
Distributed Proximity Maintenance in Ad Hoc Mobile
Networks

Jie Gao1, Leonidas J. Guibas2, and An Nguyen2

1 Center for the Mathematics of Information, California Institute of Technology??,
Pasadena, CA 91125, USA

jgao@ist.caltech.edu
2 Department of Computer Science, Stanford University,

Stanford, CA 94305, USA
{guibas, anguyen }@cs.stanford.edu

Abstract. We present an efficient distributed data structure, called theD-SPANNER,
for maintaining proximity information among communicating mobile nodes. The
D-SPANNER is a kinetic sparse graph spanner on the nodes that allows each node
to quickly determine which other nodes are within a given distance of itself, to
estimate an approximate nearest neighbor, and to perform a variety of other prox-
imity related tasks. A lightweight and fully distributed implementation is possi-
ble, in that maintenance of the proximity information only requires each node to
exchange a modest number of messages with a small number of mostly neighbor-
ing nodes. The structure is based on distance information between communicat-
ing nodes that can be derived using ranging or localization methods and requires
no additional shared infrastructure other than an underlying communication net-
work. Its modest requirements make it scalable to networks with large numbers
of nodes.

1 Introduction

Collaborating intelligent mobile node scenarios appear in a wide variety of applica-
tions. Consider aircraft flying in formation: each plane must be aware of the locations
and motions of its neighbors in order to properly plan its trajectory and avoid colli-
sions. If some aircraft are fuel tankers, each plane may need to determine the nearest
tanker when its fuel is low. Or take the case of a search team in a rescue operation
where collaboration among team members is essential to guarantee coordinated search
and exhaustive coverage of the rescue area. Current research provides many other sim-
ilar multi-node collaboration examples, from the deployment of sensors in a complex
environment by a set of mobile robots [15] to the intelligent monitoring of forests by
suspended mobile sensors [16]. In all these scenarios a loosely structured collaborative
group of nodes must communicate in order to engage in joint spatial reasoning, towards
a global objective. The spatial reasoning required almost always involves proximity in-
formation — knowing which pairs of nodes are near each other. Proximity information
plays a crucial role in these scenarios because nearby nodes can interact, collaborate,
and influence each other in ways that far away nodes cannot.

?? Work was done when the author was with computer science department, Stanford University.

Motivated by such examples, we consider in this paper the task of maintaining prox-
imity information among mobile nodes in an ad hoc mobile communication network.
We provide a data structure that allows each node to quickly determine which other
nodes are within a given distance of itself, to estimate an approximate nearest neighbor,
and to perform a variety of other proximity related tasks. As a matter of fact, proximity
is important not only for the tasks the network has to perform, such as those illustrated
above, but for building the network infrastructure itself. Mobile nodes typically use
wireless transmitters whose range is limited. Proximity information can be essential for
topology maintenance, as well as for the formation of node clusters and other hierarchi-
cal structures that may aid in the operation of the network. For example, it is sometimes
desirable to perform network deformation so as to achieve better topology with lower
delay [6].

There has not been much work in the ad hoc networking community on maintain-
ing proximity information. A closely related problem is to keep track of the1-hop
neighbors, i.e. the nodes within communication range, of each node. This is a funda-
mental issue for many routing protocols and the overall organization of the network.
But even this simple problem is not easy. If nodes know their own positions and those
of their neighbors, then a node can be alerted by its neighbor if that neighbor is going
to move out of the communication range. But knowing when new nodes come within
the communication range is more challenging. A commonly used protocol for topology
discovery is for all the nodes to send out “hello” beacons periodically. The nodes who
receive the beacons respond and thus neighbors are discovered. However, a critical is-
sue in this method is how to choose the rate at which “hello” messages are issued. A
high beacon rate relative to the node motion will result in unnecessary communication
costs, as the same topology will be rediscovered many times. A low rate, on the other
hand, may miss important topology changes that are critical for the connectivity of the
network. Unfortunately, as in physical simulations, the maximum speed of any node
usually gates this rate for the entire system. Recently Amiret al. proposed a protocol
for maintaining the proximity between ‘buddies’ in an ad hoc mobile network so that a
node will be alerted if its buddies enter a range with radiusR [2]. The basic idea is that
each pair of buddies maintains a strip of widthR around their bisector. The bisector
is updated according to the new node locations when one of the nodes enters the strip.
Although the nodes move continuously, the bisector is only updated at discrete times.
This scheme, however, does not scale well, when the number of buddies is large — as
would be the case when we care about potential proximities among all pairs of nodes.

The general problem of maintaining proximity information among moving objects
has been a topic of study in various domains, from robot dynamics and motion planning
to physical simulations across a range of scales from the molecular to the astrophysical.
It would take us too far afield to summarize these background developments in other
fields on distance computations, collision detection, etc. One relatively recent develop-
ment in proximity algorithms that provides the basic conceptual setup for the current
work is the framework ofkinetic data structures(or KDSs for short) [4, 14]. The central
idea in kinetic data structures is that although objects are moving continuously, an un-
derlying combinatorial structure supporting the specific attribute(s) of interest changes
only at discrete times. These critical events can be detected by maintaining a cached

set of assertions about the state of the system, the so-calledcertificatesof the KDS,
and exploiting knowledge or predictions about the node motions. A certificate failure
invokes the KDS repair mechanism that reestablishes the desired combinatorial struc-
ture and incrementally updates the certificate set. Many KDSs related to proximity have
appeared in recent years [9, 5, 12, 13, 3, 1].

All current KDS implementations are centralized, requiring a shared or global event
queue where events are detected and processed. In our setting, a centralized event
queue would require that location/trajectory updates from all the nodes be sent to a
central location, leading to unacceptably high communication costs. These centralized
approaches are thus not directly applicable to ad hoc mobile networks, where a dis-
tributed implementation is always desirable and often necessary for the additional rea-
sons of fault tolerance and load balancing.

