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Abstract. In wireless sensor networks, energy and communication bandwidth
are precious resources. Traditionally, layering has been used as a design principle
for network stacks; hence routing protocols assume no knowledge of the appli-
cation behavior in the sensor node. In resource-constrained sensor-nodes, there
is simultaneously a need and an opportunity to optimize the protocol to match
the application. In this paper, we design a network architecture that efficiently
supports multi-scale communication and collaboration among sensors. The archi-
tecture complements the previously proposed Abstract Regions architecture for
local communication and collaboration. We design a self-organizing hierarchi-
cal overlay that scales to a large number of sensors and enables multi-resolution
collaboration. We design effective Network Programming Interfaces to simplify
the development of applications on top of the architecture; these interfaces are
efficiently implemented in the network layer. The overlay hierarchy can adapt to
match the collaboration requirements of the application and data both temporally
and spatially. We present an initial evaluation of our design under simulation to
show that it leads to reduced communication overhead, thereby saving energy. We
are currently building our architecture in the TinyOS environment to demonstrate
its effectiveness.

1 Introduction

Sensor networks [1]] consist of a large number of small, low-powered wireless nodes
with limited computation, communication, and sensing abilities. Their ubiquitous, on-
demand sensing capabilities have enabled numerous new applications, from vibration
monitoring throughout buildings in active earthquake zones to air pollution tracking
to microclimate investigations in tropical rain forests. In a battery-powered sensor net-
work, energy and communication bandwidth are a scarce resources. Thus there is a need
and opportunity to adapt the networking to match the application in order to minimize
the resources consumed and extend the life of the network.

Sensor network applications have several characteristics that distinguish them from
other networks (such as LANs or ad hoc wireless communication networks) and make
matching the networking to the application challenging. For example, different appli-
cations demand a wide range of different communication patterns among the nodes,
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including data aggregation, dissemination, attribute-based routing, local collaboration,
and multiple resolution. Several networking protocols have been developed to handle
these kinds of communication efficiently. However, since each involves widely different
communication abstractions and trade-offs, no single protocol can be optimized for all
applications. Moreover, many distributed signal processing applications demand multi-
ple communication patterns. Finally, designing or matching protocols to applications is
a very difficult task for applications developers.

In this paper, we propose an adaptive network architecture that matches the com-
munication characteristics of many different applications by optimizing based on appli-
cation feedback. We design a hierarchical overlay to handle aggregation, dissemination,
and multiple resolution, and we leverage the Abstract Region [2]] architecture to handle
local collaboration between nodes. These overlays coexist and serve different purposes;
together they efficiently support a wide range of different application data communi-
cation patterns. To simplify the application design, we provide a set of Network Pro-
gramming Interfaces to abstract the details of low-level communication. Applications
specify their communication needs through these interfaces; the architecture then uses
this information to optimize the communication data flow.

Many applications, such as large-scale collaborative sensing, distributed signal pro-
cessing, and data assimilation, require the sensor data to be available at multiple resolu-
tions, or allow fidelity to be traded-off for energy efficiency. We form a self-organizing
network hierarchy that can scale to very large numbers of nodes using multi-scale
data communication. Our multi-scale hierarchical overlay adapts to form clusters such
that data communication becomes efficient. While a self-organized hierarchy has been
known to scale well, ours is the first proposal to align the network hierarchy with the
application data flow.

After overviewing related work in Section 2] we describe our hierarchical overlay
in Section Bl Section [4] details our initial design evaluation. We conclude and suggest
directions for future work in Section[3

2 Related Work

Various protocols and architectures have been proposed over the years for sensor
networks. Earliest were the diffusion class [3] of algorithms, which are effective in
aggregation and dissemination communication abstractions but cannot support multi-
resolution communication required by many applications. There are various ways of
implementing these diffusion algorithms depending on the application behavior, such
as two-phase pull, one-phase pull, and push. The specific diffusion behavior can be
chosen by the application to match its requirements [4]. GARUDA [5] is an archi-
tecture that handles reliable delivery of downstream data under various notions of
reliability.

Fractional Cascading [6]] and DIMENSIONS [7] have recently been proposed to
handle multi-scale data communication. We extend their design, which is essentially
for storage and retrieval of sensor data, to have more general applicability. Their archi-
tecture is based on a regular grid structure and assumes regular data sampling. However,
practical multiscale transforms need to accommodate networks with arbitrary irregular



Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 175

placement of sensors; we achieve this using our self-organizing hierarchy. Our archi-
tecture adapts to the node collaboration requirements to make the networking more
efficient, which is not addressed in these two previous approaches.

