-226

[8] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. In: Communications
of the ACM, 13(6), 1970, pp. 377-387

[9] Cortes, C., Fisher, K., Pregibon, D., Rogers, A., Smith, F.: Hancock: A Language for Ex-
tracting Signatures from Data Streams. In: Proceedings of the Knowledge Discovery and
Data Mining Conference, 2000, pp. 9-17

[10] Foltz, P.W., Dumais, S.T.: Personalized Information Delivery: An Analysis of Information
Filtering Methods. In: Communications of the ACM, 35(1992)12, pp. 51-60

[11] Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. In: Artifical Intelligence, 19(1982)1, pp. 17-37

[12] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1997

[13] Gupta, A., Mumick, I.: Materialized Views: Techniques, Implementations and Applica-
tions. MIT Press, 1999

[14] Hellerstein, J.M., Franklin, M.J, Chandrasekaran, S., Deshpande, A., Hildrum, K., Mad-
den, S., Raman, B., Shah, M.A.: Adaptive Query Processing: Technology in Evolution. In:
IEEE Data Engineering Bulletin 23(2), 2000, pp.7-18

[15] Koudas, K., Srivastava, D.: Data Stream Query Processing: A Tutorial. In: Proceedings of
VLDB Conference, 2003, p. 1149

[16] Lehner, W.: Datenbanktechnologie für Data-Warehouse-Systeme (in German).
dpunkt.verlag, 2003

[17] Lehner, W., Schöning, H.: XQuery: Grundlagen und fortgeschrittene Methoden (in Ger-
man). dpunkt.verlag, 2004

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

24

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

[18] Lehner, W.: Marktplatz omnipräsenter Informationen - Aufbau und Analyse von Subskrip-
tionssystemen (in German). B.G. Teubner Verlag, 2002

[19] Lehner, W. (Hrsg.): Advanced Techniques in Personalized Information Delivery. Techni-
cal Report, University of Erlangen-Nuremberg, 34(5), 2001

[20] Lehner, W., Pirahesh, H., Cochrane, R., Zaharioudakis, M.: fAST Refresh using Mass
Query Optimization. In: Proceedings of the ICDE Conference, 2001, pp. 391-398

[21] McCarthy, D.R., Dayal, U.: The Architecture Of An Active Data Base Management Sys-
tem. In: Proceedings of the SIGMOD Conference, 1989, pp. 215-224

[22] Oki, B.M., Pflügl, M., Siegel, A., Skeen, D.: The Information Bus - An Architecture for
Extensible Distributed Systems. In: Proceedings of the SOSP Conference,1993, pp. 58-68

[23] Powell, D.: Group Communication (Introduction to the Special Section). In: Communica-
tions of the ACM 39(4), 1996, pp. 50-53

[24] Pu, Y., Liu, L.: Update Monitoring: The CQ Project. In: Proceedings of the International
Conference on Worldwide Computing and Its Applications, 1998, pp. 396-411

[25] Ramakrishnan, S., Dayal, V.: The PointCast Network. In: Proceedings of the SIGMOD
Conference, 1998, pp. 520

[26] Roth, M.T., Schwarz, P.M.: Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy
Data Sources. In: Proceedings of the VLDB Conference, 1997, pp. 266-275

[27] Sellis, T.: Multiple Query Optimization. In: ACM Transactions on Database Systems,
13(1), 1988, pp. 23-52

[28] Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence Query Processing. In: Proceedings
of the SIGMOD Conference, 1994, pp. 430-441

[29] Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of network traf-
fic. In: Proceedings of the USENIX Annual Technical Conference, 1998

[30] Terry, D.B., Goldberg, D., Nichols, D., Oki, B.M.: Continuous Queries over Append-Only
Databases. In: Proceedings of the SIGMOD Conference, 1992, pp. 321-330

[31] Tian, F., Reinwald, B., Pirahesh, H., Mayr, T., Myllymaki, J: Implementing a Scalable
XML Publish/Subscribe System Using a Relational Database System. In: Proceedings of
the SIGMOD Conference, 2004, pp. 479-490

[32] World Wide Web Consortium: Extensible Markup Language (XML), Version 1.0, Second
Edition. W3C Recommendation.
Electronically available at: http://www.w3.org/TR/2000/REC-xml-
20001006