A first contribution of this paper is to extend traditional centralized kinetic data
structures to the domain of ad hoc mobile networks. We introduce the notion ofdis-
tributed kinetic data structures(dKDSs for short) that demand no shared infrastructure
other than a communication network among the mobile nodes and are therefore ideally
suited to ad hoc mobile network settings. In a dKDS each node holds a small number of
the centralized KDS certificates that are relevant to its portion of the global state. The
KDS is maintained globally by exchanging messages among the nodes and updating the
local certificate sets. As with any KDS implementation, an important issue to address
is the interface between the KDS and the node motions — this directly determines the
complexity of predicting or detecting KDS certificate failures. We describe two pos-
sible interfaces between motion information and the kinetic data structure: theshared
flight-planand thedistance thresholdmotion models, each with its own advantages.

Our second contribution is the development of a lightweight and efficient distributed
kinetic data structure for proximity maintenance among mobile nodes. The structure is
based on our earlier work [10] on proximity maintenance in a centralized setting. In [10]
we introduced theDEFSPANNERdata structure that forms a sparsegraph spanner[8] of
the complete graph on the nodes, when edges are weighted via the Euclidean distance.
A spanner has the property that for every pair of nodes there is a path in the spanner
whose total length is a(1 + ε) approximation of the Euclidean distance between the
nodes. Thus the spanner implicitly and compactly encodes all distance information.
Hereε is a parameter that trades-off the approximation quality against the spanner size
(number of edges needed). TheD-SPANNER structure introduced in this paper, a dKDS
for proximity maintenance among mobile nodes, represents a major reworking of our
DEFSPANNER structure so as to make it decentralized. This is a highly non-trivial task,
as classical KDSs gain much of their efficiency by assuming that failed certificates are
processed in exact chronological order, one at a time. Instead, in the distributed setting,
certificates may fail asynchronously at different nodes and the corresponding repair
processes will run in parallel and must be coordinated. To our knowledge, this is the
first distributed implementation of any KDS, attesting to the difficulty of the task.

Once we have a spanner data structure, we can efficiently answer many types of
proximity queries. Effectively, the spanner replaces an expensive continuous search
over the 2-D plane with a lightweight combinatorial search over the spanner subgraph.
For instance, the spanner can be used to detect and avoid collisions between moving

vehicles, especially unmanned vehicles, a task that is very difficult for any kind of on-
demand discovery scheme. The spanner can do this, because only pairs of nodes with a
spanner edges between them can possibly collide [10]. The continuous maintenance of
the D-SPANNER guarantees that every possible potential collision is captured and pre-
dicted. As another example, a nodeu can locate all nodes within a distanced of itself
by just initiating a restricted broadcast along the spanner edges that stops when the total
distance traversed is(1+ ε)d. The set of nodes thus discovered is guaranteed to include
all nodes within distanced of u; a further filtering step can remove all false positives,
of which there will typically be few. The set of nodes within distanced can also be
maintained through time so thatu gets alerted only when nodes join the set or drop off
from the set. Additionally, theD-SPANNERkeeps track of a(1+ε)-nearest neighbor for
everynode in the network atany time. The neighbor ofp in the spanner with shortest
edge length is guaranteed to be within distance(1 + ε) the distance betweenp andq∗,
the true nearest neighbor ofp. As shown in [10], theD-SPANNER gives us a nice hier-
archical structure over the nodes across all scales at any time, since it implicitly defines
approximatek-centers of the nodes for any givenk. TheD-SPANNERalso gives a well-
separated pair decomposition [7], which provides anN -body type position-sensitive
data aggregation scheme over node pairs. For further discussion of all these properties
of the spanner, see [10].

In this paper we focus on the maintenance of theD-SPANNER in a distributed en-
vironment and analyze its maintenance and query costs. The spanner is overlayed on a
communication network among the nodes. We assume the existence of a routing proto-
col that enables efficient communication between a pair of nodes, so that the communi-
cation cost is roughly proportional to the distance between the communicating nodes.
The spanner is stored distributedly, having each node keep only its incident edges in
the spanner, and is maintained by relevant pairs of nodes exchanging update packets. A
query of the graph structure is performed by communicating with other mobile nodes
following the edges of theD-SPANNER structure. We show that theD-SPANNER has
the following attractive features:

– The D-SPANNER can be efficiently maintained in a distributed fashion under both
the shared flight-planand thedistance thresholdmodels (these will be formally
defined below).

– The total communication cost for communicating the flight plans or location infor-
mation for the initial setup of theD-SPANNER is almost linear in the weight of the
minimum spanning tree of the network.

– Even though fixing a failed certificate may involveO(log n) nodes, theD-SPANNER

can be repaired in such a way that at any moment each node updates theD-SPANNER

locally using at mostO(1) computation and communication steps. Furthermore,
multiple certificate failures can be fixed concurrently, without interference.

– The spanner structure is a hierarchy that scales well with the network size and the
geometry of the nodes. Due to the hierarchical structure of the spanner, far away
node pairs are updated less frequently than close-by pairs. Under reasonable mo-
tion assumptions, the communication cost related to theD-SPANNER maintenance
incurred by a nodep is O(log n) for each unit distance thatp moves.

These properties show that the spanner is a lightweight data structure that gracefully
scales to large network sizes. We validate these theoretical results with simulations of
D-SPANNERs on two data sets, one with generated vehicle motions and one with real
airline flight data. Our simulations show that, for both artificial and real-world data, the
D-SPANNER can be maintained efficiently so that, at any time step, only a tiny part of
the spanner needs to be updated. We observe that in practice, for reasonable data sets,
the spanner has a much smaller spanning ratio compared to the theoretical worst-case
bound discussed below. We also present some trade-offs in maintaining theD-SPANNER

on different data sets.