SDIMS [8]] is another hierarchical approach that is more targeted toward wired net-
works but can be adapted for wireless sensor networks. This approach provides a flex-
ible API for configuration but does not address the adaptibility to application require-
ments. It does have a tunable interface for a tradeoff between latency and overhead for
added flexibility.

The goal of Abstract Regions [2] is to simplify the application design by providing
abstract interfaces to hide the details of low-level communication. It proposes the
concept of neighborhood as a programming unit, and shows how various applications
can be efficiently written using it. Many applications need multi-resolution data though,
and our architecture addresses the abstraction requirement for such applications. The
Abstract Region concept of neighborhood is thus complementary with our approach,
and both together cover a much wider range of application requirements. Hood [9] is
another approach to providing a programming abstraction, but it is also targeted toward
neighborhood-based programming models only.

3 Hierarchical Overlay

We design the hierarchical overlay for efficient aggregation, dissemination, and multiple
resolution of application data. In this overlay, a self-organizing hierarchical clustering
is formed, inspired by the self-organization component of protocols like Safari [[10] and
L+ [L1].

The hierarchy is a recursive organization of nodes into cells, cells into supercells,
and so on, based on an autonomous self-election of a subset of the nodes into drums,
and iteratively drums self-electing to become higher level drums, and so on. The drum
is also called the parent for all nodes within it’s cell. Figure 1l shows an example cell
hierarchy. In the figure, nodes 1, 2, 3, 4, 5, and A group together to form a cell (called
fundamental cell) with node A being the drum for the cell. Each of the drums in the
network, namely nodes A, B, C, and D form a higher level cell with node C being the
drum for that higher-level cell (called a super-cell). This hierarchy formation goes on
iteratively until all the nodes come under one highest level cell. The self-selected drums
aid in this hierarchy formation by sending periodic beacon packets.

Each node can be thought of as a level O cell and a level 0 drum (level 0 drums do not
send beacon packets). Every level £ drum is at the same time also a level ¢ drum, for all
1 < k. This hierarchy formation algorithm is distributed, with no central coordination.
Drums of the same level are roughly uniformly spaced, with higher level drums more
sparse than lower level drums. A coordinate of any drum at level 7 is the concatenation
of the coordinate of the level 7 + 1 drum with which it associates, along with a unique
identifier. This unique identifier can be any random string large enough to avoid col-
lisions. We use an address assignment technique proposed in TreeCast [12], whereby
the nodes are given compact addresses minimizing the length of address strings. Vari-
ous sensor applications require the identifiers of nodes along with their values, and this
technique leads to efficient encoding of the identity (and location) of the nodes.
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Fig. 1. Cluster hierarchy

In the initial startup period, each drum sends beacon packets (beacons) periodically,
containing the beacon sequence number, the drum level, and a hop count, which aids in
the hierarchy formation. These beacons are forwarded by all nodes within the hop count
limit or those within the cell defined by the parent of the drum sending the beacon.
In Figure [l the beacons from node B reach all the nodes in super-cell 1. The beacons
sent during this initial phase also give the shortest path from any drum of level ¢ to its
associated higher level drums and the drums in the same level within it’s super-cell.

Algorithm[Tlshows the Cluster Formation algorithm. A drum of level i is denoted by
drum;, and drumg denotes the nodes. Beacons sent by drum; are denoted by beacon,;.
D; is the fundamental cell diameter and is dependent of the cluster size required by the
application.

The drums wait a random time between 0 and 7;,,., before deciding whether to
become a higher level drum or associate with another drum. The association scope of the
drums, determined by the hop limit of the beacons, increase geometrically with the level
of drum. Decreasing « increases the number of levels in the hierarchy while reducing
the number of nodes in each level, whereas increasing the « has the opposite effect.
Lines 8-10 of the algorithm ensure that the beacons of any drum reach all nodes within
its super-cell. Lines 11-13 ensure that no drums of same level form too close to each
other, as that reduces the efficiency of the clustering. Lines 14-16 make the hierarchy
evolve such that the drums are always associated with closest higher level drum. The
number of levels formed in the hierarchy is of O(log(N)), where N is the number of
nodes in the network. As a simple analysis of the cost of the algorithm, if instantaneous
propagation is assumed, then all [evel; drums are separated by D; hops, with very high
probability, and so the total startup phase is of O(T 4. log(NN)). Therefore the latency
can be made smaller by reducing 75, to an optimal value.