[33] World Wide Web Consortium: XML Schema Part 1: Structures.
Electronically available at: http://www.w3.org/TR/xmlschema-1/

[34] World Wide Web Consortium: XML Schema Part 2: Datatypes.
Electronically available at: http://www.w3.org/TR/xmlschema-2/

[35] Yan, T.W., Garcia-Molina, H.: SIFT - a Tool for Wide-Area Information Dissemination.
In: Proceedings of the USENIX Winter Conference, 1995, pp. 177-186

[36] Zaharioudakis, M., Cochrane, R., Pirahesh, H., Lapis, G., Urata, M.: Answering Complex
SQL Queries Using Summary Tables. In: Proceedings of the SIGMOD Conference, 2000,
pp. 105-116

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

25

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Appendix

Tab. 1 Listing of all PubScribe Operators

Description Operator Specification

filtering X’ FILTER(<attr> [= , ~=, <, >] <val>,
 <attr> IN (<val1>, ..., <valn>), ...)[X]

attribute migration X’ SHIFT(<attr>, ...)[X]

attibute operator
- scalar operator
- aggregations

operator
- structural

modification
operator

X’ EVAL(<attr>,
 <attr’>:<scalar-op>(<attr1>[,<attr2>]),
 <attr’>:<aggr-op>(<attr>)

 <attr’>:<attr-op>(<attr1>, <attr2>), ...)[X]
 <scalar-op> { PLUS, MINUS, MULT, DIV }
 <scalar-o1opd> { GREATER, SMALLER, EQUAL }
 <scaler-op> { DATE, YEAR, MONTH, DAY }
 <scaler-op> { TIME, HOUR, MIN }
 <aggr-op> { MIN, MAX, SUM, COUNT }
 <attr-op> { EXTRACT, COMBINE }

static
group by

X’ COLLAPSE((<attr1>, ..., <attrn>)
 (<attrGrp1>:<attr1>), ...,
 (<attrGrpm>:<attrm>))[X]

dynamic
group by

X’ WINDOW((<attr1>, ..., <attrn>),
 (<attrWin1>:<win-spec>(<start>:<stop>, <attr1>), ...,

 <attrWinm>:<win-spec>(<start>:<stop>, <attrm>))[X]
 <win-spec> { MESSAGES, TIMESTAMPS }
 <start> { BEGIN, CURRENT, <int-val>, <time-val>}
 <stop> { END, CURRENT, <int-val>, <time-val>}

join X’ MERGE(<join-spec>)[X1, X2]
 <join-spec> { NEXT NEIGHBOR, MOST RECENT,

 NEXT RECENT, ALL RECENT, ALL }

Final edited form was published in Theo Härder, Wolfgang Lehner, Hgg., 2005. "Data Management in a Connected World."
Berlin: Springer, S. 111–136. ISBN 978-3-540-31654-1.

https://doi.org/10.1007/11499923_7

26

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

	Frontmatter
	MOTIVATION AND MODELING ISSUES
	Databases: The Integrative Force in Cyberspace
	Federating Location-Based Data Services
	An Agent-Based Approach to Correctness in Databases

	INFRASTRUCTURAL SERVICES
	Thirty Years of Server Technology --- From Transaction Processing to Web Services
	Caching over the Entire User-to-Data Path in the Internet
	Reweaving the Tapestry: Integrating Database and Messaging Systems in the Wake of New Middleware Technologies
	Data Management Support for Notification Services
	Search Support in Data Management Systems

	APPLICATION DESIGN
	Toward Automated Large-Scale Information Integration and Discovery
	Component-Based Application Architecture for Enterprise Information Systems
	Processes, Workflows, Web Service Flows: A Reconstruction
	Pros and Cons of Distributed Workflow Execution Algorithms
	Business-to-Business Integration Technology

	APPLICATION SCENARIOS
	Information Dissemination in Modern Banking Applications
	An Intermediate Information System Forms Mutual Trust
	Data Refinement in a Market Research Applications' Data Production Process
	Information Management in Distributed Healthcare Networks
	Data Managment for Engineering Applications

	Backmatter
	ADP8AB8.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Wolfgang Lehner

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