2 Distributed kinetic data structures

In the classical KDS setting it is assumed that, in the short run, moving objects follow
motions that can described by explicitflight plans, which are communicated to the data
structure. Objects are allowed to modify their flight plans at any time, however, as long
as they appropriately notify the KDS. These flight plans form the basis for predicting
when the KDS certificates fail — a typical certificate is a simple algebraic inequality
on the positions of a small number of the objects. These predicted failure times become
events in a global event queue. Upon certificate failure, the KDS repair mechanism is
invoked to remove the failed certificate and update the structure as necessary.

In the distributed setting appropriate for ad hoc mobile communication networks,
we must distribute, and possibly duplicate the certificates among the mobile nodes
themselves. Furthermore, we must give up the notion that we process certificate failures
in a strict chronological order, as nodes will process certificate failures independently
of each other, as they detect them. Although it is not so readily apparent, the classical
KDS setting depends quite heavily on the assumption that the KDS repair mechanism
is invoked after exactly one certificate failure has occurred. This will no longer be true
in the distributed case and thus the dKDS repair mechanism must be considerably more
sophisticated. As we already remarked, globally broadcast flight plans are not appro-
priate in a distributed setting. While in some applications, like a dKDS for aircraft, it
makes perfect sense to allow communicating aircraft to exchange flight plans, in oth-
ers, as in our rescue team example, only something much weaker can be assumed. In
the following we propose two motion models that are appropriate for ad hoc mobile
networks. They areshared flight plan modelanddistance threshold model.

The shared flight plan model: In this motion model we assume that nodes have
flight plans, but these are known only to the nodes themselves — unless they are explic-
itly communicated to others. A node must incur a communication cost to transmit its
flight plan to another node. Furthermore, a node receiving a flight plan will assume that
it is valid until the plan’s owner communicates that the plan has changed. Thus each
node has the responsibility of informing all other nodes who hold its flight plan of any
changes to it.

The distance threshold model:In this weaker model we only assume that a node
knows its own position. Its prediction for future motion is either not available or too
inaccurate to be useful. A nodeu may communicate its current position to nodev, as
needed by the dKDS. Associated with the(u, v) communication is a distance threshold

δ(u, v); nodeu undertakes to inform nodev if it ever moves more thanδ(u, v) from
the position previously communicated. Note thatδ is a function of the pair of nodes —
differentv’s may need updates about the changing position ofu at different rates.

The evaluation and analysis of a dKDS is also somewhat different from the evalua-
tion of a traditional KDS. A KDS has four desired performance properties: efficiency,
responsiveness, locality and compactness [4]. In an evaluation of the properties of a
KDS, we usually assume that the nodes follow pseudo-algebraic motions3. Efficiency
captures how many events a KDS processes, as compared to the number of changes in
the attribute of interest. The responsiveness of a KDS measures the worst-case amount
of time needed to update its certificate cache after an event happens. Locality mea-
sures the maximum number of certificates in which one object ever appears. Finally,
compactness measures the total number of certificates ever present in the certificate
cache. Low values on these measures are still desirable properties for a dKDS. In the
distributed setting, however, we have to include communication costs. First, we want
to bound the total communication cost for exchanging flight plans or position infor-
mation. We compare this with the cost of the optimal 1-median of the communication
network4, which is a lower bound on the communication cost of sending all the flight
plans to a central server, assuming that no aggregation is done. The second difference
is that, when a certificate kept at nodeu fails, some certificates held at other nodes of
the structure may need to be updated. The cost of communication to the nodes keeping
these certificates must be taken into account in the processing cost of the event. Finally,
locality is an especially important property for a dKDS, since it determines how evenly
one can distribute the set of certificates among the mobile nodes. If a nodeu is involved
in certificates with too many other nodes, not only isu heavily loaded by holding many
certificates, but also the update cost foru’s flight plan changes is high, sinceu’s new
flight plan has to be delivered to many other nodes through costly communication.

There are also practical issues in maintaining a dKDS, because of the involvement
of an underlying communication network. Ideally we put the dKDS on top of a TCP-like
network layer, so that communication between nodes can be assumed reliable, without
packet loss. Otherwise when reliable communication is not available, packet delay and
loss must be considered in the process of the repair of the structure. We also assume
that the communication cost is proportional to the Euclidean distance between the two
communicating nodes — this is a reasonable assumption in dense networks. Finally,
given that the ad hoc network environment is inherently parallel, special care is needed
to make sure that KDS updates can handle race conditions and avoid deadlocks. Later
we use theD-SPANNER as an example to show how these issues are handled.

3 The D-SPANNER and proximity maintenance

For an ad hoc mobile network, a spanner is a sparse graph on the nodes that approxi-
mates the all pairs of distances. Specifically, a(1 + ε)-spanner is a graph on the nodes

3 A motion is called algebraic with degree s if each coordinate of the motion is an algebraic
function of degree s or less. For a definition of pseudo-algebraic, see [4].

4 A 1-median of a graphG = (V, E) is defined asminv∈V

∑
u∈V

τ(u, v), whereτ(u, v) is
the shortest path length ofu, v.

such that the shortest path distance betweenp andq in the spanner is at most(1 + ε)
times the Euclidean distance ofp andq — (1 + ε) is called the stretch factor. In [10]
we proposed a(1 + ε)-spanner, calledDEFSPANNER that can be maintained under
motion. In this paper, we show that theDEFSPANNER can also be maintained in a dis-
tributed fashion, where the nodes have no information about the global state and obtain
information only through communication steps whose cost must be taken into account.
This distributed version is denoted as aD-SPANNER. We emphasize that while there are
many maintainable proximity structures under the KDS setting,D-SPANNER is the first
kinetic structure of any kind that can be maintained distributedly. We start by reviewing
the centralizedDEFSPANNER in [10].