For null Selectors, the hierarchy formed can be analyzed using the Random Se-
quential Adsorption (RSA) model, since under the instantaneous propagation approxi-
mation, the hierarchy formation conforms to the RSA model [10]. The average number
of level 1 drums formed is
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Algorithm 1. Cluster Formation

1: repeat

2 Drum; wait for a random time up to T oz
3:  if Drum; does not hear a higher level drum beacon, or is not the highest level drum then
4 Steps up to level;+1 and starts sending periodic beacons with hop limit of Diy1 =
o X DZ = Ozi X Dl

5 else
6: Associates with the nearest drumy1.
7 end if
8 if Drum; hears any non-duplicate beacon by a drum in it’s super-cell then
9: Drum; forwards the beacon.
10:  endif
11:  if Drum; hears any beacon; < D; hops away then
12: The drum with the lower id steps down to level;_1
13:  endif
14:  if Drum; hears any beacon;+1, which is closer than current beacon;+1 then
15: Drum,; associates itself with the closer drum
16:  endif

17: until All nodes are assigned stable coordinates

n=0.547< o > M
T—tp
4

where NV is the number of nodes in the network, p is the node density in hop-metric
sense, its value depending on the transmission range and spatial density of nodes. When
applied to multiple levels of the hierarchy, this gives us

n; D'H—l 2
RGN (e 2
Nit1 ( D; ) @

where n; is the number of level ¢ drums.

3.1 Adaptive Hierarchy

During startup, each drum sends beacon packets periodically, which are forwarded by
all nodes based on a policy of geographical (hop count) proximity. These beacons then
induce a cell hierarchy that is proximity based. In various sensor network applications,
proximity is a good measure of correlation and hence of data interchange. So, the above
approach of cell structure formation matches the collaboration between and nodes.

In many other applications though, the collaboration and communication take place
between nodes based on various other constraints. For example, nodes with similar
magnetic field or temperature readings within a neighboring scope might need to com-
municate more often. So, if the clustering hierarchy matches the collaborative set of
nodes, communication can be efficiently abstracted and implemented. We use some
application specified filters, called Selectors, to align this hierarchy to match the collab-
oration and communication sets of nodes.
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Algorithm 2. Recluster (Selectors)

1: Drum sends out beacons with Selectors

2: Nodes matching the Selectors (re)select the Drum as their parent

if Any node become orphan or cell is sub-optimal then

4: It sends Solicit Beacons with specified Selectors

5:  Nodes matching the Selectors respond with Beacons

6 Choose the drum most suitable with respect to the Selectors, and become a child of the
drum

7: end if

(O8]

We define a Selector as a tuple of ( attribute, value, operator ), where attribute is
any application specified variable, and value is a valid element from the range of the
attribute. The operator is a binary operation (such as >, <, or =) with value being one
of the operands. We extend the definition of a Selector to form:

Selectors = Selectors N Selectors | Selectors \ Selectors | Selectors | Selector | null

The values for the attributes are assumed to be shared between the application, sen-
sor hardware, and the networking layer at a node, which enables the Selectors to be
evaluated at the networking layer. An operator needing a time-series of previous at-
tribute values might entail the sharing of whole data structures of application computed
values. Currently only scaler operators are supported; more complex operators could
have application-defined call-back functions to enable them to be evaluated by the ap-
plication.

The beacons of drums are forwarded by a node if the hop count in the beacon packet
is less than a specific value and the specified Selectors evaluates to true for the attribute
values in that node. For an empty Selectors, the effect is to forward the beacons based
only on hop count.

Reclustering of the network hierarchy to adapt it closely to the communication flow
is initiated by the application locally in cells where adaptation is needed. This is best
judged by the application, as the networking layer does not have any knowledge of the
application logic or how the sensed values influence the communication. Algorithm 2]
shows the Recluster Algorithm. The parameters for cluster formation are changed lo-
cally to reflect current communication patterns. The Selectors encode the criterion for
the new cluster formation in the Split Phase of the algorithm. After reclustering, some
nodes might become orphans (nodes without parent) or some cells might be smaller
than optimal. These nodes or cells then merge with neighboring cells meeting the cri-
terion in the Merge Phase of the algorithm. This reclustering is triggered by the ap-
plication locally, and only occurs in the cells needing it for efficiency. The rest of the
clusters in different areas are not changed. Hence, this reclustering takes place locally
only where necessary and invokes no long range messaging.

