
Two Linear Distinguishing Attacks on VMPC
and RC4A and Weakness of RC4 Family of

Stream Ciphers

Alexander Maximov

Dept. of Information Technology, Lund University, Sweden
P.O. Box 118, 221 00 Lund, Sweden

movax@it.lth.se

Abstract. At FSE 2004 two new stream ciphers VMPC and RC4A have
been proposed. VMPC is a generalisation of the stream cipher RC4,
whereas RC4A is an attempt to increase the security of RC4 by intro-
ducing an additional permuter in the design. This paper is the first work
presenting attacks on VMPC and RC4A. We propose two linear distin-
guishing attacks, one on VMPC of complexity 254, and one on RC4A
of complexity 258. We investigate the RC4 family of stream ciphers and
show some theoretical weaknesses of such constructions.

Keywords: RC4, VMPC, RC4A, cryptanalysis, linear distinguishing
attack.

1 Introduction

Stream ciphers are very important cryptographic primitives. Many new designs
appear at different conferences and proceedings every year. In 1987, Ron Rivest
from RSA Data Security, Inc. made a design of a byte oriented stream cipher
called RC4 [1]. This cipher found its application in many Internet and security
protocols. The design was kept secret up to 1994, when the alleged specification
of RC4 was leaked for the first time [2]. Since that time many cryptanalysis
attempts were done on RC4 [3, 4, 5, 6, 7].

At FSE 2004, a new stream cipher VMPC [8] was proposed by Bartosz Zoltak,
which appeared to be a modification of the RC4 stream cipher. In cryptanalysis,
a linear distinguishing attack is one of the most common attacks on stream
ciphers. In the paper [8] it was claimed that VMPC is designed especially to
resist distinguishing attacks.

At the same conference, FSE 2004, another cipher RC4A [9] was proposed by
Souradyuti Paul and Bart Preneel. This cipher is another modification of RC4.

In our paper we point out a general theoretical weakness of such ciphers,
which, in some cases, can tell us without additional calculations whether a
new construction is weak against distinguishing attacks. We also investigate
VMPC and RC4A in particular and find two linear distinguishing attacks on
them. VMPC can be distinguished from random using around 254 bytes of the

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 342–358, 2005.
c© International Association for Cryptologic Research 2005

Two Linear Distinguishing Attacks on VMPC and RC4A 343

keystream, whereas the attack on RC4A needs only 258 bytes. This is the first
paper that proposes attacks on VMPC and RC4A.

This paper is organized as follows. In Section 2 we describe RC4, RC4A, and
the VMPC ciphers. In Section 3 we study digraphs on an instance of VMPC,
and then we demonstrate a theoretical weakness of the RC4 family of stream
ciphers in general. We propose our distinguishers for both VMPC and RC4A in
Sections 4 and 5. Finally, we summarize the results and make our conclusions in
Section 6.

1.1 Notations

The algorithms VMPC, RC4A and RC4 are byte oriented stream ciphers. For
notation purposes we consider VMPC-n, RC4A-n, and RC4-n to be n-bit ori-
ented ciphers, i.e., the originals are when n = 8. Therefore, in the design of these
ciphers, + means addition modulo 2n. For simplicity in formulas, let q be the
size of permuters used in these ciphers, i.e.

q = 2n. (1)

The ciphers have an internal state consisting of one or two permuters of
length q, and a few iterators. The idea of these designs is derived from the RC4
stream cipher, therefore, we call ciphers with a structure similar to RC4 as the
RC4 family of stream ciphers. We denote by Ot the n-bit output symbol at time
t. When a permuter P [·] is applied k times, e.g., P [P [. . . P [x] . . .]], then, for
simplicity, we sometimes denote it as P k[x].

1.2 Preliminaries: A Linear Distinguishing Attack

In a linear distinguishing attack one can observe a keystream of some length
(known plaintext attack), and give an answer: whether the stream comes from
the considered cipher, or from a truly random source. Distinguishers are usually
based on statistical analysis of the given stream. At any point t in the stream
we observe b linear combinations, the joint value of which is called a sample
at time t. If the stream is completely random, then the sample is from the
random distribution denoted as DRandom. If the stream is the keystream from
the considered cipher, then the sample is from the cipher distribution denoted
as DCipher.

To give an answer whether the given stream is from DRandom or DCipher one
has to collect N samples from the stream at different points. These N samples
form an empirical distribution, named also type and denoted as DType. If the
distance from DType to DCipher is less than the distance to DRandom, then we
conclude that the stream is from the cipher, otherwise it is decided to be from
a random source.