3.1 D-SPANNER

The definition ofDEFSPANNER [10] requires the notion of discrete centers. A set of
discrete centerswith radiusr for a point setS is defined as a maximal subsetS′ ⊆ S
such that any two centers are of a distance at leastr away, and such that the balls with
radiusr centered at the discrete centers cover all the points ofS. Notice that the set of
discrete centers needs not be unique.

TheDEFSPANNER G onS is constructed as follows. Given a setS of points in the
d-dimensional Euclidean space, we construct a hierarchy of discrete centers so thatS0

is the original point setS andSi is a set of discrete centers ofSi−1 with radius2i,
for i > 0. Intuitively, the hierarchical discrete centers are samplings of the point set
at exponentially different spatial scales. Then we add edges to the graphG between
all pairs of points inSi whose distance is no more thanc · 2i, wherec = 4 + 16/ε.
These edges connect each center to other centers in the same level whose distance is
comparable to the radius at that level. Since the set of discrete centers is not unique,
theDEFSPANNER is non-canonical. In fact, this is the main reason whyDEFSPANNER

admits an efficient maintenance scheme.
Theaspect ratioof S, denoted byα, is defined by the ratio of the maximum pair-

wise distance and minimum pairwise distance. In this paper we focus on point sets
with aspect ratio bounded by a polynomial ofn, the number of nodes. This is a nat-
ural assumption on ad hoc mobile network because the maximum separation between
nodes is bounded due to the connectivity requirement of the network and the nodes
are physical objects so they usually have a minimum separation. Under this assump-
tion, log α = O(log n). When convenient, we assume that the closest pair of points has
distance1, so the furthest pair ofS has distanceα.

We use the following notations throughout the paper. Since a pointp may appear
in many levels in the hierarchy, when the implied level is not clear, we usep(i) to
denote the pointp as a node in levelSi. A centerq(i) is said tocovera nodep(i−1)

if |pq| ≤ 2i. A nodep(i−1) may be covered by many centers inSi. We denoteP (p)
one of those centers and call it theparentof p(i−1). The choice ofP (p) is arbitrary but
fixed. We also callp a child of P (p). A nodep is called a nephew of a nodeq if P (p)
andq are neighbors. Two nodesp andq arecousinsif P (p) andP (q) are neighbors.
For a pointp in level Si, we recursively defineP j−i(p) as the ancestor in levelSj

of p(i) by P 0(p) = p(i), P j−i(p) = P (P j−i−1(p)). We note that ifp is in level i,
p(j) = P (p(j−1)) for eachj ≤ i, i.e. p is the parent of itself in all levels belowi.

For notational simplicity, we considerp a neighbor of itself in all levels in which it
participates.

In [10], we show that aDEFSPANNER (and of course now its distributed version,
the D-SPANNER), has a spanning ratio of1 + ε and a total ofO(n) edges. A detailed
list of results from [10] is shown below.

Theorem 1 (in [10]). For a DEFSPANNER on a set of pointsS with aspect ratioα, the
following hold.

1. If q(i) is a child ofp(i+1), thenq(i) andp(i) are neighbors, i.e. there is an edge from
each pointq to its parent.

2. If p andq are neighbors, then the parentsP (p) andP (q) are neighbors.
3. The distance between any pointp ∈ S0 and its ancestorP i(p) ∈ Si is at most

2i+1.
4. The hierarchy has at mostdlog2 αe levels.
5. Each nodep hasO(1) neighbors in any given level, and thus it has at mostO(log2 α)

neighbors totally.
6. G is a (1 + ε)-spanner whenc = 4 + 16/ε.

When the nodes move around, the discrete center hierarchy and the set of edges
in the DEFSPANNER may change. Nodes may lose neighbors or gain neighbors in the
spanner. Just as in our earlier discussion of maintenance of the 1-neighbors of a node,
discovering the loss of a neighbor is easy while detecting new neighbors is hard. What
makes the spanner work is the fact that property(2) above implies that before two nodes
can become neighbors at a given level, their parents must already be neighbors at the
next level up. Thus the search for new neighbor pairs can be confined to cousin pairs
only.

The D-SPANNER has the same structure as theDEFSPANNER, though the inter-
nal constants involved in the structure are larger. The key difference between theD-
SPANNER and theDEFSPANNER is in the way the structure is stored and maintained.
In the centralized case, the spanner is fully repaired after every event, corresponding
to a single certificate failure. In the distributed setting,D-SPANNER is computed and
stored distributedly. In particular, each node only stores its own presence in the discrete
centers hierarchy and its edges on each level. Certificates are handled locally. When
a certificate fails, we communicate with other relevant nodes to have theD-SPANNER

repaired. Since the network is inherently parallel and communication takes finite time,
other certificates may fail concurrently and multiple repair processes may be active in
parallel. We introduce the notion of a relaxedD-SPANNER to enable multiple certifi-
cates failures to be handled simultaneously in the network.

3.2 RelaxedD-SPANNER

To make the maintenance manageable, we make use of a variant, therelaxedD-SPANNER.
The intuition is that whenever a certificate in aD-SPANNER fails it may takeO(log n)
communications for theD-SPANNER to be repaired, and up toO(log n) new edges may
be established. Doing all that at once is not possible in a distributed setting. Instead, the
repair is done in stages; between stages we relax our constraints on the spanner through

the concept of a relaxedD-SPANNER. RelaxedD-SPANNERs make it possible to deal
with multiple certificate failures by encoding the simultaneous failures withrelaxed
parents, the removal of which can be done in parallel.

Fix a constantγ > 2; we call a nodeq(i) a γ-relaxed parent, or simply arelaxed
parent, of p(i−1) if |pq| ≤ γ · 2i. A relaxed D-SPANNER is similar to a regularD-
SPANNER except that if a nodep(i) is not covered by any node inSi+1, we do not
requirep itself to be inSi+1 but only requirep to have a relaxed parent inSi+1.