3.2  Network Programming Interfaces

We design a set of address-free Network Programming Interfaces (NPIs) to adhere to
the paradigm that communication for the typical sensor network applications should be
expressed without referencing specific nodes [[13]]. The interest is in data over space and
time, rather than individual node values. The subject of direct one-to-one communica-
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tion has been extensively studied in the literature, and we will not propose any new pro-
tocol for this but will leverage the existing body of work. We provide primitives to ease
the programmability in a sensor network, by capturing the interfaces that are needed by
sensor applications in general. Abstract Regions [2] proposed a flexible means of node
addressing, by supporting data sharing using a tuple-space-like programming model.
Their approach is similar to the MPI approach for parallel machines, by hiding the de-
tails of the sharing primitives. We support similar primitives and extend them for our
multi-scale architecture, although sharing is explicit using put and get primitives, to
provide a more efficient implementation of the programming model. The two groups of
interfaces we support are discovery and communication.

Each of the interfaces can be implemented in either blocking or non-blocking fash-
ion. In non-blocking mode, the operation is invoked through a command, and when the
operation is complete, a callback is invoked on the original requesting component. In
blocking mode, the operation may block and then resume on an interrupt either by a
timer or message arrival. The blocking mode is significantly easier to program, as in the
non-blocking mode the programmer has to handle the synchronization and callback ex-
plicitely. TinyOS [14] supports the non-blocking concurrency model, but a lightweight
thread-like abstraction called Fiber [2] has been implemented recently as a blocking
model.

Figure Rlshows the virfual hierarchy schematic of Figure [Tl which will help explain
the interfaces. All the levels above level 0 are virtual, and the nodes only exist at the
lowest level.

Level 2

Peer Level 1

Level 1

: Level 0

Cell Level 2

Cell Level 1

Fig. 2. Virtual hierarchy

Discovery Interfaces. Discovery interfaces can be invoked by any node to give itself
information about related nodes. This information is gathered periodically, with a pe-
riod as specified by the application, and the application is informed of any changes in
the information. This procedure is continuous, either triggered by node failures or addi-
tions. The information might contain the identifiers of the set of nodes, their locations,
link quality and number of hops to each of them, and resource (e.g., remaining battery
or available sensors) present in each of them. The information learned from these dis-
covery interfaces can be used to configure the Selectors with any specified criterion. For
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example, the Selectors might be specified to filter nodes within a specified geographical
distance or with higher than a specific link quality. There are three possible interfaces
supported. As a node can be simultaneously in different levels, a level is specified for
each interface to specify the level for which the information is required. The format for
representing the gathered information is dependent on the implementation.

— Parent Information (Level): Returns information about the parent of the node at the
specified level. For example in Figure Pl this interface when invoked on node 6
with level 1 returns information about node B, and with level 2 returns information
about node C.

— Peer Information (Level): Returns information about the peers of the node at the
specified level. For example in Figure 2l this interface when invoked on node B at
level 1, returns information on the set of nodes A, B, C and D.

— Cell Information (Level): Returns information about the cell of the node at the spec-
ified level. For example in Figure[2] this interface when invoked on node A, returns
information on the set of nodes 1, 2, 3, 4, 5 and A.

Communication Interfaces. In our multi-scale architecture, we support both kinds of
communication models: Put and Get. In Put, a node sends data to its cell, parent, or
peers, whereas in Get, a node solicits data from its cell, parent, or peers. The Put in-
terfaces correspond to the push paradigm, and the Get interfaces correspond to the pull
paradigm that has been proposed by the diffusion type of algorithms [3]. We support
both types, as different applications might be optimized using different paradigms, as
pointed out by by Heidemann et. al [4]. In some situations where the data generation
rate is infrequent and unknown, polling using Get will be inefficient; using Put by the
source of the data when the data is generated will be optimal. In another scenario, where
the data generation rate is high and consumption rate is low, pushing data using Put will
entail redundant data communication; using Get by the consumer of the data when the
data is required is optimal in this case. The Put Interface can be implemented in multiple
ways: stored locally, sent immediately to the designated scope, or cached at different
intermediate locations. Similarly, the Get Interface implementation might involve ei-
ther fetching remote data or local retrival. The specific implementation depends on the
application characteristics.

We also support Reduction interfaces that use an associative operator (such as sum,
max, or min) to reduce an attribute across all the nodes in a specified region. This Re-
duction interface can be implemented using Get and Put, but efficient implementations
can take advantage of local reductions while propagating the values. This abstraction
also provides ease of programmability.

There are three groups of primitives a node might address: its parent, its peers, or its
cell. This leads to six different interfaces for Put and Get. Reduction interfaces are done
on either cells or peers. All examples below refer to Figure 2l For node A, the parent is
node C; the peers at level 1 are B, C and D; and the peers at level O as well as the cell at
level 1 are nodes 1, 2, 3, 4, and 5.

— PutParent (Attribute, Value): The value of the attribute is sent to the parent node.
When called on Node A, the data is sent to node C.



Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 181

— PutCell (Level, Selectors, Attribute, Value): Level can be at most one level higher
than the node using this interface. So, a node of levely can send message to the
fundamental cell. In general, a drum; can send message to all nodes in the same
level; cell. For Node A, PutCell called with level 1 delivers data to nodes 1, 2,
3, 4 and 5, while called with level 2 delivers data to all the nodes marked by Cell
level 2. The targeted nodes can filter the receipt of the Data using the Selectors.

— PutPeer (Level, Selectors, Attribute, Value): The level can be at most same as the
level of the node using the interface. This interface provides the same functionality
as PutCell for levely nodes. For node A, level 1 delivers the data to nodes B, C and
D (Peer Level 1).

— GetParent (Attribute): The value of the attribute is solicated from the parent node.

— GetCell (Level, Selectors, Attribute): Level can be at most one level higher than the
node using this interface. In this interfaces, Data is received from the cell nodes
matching the Selectors.

— GetPeer (Level, Selectors, Attribute): The level can be at most same as the level of
the node using the interface. This interface provides same functionality as GetCell
for levely nodes.

— ReduceCell (Level, Selectors, Attribute, Operator): This interface is applied on the
attribute for all nodes in the cell specified by level and Selectors. And the reduced
attribute value is stored locally. For example for operator max, the maximum at-
tribute value within the cell is returned by this interface.

— ReducePeer (Level, Selectors, Attribute, Operator): Similar interface where the
scope is all the peer nodes at the specified level.

3.3 Efficient Communication Operations

The Network Programming Interface in the previous section is used by the applications
to form a clustered hierarchy and to adapt it for efficient communication. In this section,
we describe mechanisms for efficiently supporting the different communication inter-
faces. We assume the existence of bidirectional wireless links, which is true for most
commonly used wireless MAC protocols.

— With the parent node: The drum beacons that are used to form the cluster hierarchy
is utilized to route from and to parent node, by following the path or reverse path of
the beacons respectively. If the path breaks, due to nodes in the path moving away
or dying, then local route repair is done to find a new route. The drum whose path
breaks, sends out beacons for a short interval to repair the broken path.

— With the peer nodes: At any level, the peer nodes need to be able to communicate
with each other efficiently. This is achieved by expanding the scope of the beacons
for the drums. The beacon packet of a level n drum is also forwarded by all nodes
in the level n + 1 cell of the originating drum. The reverse path is followed to
reach each peer. This is only done in the startup period or when a path breakage
is detected. Multicasting at network or MAC layer (if possible) is done to prevent
duplicate packets along common part of the paths. For example in Figure[I] beacon
packets from node A in cell I is flooded to the whole super-cell I. And hence B, C
and D know of the shortest path to A.
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(a) Full Connectitivy (b) MST based com- (c) SPF based com-

in the graph munication. Maximum munication. Maximum
Latency: 4-hops. Total Latency: 3-hops. Total
Cost: 4-broadcasts Cost: 5-broadcasts

Fig. 3. Example topology connecting peer nodes (A, B, C, D and E) and forwarding nodes (f1
and 12)

The above technique leads to minimum latency communication from any node
to the rest of it’s peers, using shortest path. But, it also leads to higher cost in terms
of number of forwards. Alternatively a Minimum Spanning Tree can be formed
between the peer nodes. This leads to lesser number of forwards, but also leads to
higher maximum latency. Figure [3| shows an example topology to illustrate this.
This tradeoff can be exposed for the application to choose from.

— Within the cell: Communication from any node to the whole cell can be achieved
by simple flooding within the scope of the cell, whereby each node forwards a
packet exactly once. However, this is very sub-optimal and leads to many redundant
broadcasts specially in a dense network. We describe next our strategy for optimal
cell flooding.