From(3) in Theorem 1, it is easy to see that for any nodep, |pP i(p)| ≤ 2i+1 < γ·2i,
and thus we can intuitively think of thei-th level ancestors of a nodep as its potential
relaxed-parent, ifp is in level Si−1. When all nodes in a relaxedD-SPANNER have
parents, the relaxedD-SPANNER is aD-SPANNER. Analogous to (8) in Theorem 1, we
can prove that a relaxedD-SPANNER is by itself a(1 + ε)-spanner whenc = γ · (4 +
16/ε).

Theorem 2. A relaxedD-SPANNER is a (1 + ε)-spanner whenc = γ · (4 + 16/ε).

When nodes move and some certificates fail, we first make theD-SPANNER into a
relaxedD-SPANNERwhich will be repaired after certain communications made to other
nodes. The notion of relaxed parents guarantees that the structure is not far away from
a realD-SPANNER so that local communications can fix it up, as the following lemma
suggests (with proof omitted).

Lemma 1. Let q be a relaxed parent ofp in Si, andc > 4 + γ. If r is a parent ofp,
thenq andr are neighbors inSi+1. If p is inserted toSi+1, p(i+1)’s neighbors must be
cousins ofq.

In the above description we always double the radius when we construct the discrete
centers hierarchy. In fact, we chose a factor of2 just for the simplicity of explanation.
We could have chosen any factorβ > 1 and construct a hierarchy of discrete centers
such that in leveli, the nodes are more thanβi apart, and the edges connect nodes that
are closer thanc · βi. We would then call a nodeq in Si+1 a relaxed parent of a node
p in Si if |pq| ≤ γ · βi, whereγ > β/(β − 1). We choosec > (2β + γ)/(β − 1) >
β(2β − 1)/(β − 1)2 so thatD-SPANNER can be maintained.

3.3 TheD-SPANNER under the shared flight-plan model

The maintenance of theD-SPANNER in the centralized KDS framework was analyzed
in [10]. In the dKDS setting, the absence of a centralized event queue and the lack of
strict order in certificate failure processing invalidates much of the approach.

The basic idea for maintaining aD-SPANNER in a dKDS framework is as follows.
Two nodes always communicate their flight plans if they are involved in a certifi-
cate. When the points move, theD-SPANNER is updated through a series ofrelaxed
D-SPANNERs. When a certificate in aD-SPANNER fails, one or more relaxed parents
may appear in theD-SPANNER, making it a relaxedD-SPANNER. Nodes in a relaxed
D-SPANNER communicates with each other to restore the structure to aD-SPANNER.
During the restoration, other certificates may fail. It is guaranteed, however, that we will
eventually get aD-SPANNERafter a period of no additional certificate failures, provided

that the update time is small enough with respect to the velocity of the nodes and that
c > 4 + γ.

We show that it only requires a constant number of communications to repair the
structure locally when a certificate fails or to transform one relaxedD-SPANNER to
another. We note that in a KDS settingc must be larger than4 in order for theD-
SPANNER to be maintainable. In the dKDS setting, we require thatc > 4 + γ > 6.
It worths pointing out that under the assumption thatc > 4 + γ, a generic relaxedD-
SPANNER cannot be maintained in either the KDS framework or the dKDS framework.
We use a very specific series of relaxedD-SPANNERs during the maintenance of the
D-SPANNER in the dKDS framework to make things work.

The certificates in a dKDS are similar to the certificates in KDS. They are all dis-
tance certificates, asserting that the distances between given pairs of nodes are above or
below a certain threshold. A certificate about the distance between two nodesu andv
is stored in both the event queues ofu andv. Sinceu andv have the flight plans of each
other, both of them can evaluate the first time when the certificate fails. Specifically, a
nodep as a point inSi maintains four kinds of certificates:

1. Parent certificate: asserts thatp is covered by its parentP (p) if p has one, i.e.,
|pP (p)| ≤ 2i+1;

2. Short edge certificates: assert that|pq| ≥ 2i for each neighborq ∈ Si of p;
3. Long edge certificates: assert that|pq| ≤ c · 2i for each neighborq ∈ Si of p;
4. Potential edge certificates: assert that|pq| > c · 2i for each non-neighbor cousinq

of p.5

When a certificate fails, each node involved in the certificate updates its event queue and
performs the updates to theD-SPANNER. The updates for the certificates are as follows:

1. Parent events: When a parent certificate fails, we make the former parent a relaxed
parent.

2. Short edge events: When|pq| < 2i, the node with the lower maximum level, sayp,
removes itself fromSi. The children ofp in Si−1 now haveq as a relaxed parent,
andp(i−1) hasq as its parent.

3. Long edge events: When|pq| > c · 2i, the edge is simply dropped. The long edge
certificate onpq is deleted from the certificate lists of bothp andq. Accordingly
some potential edge certificates between the cousins ofp, q are dropped also.

4. Potential edge events: When a potential edge fails, a new edge is simply added.p
andq communicate with each other about their children. A long edge certificate on
pq and potential edge certificates between the cousins ofp, q will be added to the
certificate lists of bothp andq.