Optimal Cell Flooding. Typical broadcasting using simple flooding, where each node
forwards a packet exactly once, leads to broadcast storm problems [15] and is very
energy inefficient. To form a more efficient flooding algorithm, there has been substan-
tial work with regard to carefully choosing the forwarding nodes to reduce the number
of forwards without reducing it’s effectiveness. Williams and Camp [16] categorized
the techniques recently. In probability-based methods, nodes forward with some vari-
able probability parameter chosen randomly or depending on the number of broadcasts
heard. In area-based methods, distance or location of the nodes are taken into account by
the node before deciding on forwarding. Both of these methods are completely localized
without the need for any coordination. In neighbor knowledge methods, a distributed
algorithm forms a Connected Dominating Set (CDS) to choose a subset of nodes to
be forwarders. This has more overhead than the previous methods, but leads to more
optimal flooding due to better knowledge about the neighborhood. Ideally, a Minimal
Connected Dominating Set (MCDS) will give the most efficient set of nodes to forward
packets such that all nodes are reached. Building a MCDS is an NP-Complete prob-
lem, however, and the problem gets harder in sensor networks in the absence of global
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knowledge. There has been a significant body of work on approximating the MCDS
using heuristics [[17].

There are two types of neighbor knowledge methods proposed: Relaying in which
a node determines the forwarding status of it’s neighbors, and Pruning in which a node
makes a local decision on it’s forwarding decision. Multipoint relaying is an efficient
approach for relaying, and has been used in the OLSR ad hoc network routing proto-
col [18]. The re-broadcasting nodes are explicitly chosen by the upstream nodes, either
via “hello” packets, or within the header of each broadcast packet. In relaying, there is
either additional overhead in each packet to designate the forwarding nodes, or relevant
state that has to be maintained by each node. The statelessness of protocols has prime
importance in an unreliable network of sensor nodes, as a stateless protocol never op-
erates on out of date state. In the pruning methods, nodes decide on their own locally
whether to forward or not, leading to better reliability in the face of failure. There is
automatic correction for small changes and robustness to big changes. Nodes can go
to sleep independently in pruning methods, but there needs to be additional coordina-
tion in relaying methods so that no delegated forwarder is sleeping. In the absence of
MAC layer multicast for pruning, nodes have to broadcast every packet for which all
the neighbors have to process the packet before knowing that they are not designated
forwarders. And finally, a comparison paper [[L6] showed very similar performance for
both of the methods. We chose to use pruning method for the above reasons.

Various approaches for pruning based broadcasting use knowledge of k-hop neigh-
borhood information, m-hop last visited nodes information for each packet, and priority
between nodes. Larger value of k leads to more optimal forwarding set, but also entails
higher cost for maintaining this neighborhood information. Larger value of m is also
useful, but entails packet overhead. Wu and Dai [[19] have proposed a generic scheme
to cover all pruning based approaches. A node determines it’s forward status by finding
existing replacement paths between all pairs of its k-neighbors. If all the replacement
path nodes have higher priority values than itselt or is already visited, then the node
chooses to be a non-forwarder. Else, it forwards.

In designing an efficient flooding algorithm, the factors we chose were the follow-
ing. The computational complexity is O(k?) for such algorithms, thereby dictating a
small value of k. Also, recent proposals for sensor network MAC protocols [20}121]]
maintain a 2-hop neighborhood to deal with efficient assignment of conflict-free slots.
We choose value of k to be equal to 2. The information for m equal to 1 is available
at no cost when the packet is received, by looking at the source. A greedy approach
is taken to prioritize the nodes based on their degree of connectivity. Our solution is
similar to the approach taken in the Scalable Broadcast Algorithm [22]]. In a more or
less static network, the neighborhood information is invariant. On detection of neigh-
borhood change, this two-hop neighborhood is recalculated by all nodes broadcasting
their neighborhood nodes. Our Cell Flood Algorithm is shown in Algorithm 3l

maximum(|Nx — Na|forX € Na(Np) is the maximum number of additional
nodes that can be covered by any node which has received a broadcast from node 4 and
is in the neighborhood of node 5. Greedy approach is in choosing the broadcasting node
in line 5 of the algorithm, by favoring the node with maximum additional coverage. In
Line 6, S is updated every time the node receives a broadcast of the packet from any
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Algorithm 3. Cell Flood Algorithm

Require: Nodep receives a broadcast packet from a neighbor node 4

Require: N be the set of 1-hop neighbors of nodeg.