For the first two types of certificate failure, the update introduces nodes with relaxed
parents. We can find the true parents for these nodes by the following procedure. For a
nodep(i) with a relaxed parentq(i+1), we find a parent forp(i) using Lemma 1, namely,

5 Note that by (2) in Theorem 1, a pair of nodes cannot be neighbors before they first become
cousins. Thus the potential edge certificates capture all possible edges that may appear in the
near future.

looking among all neighbors ofq(i+1) for one that coversp(i). If such a node is found,
p(i) has a parent. If not,p is at least2i+1 away from every node inSi. Thusp must
be promoted to levelSi+1. There are two possible cases. In the case whenq(i+1) has
a parentr, it is easy to see thatp(i+1) hasr as a relaxed parent, and by Lemma 1,
the neighbors ofp(i+1) can be found among the cousins ofq(i+1). In the case when
q only has a relaxed parent, we have to wait untilq(i+1) has a parent beforep can be
promoted to levelSi+1. Note that this is the only time when a node has to wait for
another node. When a node has to wait, it always waits for a node in one level higher.
This monotonic order guarantees that deadlock cannot occur. We note that the number
of communications to search for a parent or to promote a node up one level isO(1). In
the worst case, a parent certificate failure may move a node all the way up the hierarchy.
In the absence of certificate failures that generate nodes with relaxed parents, all the
nodes with relaxed parents will eventually have parents, and thus we eventually obtain
a D-SPANNER.

We currently do not handle the case when a relaxed parent of a node moves too far
from the node. We could avoid dealing with this situation by noting that when a node
p(i) first has a relaxed parent, the distance from it to the relaxed parent is always less
than2i+2 < γ · 2i+1. If p and its relaxed parent move slowly enough orγ is large
enough,p finds a true parent before its relaxed parent moves far away from it. Ifp loses
its relaxed parent before it can find a parent, we can treatp as a newly inserted node and
use theD-SPANNER dynamic update as explained in [11].

3.4 TheD-SPANNER under the distance threshold model

The distance threshold motion model allows even less information, when compared
with the shared flight plans motion model — a node only knows its current location.
For each levelSi, we take a distance thresholddi = µ · 2i, µ = (c − 4 − γ)/8, such
that for each certificate inSi involving a pair of nodes(u, v), we letu andv to inform
each other their locations whenever any of them moves a distance ofdi from the last
exchanged location.

Under this model, each nodeu predicts a certificate failure based on its current
location and the last communicated location of its partnerv, denoted byv0. Nodev
may have moved since the last time it posted its location. However|vv0| ≤ di. Since
u andv do not have the most updated locations of each other, they may not agree on
when a certificate onu, v should fail. For example, inu’s view of the world, a long edge
certificate onu, v fails, i.e.,|uv0| ≥ c · 2i. Thenu informsv of appropriate updates and
v changes its spanner edges. Although according tov it is possible that the long edge
certificate has not failed yet, we can still guarantee that|uv| ≥ (c−µ) ·2i. In summary,
under the distance threshold model, we maintain aµ-approximation to an exactD-
SPANNER: If a nodep ∈ Si covers a nodeq, |pq| ≤ (1 + µ) · 2i; Two nodesp, q ∈ Si

have|pq| ≥ (1 − µ) · 2i; Two nodesp, q ∈ Si with an edge have|pq| ≤ (c + µ) · 2i;
Two nodesp, q ∈ Si without an edge have|pq| ≥ (c − µ) · 2i. Notice that when two
nodesp, q ∈ Si have a distance(c− µ) · 2i ≤ |pq| ≤ (c + µ) · 2i, p, q may or may not
have an edge.

In the global view, we maintain aµ-approximateD-SPANNER through a series of
γ-relaxedD-SPANNERs, withγ ≥ 2(1+ µ). A µ-approximateD-SPANNER is a(1+ ε)

spanner for appropriately chosen parametersc, µ. The updates on certificates failures
are the same as in the shared flight plan model. The following lemma (with proof
omitted) is a more general version of Lemma 1, which shows that a node with a relaxed
parent can either find a parent or promote itself to one level higher under the distance
threshold model.

Lemma 2. Let c > 4 + γ, andq be a relaxed parent ofp1 in Si at time1. Assume that
all points involved move less thandi = µ · 2i, µ = (c− 4− γ)/8, between time1 and
time2. At time2, if r is a parent ofp, thenq andr are neighbors inSi+1; if p is inserted
to Si+1, p(i+1)’s neighbors must be cousins ofq.

Since we have less information in the distance threshold model, communications
may be required for internal verification of theD-SPANNER, without resulting in any
combinatorial changes in its structure. The cost of maintaining theD-SPANNER in the
distance threshold model is the same as the cost of maintaining theD-SPANNER in the
shared flight-plan model plus the cost of regular position updates. In the next section
we will show a concrete bound on the maintenance cost.

3.5 Quality of distributed maintenance

In this subsection we study the memory, computation and communication cost of main-
taining aD-SPANNER.
Memory requirement for each nodeThe total number of certificates at any time is
always linear in the number of nodes. Each node is involved inO(1) certificates for
each level it participates in. Since there are at mostlog α levels, each node only has
O(log α) certificates in its queue. TheD-SPANNER thus scales well when the network
size increases.
The startup communication cost for exchanging flight plansIn order for the nodes
in a D-SPANNER to build their event queues, the nodes that are involved in a certificate
will have to inform each other of their flight plans. Note however, that communica-
tions between two nodes are not of equal costs, with communications between far away
nodes costing more than those between close-by nodes. Under our assumption that the
cost of a multi-hop communication between two nodes is proportional to the Euclidean
distance between them, we show that the cost of exchanging flight plans between the
nodes in aD-SPANNER is low by the following theorem, whose proof is omitted.

Theorem 3. The total length of the edges in aD-SPANNER is at mostO(log α) times
the total length of the minimum spanning tree (MST) of the underlying points. The
summation of the distances between all cousin pairs in aD-SPANNER is O(log α) times
the total length of the MST of the underlying points.

Notice that if we use the centralized KDS, the communication cost of every node
sending their flight plans (or locations) to a central server is at least the weight of the
optimal 1-median of the communication network, which is at least the weight of the
minimum spanning tree. On the other hand, it is not hard to construct an example6 such

6 Assume a list of nodes are staying on thex-axis with distance 1 between adjacent nodes. The
communication network is just the chain.

that the optimal 1-median of the network has weightΩ(n) times the total length of the
MST. With this in mind, Theorem 3 implies that, in both the shared flight plans and
distance threshold motion model, the startup communication cost of theD-SPANNER,
i.e., the cost of communicating the shared flight plans or locations between the pairs of
nodes in the certificates, isO(log α) times the weight of the MST. Thus by using the
distributed spanner we save substantially on the communication cost.