Require: Sp is a set of nodes in the 1-hop neighborhood which have not yet received the packet

1: if Nodep has handled the same broadcast packet before then

2 Nodeg silently drops the packet

3: else

4: Nodep calculates a timer proportional to the ratio

Maximum(Nx —Na|forXeNaNNg)
INg—=Nal
5:  Till timer expires, nodep updates Sg when it hears any other neighbor broadcast, using
the neighborhood information

6: if Sp = () then

7: Nodep silently drops the packet

8: else

9: Nodep rebroadcasts the packet with some jitter
10:  endif
11: end if

neighboring node. Elements of S which are present in the N of the neighboring node
are removed. If S becomes empty, the packet it dropped, else the packet is forwarded.

Proof of full coverage: Every node in the network checks it’s neighborhood to
determine whether all neighbors have received a packet, and forwards the packet if
there is any uncovered node in the neighborhood. Hence, all the neighbors of any node
in the network receives the packet. As the full network is an union of the neighborhood
of all the nodes, hence all the nodes in the network are covered.

Optimality of coverage: The proposed greedy heuristic leads to a approximate MCDS
for the graph. Analysis of the approximation bound gives log(n) times the cardinality
of the optimal MCDS solution, where n is the number of nodes in the graph. The proof
is similar to the optimality proof for Multipoint forwarding [23] .

Optimal Selectors Implementation. Selectors filter can be specified in some of the
communication interfaces. If the filter is null, then the communication operations are
efficiently implemented as elaborated previously. If this filter is not null but has a Selec-
tors, then this scope (termed Selectors scope) is a subset of the scope with null selector
(termed null scope). The communication operation can be done assuming null selector,
and filtered at each node. This is not most efficient, specially is the Selector scope is sig-
nificantly less than null scope. We implement the scoping of the Get and Put operations
using the following technique.

If operations with any Selectors filter is invoked the first time, the communication
has to be delivered in the null scope as there is no knowledge of the location of the
nodes matching the Selectors. But, for frequently invoked Selectors filters, an opti-
mized implementation is done to cover the matching nodes only. If any particular Se-
lectors if invoked frequently at any particular node, a trigger is set. The first packet
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being delivered after this trigger is set includes a DoReinforment flag. All the nodes
matching this Selectors filter, sends a Reinforced message back to the source, specify-
ing the Selectors. All the nodes through which this Reinforced message passes back are
part of the forward set of nodes for the specified Selectors. All the subsequent pack-
ets with this Selectors, has a OnlyReinforced flag and is forwarded by the forward
set of nodes only. This is remembered for a specific interval, greater than the period
specified in the communication interface, if present. Periodically the DoReinforcement
flag is set again and forwarded by all nodes to account for any change in topology or
interest.

3.4  Multi-scale Application

To demonstrate the effectiveness of the network programming interfaces, we describe
a distributed wavelet compression algorithm which can effectively use the interfaces
to optimize the communication. Multi-resolution data analysis, processing and com-
pression is useful for various sensor network applications. A lot of previous work on
wavelet-based processing in sensor networks have assumed regularly-spaced data.

Recently, Wagner et. al. [24] have proposed a haar wavelet based multi-scale data
analysis which enables irregular wavelet transform. In the bottom-up approach of that
algorithm, all the sensors in the fundamental cell sends their sensor readings to the
drum for that cell using PutParent. The locations and identifiers of the nodes are also
available to the drum through the Discovery interface. The drum calculates the scal-
ing coefficient describing the average reading of the cluster and the wavelet coefficient
encoding the deviations from the average readings. These scaling coefficients are then
passed up the hierarchy using the Parent interfaces, and similarly computed. In the top-
down approach of the algorithm, querying is from the top-level and drilling down until
the requisite resolution of the data is obtained. This is achieved using the GetPeer in-
terfaces. Finest resolution is obtained if query goes down until the fundamental cell
level.

For any compression, maximum efficiency with minimal loss is achieved when
many data points are similar enough to be represented with one data point. When com-
pressing a field of sensor data, various regions in space might have similar readings.
So, if there is one cluster for each region, the region might be efficiently represented
by a single value. But, if one cluster encompasses two different regions with divergent
values, compression is not so efficient. The reclustering technique is used here such
that each cluster has similar values and hence efficient representation. Locally near the
region boundaries clusters are aligned with the regions.