In the distance threshold motion model we update the locations of the nodes even
if no certificate failures happen. Since the distance threshold,di, depends exponentially
on i, the level number, nodes on higher levels update their positions less frequently but
their communication costs are higher. More precisely, assume that the highest level that
a nodep appears isi. Whenp moves a distanced, the total cost of communicating its
locations to its neighbors is bounded by

∑i
j=1 O(c · 2j) · d/dj = O(di) ≤ O(d log α).

Thus the amortized communication cost of location updates for each nodep is bounded
by O(log α) per unit distance thatp moves.

The total number of events handled in aD-SPANNER In [10] we showed that the
number of combinatorial changes of a(1 + ε)-spanner can beΩ(n2) and the number
of certificate failures of aD-SPANNER is at mostO(n2 log n) under pseudo-algebraic
motion, where each certificate changes fromTRUE to FALSE at most a constant number
of times. This claim is still true for the distributed environments. Thus the number of
events we process in aD-SPANNER is close to the optimum.

The communication cost of certificate updates in aD-SPANNER In a D-SPANNER,
when a certificate fails, a node can repair the spanner locally with a constant number
of communications, though the repair may introduce relaxed parents which have to
be dealt with later. Each time a search for a true parent from a relaxed parent takes a
constant number of communications, and a node may actually get promoted all the way
up the hierarchy. In the worst case the node is promoted inO(log α) levels. We first note
that the cost of promoting a node up a level, introduced by resolving relaxed parents,
can be amortized on the short edge events where a node is demoted down a level, since
a node can not be demoted without first being promoted. Thus in the following study
we neglect the cost of fixing relaxed parents and only consider the communication cost
of repairing the certificates.

We bound the communication cost of certificates updates under pseudo-algebraic
motions. We examine the update costs for the certificates defined on a particular pair
of nodesp, q with p on level i. Nodesp, q may be involved in five different kinds of
certificates, as shown in section 3.3. In particular, we characterize the certificate failures
into three categories by the distance betweenp, q when the certificate fails: event A
includes the parent event withp being the parent ofq and the short edge event; Event B
includes the long edge event and the potential edge event; Event C includes the parent
event withq being the parent ofp. Notice that when event A happens, the distance
betweenp, q is exactly2i. When event B happens, the distance betweenp, q is exactly
c·2i. When event C happens, the distance betweenp, q is2i+1. Sincep, q follow pseudo-
algebraic motion, the number of times that events A (or B, C) happens is only a constant.
Furthermore, it is not hard to see that between events in different categories, the distance
betweenp, q must change by at least2i. Therefore, suppose the distance betweenp, q
changes monotonically byd, the update cost for certificates failures withp, q is bounded

by O(c · 2i) · d/2i = O(d). Without loss of generality assumep moves faster thanq,
thenp moves at least a distanced/2. Thus we can charge the update cost top so thatp
is charged of communication costO(1) for each unit distancep moves. Sincep has a
constant number of neighbors in leveli andp may appear in at mostO(log α) levels,
we combine the costs in all levels together such that on average a nodep with highest
level h incursO(h) communication cost for each unit distance it moves. Therefore we
have the following theorem.

Theorem 4. Under pseudo-algebraic motion, the communication cost incurred by a
nodep related to theD-SPANNER maintenance is at mostO(log α) for each unit dis-
tance thatp moves.

Several other networking issues need to be addressed regarding theD-SPANNER in
an ad hoc mobile network setting. These include load balancing, dynamic updates, and
trade-offs between maintenance and query costs. We have investigated these issues but
due to lack of space in these proceedings, we omit the discussion here. The reader is
referred to the full version of the paper [11] for the particulars.

4 Simulations

To show that theD-SPANNER is well behaved in practice, we computed and maintained
theD-SPANNER in two sets of simulations. The simulations validate our theory that the
D-SPANNER is a sparse structure that can be maintain efficiently under motion.

In the first simulation, we considered a set of moving cars in an 11 by 11 block
region of a city downtown. There were 20 one-lane road, 5 roads in each of the North,
South, East, and West directions. Cars entered the region on one side and left the region
on the other side. Each car moved at a random but constant speed between 0.2 and 0.3
block per second. Each car stopped if necessary to avoid collisions with other cars then
moved again at its assigned speed. We allowed cars to disappear (say to stop in parking
structures) within the city blocks. The number of carsn in the downtown area was a
parameter of the simulation. In our simulations,n took one of the following values:
30, 50, 100, 150, 200, and 250. We kept the number of cars in a simulation constant
by introducing a new car whenever some other car left the scene. We constructed and
maintained aD-SPANNER on the cars. We usedβ = 3 andc = 4.1, i.e. the nodes in
levelSi were at least3i apart, and edges in levelSi were at mostc · 3i long.

The degree of a node is proportional to its memory requirement and is also a mea-
sure of the work it does in maintaining theD-SPANNER. From Figure 1 (i), the average
degree of the nodes in theD-SPANNER was around 9. TheD-SPANNER was thus rea-
sonably sparse, say comparing to planar graphs which have an average node degree of
6. The maximum degree of a node grew slowly when the number of cars increased. The
result agrees with the theory, which predicts that the size of the spanner is linear, and
the maximum degree grows asO(log n).

Whenβ = 3 andc = 4.1, the theory predicts that theD-SPANNER has a spanning
ratio at most16.36. The spanning ratio in our experiments was much smaller. In all
experiments, the spanning ratio fluctuated between 2 and 4 most of the time, and the
average spanning ratio over time was about 2.7.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250

highest spanner degree
average spanner degree

Number of cars

a
ve

ra
g
e
 d

e
g
re

e
 o

ve
r

ti
m

e

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

N
u
m

b
e
r

o
f
e
ve

n
ts

 (
p
e
r

s
e
c
o
n
d
)

Number of cars

change parent events
short edge events
long edge events
potential edge events

(i) (ii)

Fig. 1. (i) Average and maximum degree; (ii) Update frequency.

Figure 1 (ii) shows the average number of events processed each second in the
simulations. Even though the cars moved fast, the rate at which the events happened
was low, suggesting that theD-SPANNER was stable. We noted that most certificate
failures were among the long edge and the potential edge certificates. These two types
of failures were cheap, as we only had to remove or to add an edge to theD-SPANNER

to fix them. There were much fewer failures of the other two types which gave rise to
relaxed parents and the involved procedure to remove them.

In the second set of experiment, we simulated aD-SPANNER on the flights in the
US. The flight trajectories were from real flight data on July 27, 2002. There were
from 4000 to 5000 air planes during the period of simulation. Each plane obtained its
location about once every 60 seconds, and the planes often moved at a speed from 300
to 500 miles per hour, a fairly high speed compared to the distance separating the air
planes. Under this condition, we traded in the query cost for lower maintenance cost
by only maintaining some higher levels ofD-SPANNER. We artificially increased the
unit distance in theD-SPANNER and implicitly maintain all bottom edges. For each
node in the bottom level, we only maintained its parent inS1. The unit distance in the
modifiedD-SPANNER we maintained was16 miles. We essentially fully maintained a
D-SPANNER on a dynamically selected setS1 of air planes that were at least48 miles
from each other, and for each of those air planes, maintained a collection of air planes
it covered, i.e. air planes within its48 miles radius.

As in the simulation for cars, we constructed a spanner withβ = 3 andc = 4.1.
We found that on average there were about 14,000 edges in the modifiedD-SPANNER.
The spanning ratio of theD-SPANNER restricted to the nodes in levelS1 was 3.15 on
average. Note that since there were many implicit edges, if we considered the entire
D-SPANNERwith all those implicit edges, the spanning ratio would be much lower. Be-
cause we took a large value as the unit radius, the maintenance of the structure was rela-
tively cheap. The entire structure processed 3.98, 1.63, 3.03, and 2.88 events per second
for parent events, short edge events, long edge events, and potential edge events respec-
tively. We noted that from time to time, due to missing data, some planes changed their

positions too much between their consecutive position updates. When a node moved
more than a certain distance threshold, we removed the node from theD-SPANNER,
updated its position, then inserted it back to theD-SPANNER.
Acknowledgements:The authors gratefully acknowledge the support of NSF grants CCR-0204486
and CNS-0435111, as well as the DoD Multidisciplinary University Research Initiative (MURI)
program administered by the Office of Naval Research under Grant N00014-00-1-0637.

References

1. P. Agarwal, J. Basch, L. Guibas, J. Hershberger, and L. Zhang. Deformable free space tilings
for kinetic collision detection.International Journal of Robotics Research, 21(3):179–197,
2002.

2. A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and K. Wampler. Buddy tracking - efficient
proximity detection among mobile friends. InProc. of the 23rd Conference of the IEEE
Communications Society (INFOCOM), volume 23, pages 298–309, March 2004.

3. J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic collision detection
between two simple polygons. InProc. of the 10th ACM-SIAM symposium on Discrete
algorithms, pages 102–111, 1999.

4. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data.J. Alg., 31(1):1–28,
1999.

5. J. Basch, L. J. Guibas, and L. Zhang. Proximity problems on moving points. InProc. 13th
Annu. ACM Sympos. Comput. Geom., pages 344–351, 1997.

6. A. Basu, B. Boshes, S. Mukherjee, and S. Ramanathan. Network deformation: traffic-aware
algorithms for dynamically reducing end-to-end delay in multi-hop wireless networks. In
Proceedings of the 10th annual international conference on Mobile computing and network-
ing, pages 100–113. ACM Press, 2004.

7. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications tok-nearest-neighbors andn-body potential fields.J. ACM, 42:67–90, 1995.

8. D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,Handbook of
Computational Geometry, pages 425–461. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

9. J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile centers.Discrete
and Computational Geometry, 30(1):45–63, 2003.

10. J. Gao, L. Guibas, and A. Nguyen. Deformable spanners and applications. InProc. ACM
Symposium on Computational Geometry, pages 190–199, June 2004.

11. J. Gao, L. J. Guibas, and A. Nguyen. Distributed proximity maintenance in ad hoc mobile
networks. http://graphics.stanford.edu/∼jgao/spanner-dcoss-full.pdf, 2005.

12. L. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic connectivity for unit disks. InProc.
16th Annu. ACM Sympos. Comput. Geom., pages 331–340, 2000.

13. L. Guibas, A. Nguyen, D. Russel, and L. Zhang. Collision detection for deforming necklaces.
In Proc. 18th ACM Symposium on Computational Geometry, pages 33–42, 2002.

14. L. J. Guibas. Kinetic data structures — a state of the art report. In P. K. Agarwal, L. E.
Kavraki, and M. Mason, editors,Proc. Workshop Algorithmic Found. Robot., pages 191–
209. A. K. Peters, Wellesley, MA, 1998.

15. A. Howard, M. J. Mataríc, and G. S. Sukhatme. An incremental self-deployment algorithm
for mobile sensor networks.Autonomous Robots Special Issue on Intelligent Embedded
Systems, 13(2):113–126, 2002.

16. W. J. Kaiser, G. J. Pottie, M. Srivastava, G. S. Sukhatme, J. Villasenor, and D. Estrin. Net-
worked infomechanical systems (NIMS) for ambient intelligence. CENS Technical Re-
port 31, UCLA, December 2003.