4 [Initial Design Evaluation

We have performed an initial evaluation of the design of our architecture by simulating
the adaptive overlay formation in the ns-2 simulator. We are currently implementing
the protocol and interfaces in TinyOS. A full evaluation of our architecture will then be
possible by modifying existing and new sensor network applications to use this archi-
tecture.
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4.1  Cluster Operations

In this section, we evaluate communication operations. In particular, we show the effec-
tiveness of the Cell Flood Algorithm. To flood a particular cell with or without Selectors,
this algorithm builds an approximate Minimum Connected Dominating Set. Thereby,
the number of forwarding nodes is reduced without compromising the quality of the
flood. Figure 4] shows the number of retransmitting nodes with increasing network size.
The area of the network is kept constant while increasing the number of nodes, thereby
increasing the node density. For a regular flooding algorithm, where each node for-
wards a packet exactly once, the number of forwarders is exactly equal to the number
of nodes. In our Cell Flood Algorithm, the number of retransmitting nodes grows very
slowly with increasing network size. The percentage of retransmitting nodes decreases
with increasing network size, thereby showing good scalability.

4.2  Hierarchy Formation

In this section, we show the effectiveness of our hierarchy formation. Figure 5] shows
the hierarchy formed for an example topology. 500 nodes are evenly distributed in an
area of 3000 meters by 3000 meters. The radio range is taken to be 250 meters. Each
part of Figure [3] shows the first and second level clusters formed, along with rays con-
necting each node to it’s parent. Figure [5(a)] shows the clustering for D; equal to 1 hop,
Figure [5(b)| for D; equal to 2 hops, and Figure for D; equal to 3 hops. As the
number of hops allowed in the fundamental cell increases, the size of it increases along
with decrease in the number of levels in the hierarchy.

Figure[6lillustrates the number of drums at each level of the hierarchy as a percent-
age of the total number of nodes in the network. This is shown for increasing networks
sizes, with the node density kept constant. As shown in the analysis in Equation 2] the
number of drums in increasing levels decreases quadratically. Larger the network, lesser
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is the percentage of drums at each level. In this scenario, the value of a, which is the
ratio between the beacon hop limits for consecutive drum levels, is taken as 2.

Figure [7lshows the latency for cluster formation with increasing network size. Here
again, in all the networks sizes, the density is kept constant. The higher the level of
drum, the longer it takes to stabilize. This is because the higher level drums are further
spread apart and have larger beaconing intervals, which makes any change in higher lev-
els propagate more slowly. The startup latency increases slowly with increasing network
size. For the scenario sizes experimented with, the drum level 3 for all network sizes get
stable at the same time. The cost of cluster formation arises from the beaconing during
this phase, and hence is directly proportional to the length of time it takes to stabilize.

This also illustrates the effect of local change for adapting the hierarchy to com-
munication requirements. The local clustering changes take place at a lower latency as
shown in the figure. Therefore adaptivity of the clustering can be achieved with low
latency, and hence also with low cost.
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5 Conclusion and Future Work

In this paper, we have motivated the need for a multi-scale architecture for sensor net-
works. Apart from enabling multi-resolution collaboration, a clustering hierarchy al-
lows the network to scale to a very large number of sensors. Our architecture design
adapts to the communication and collaboration requirements of the application, reduc-
ing communication energy and bandwidth usage. Our architecture also provides an ab-
straction to its low-level networking aspects, thereby simplifying application design.

We are currently implementing the architecture in TinyOS. We are using the fibers
as blocking threads to implement Abstract Regions. This will enable us to deploy real
applications and quantify the utility of our abstractions and adaptation interface. Cur-
rently, our evaluation is limited by the constraints of the ns-2 simulator.

In this paper we have not addressed sensor network reliability or QoS requirements.
These are important aspects that deserve attention. We plan to develop abstractions
with tunable parameters through which the application can control the trade-off be-
tween resource usage and accuracy/reliability. Abstract Regions currently provides a
tuning interface, but it entails the application to specify low-level parameters such as
number of retransmissions. We intend to build tunable parameters at a higher level,
which will enable the application to set goals, which will be automatically translated by
the networking layer into the low-level parameters.

The Selectors implementation is currently fairly straightforward. The need to share
attributes between hardware, application, and networking layer remains. This has been
tackled previously in various approaches towards cross-layer design. However, there is
ample scope for formalizing these cross-layer interactions and implementing them in
an efficient way. Very complicated non-scalar Selectors can be supported by a fallback
function provided by the application or by a loadable kernel module written by the
application writer.
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