The distance between two distributions is given as

δ = |DA − DB| =
∑

all x

|Pr{x|x ∈ DA} − Pr{x|x ∈ DB}|. (2)

344 A. Maximov

From statistical analysis the following fact is well known. The closer the
distributions DCipher and DRandom are to each other, the larger the number of
samples N should be, in order to distinguish with a negligible probability of
error. The distance ε = |DCipher − DRandom| is then called the bias. The bias
and the number of required samples N , from which we form our type DType,
are related by the formula N = const

ε2 , where the constant influences on the
probability of the decision error. For more details we refer to [10]. However, the
following relation is enough to have a rather negligible probability of error, and
we use this formula in our paper.

N =
1
ε2

(3)

1.3 Cryptanalysis Assumptions

We start our analysis of the RC4 family of stream ciphers by making a few
reasonable assumptions.

(1) We assume that the initialisation procedure is perfect, i.e., all internal vari-
ables (except known iterators) are from the uniform distribution. In practice
this is not true, but we make this assumption as long as we do not investigate
the initialisation procedures;

(2) In our distinguishers we construct a type DType by collecting samples from
the given keystream. Each derived sample at time t is from some local dis-
tribution of the keystream. We assume that at any time the internal state
of a cipher is uniformly distributed and we don’t have any knowledge about
it. This assumption will be used to investigate different local distributions
in the next sections. In our simulations we checked that the internal state
of VMPC is roughly uniformly distributed. But for RC4A the internal state
is not uniformly distributed;

(3) We consider that adjacent samples are independent. In the real life it is not
true, because between two consecutive samples the internal states of a cipher
are dependent. It means that samples might have a strong dependency, which
may influence on the resulting type DType. To reduce these dependencies we
suggest to skip few samples before accept one, then the consecutive adjacent
samples will be much less dependent on each other.

2 Descriptions of VMPC-n, RC4-n, and RC4A-n

The stream cipher RC4-n [1] was designed by Ron Rivest in 1987. It produces
an infinite pseudo-random sequence of n-bit symbols, which is, actually, the
keystream. Encryption is then performed in a typical way for stream ciphers:
Ciphertext = Plaintext ⊕ Keystream. The structure of RC4-n is shown in
Figure 1(left).

The stream cipher VMPC-n [8] was proposed at FSE 2004 by Bartosz
Zoltak. This cipher is also byte oriented (n = 8), and is a generalised version of
RC4-n. The structure of VMPC-n is shown in Figure 1(right).

Two Linear Distinguishing Attacks on VMPC and RC4A 345

Internal variables:
i, j – integers ∈ [0 . . . q − 1]
P [0 . . . q − 1] – a permuter of integers
0 . . . q − 1
The RC4-n cipher
1. P [·] – are initialised with the se-

cret key
i = j = 0

2. Loop until get enough n-bit sym-
bols

| i + +
| j+ = P [b]
| swap(P [i], P [j])
| output ← P [P [i] + P [j]]

Internal variables:
i, j – integers ∈ [0 . . . q − 1]
P [0 . . . q − 1] – a permuter of integers
0 . . . q − 1
The VMPC-n cipher
1. j, P [·] – are initialised with the se-

cret key
i = 0

2. Loop until get enough n-bit sym-
bols

| j = P [j + P [i]]
| output ← P [P [P [j]] + 1]
| swap(P [i], P [j])
| i + +

Internal variables:
i, j1, j2 – integers ∈ [0 . . . q − 1]
P1[0 . . . q − 1], P2[0 . . . q − 1] – two permuters of integers 0 . . . q − 1
The RC4A-n cipher
1. P1[·], P2[·] – are initialised with the secret key

i = j1 = j2 = 0
2. Loop until get enough n-bit symbols

| i + +
| j1+ = P1[i]
| swap(P1[i], P1[j1])
| output ← P2[P1[i] + P1[j1]]
| j2+ = P2[i]
| swap(P2[i], P2[j2])
| output ← P1[P2[i] + P2[j2]]

Fig. 1. The structures of RC4-n (left), VMPC-n (right), and RC4A-n (bottom)
ciphers

The stream cipher RC4A-n[9] was proposed at FSE 2004 by Souradyuti
Paul and Bart Preneel. This cipher is an attempt to hide the correlation be-
tween the internal states and the keystream. The authors suggested to introduce
a second permuter in the design. The structure of RC4A-n is shown in Fig-
ure 1(bottom).

3 Investigation of the RC4 Family of Stream Ciphers

In this section we approximate different local distributions of the accessible
keystream in the RC4 family of stream ciphers, with the assumptions that were
made in Section 1.3. Since in the real cipher the internal state is not from the
uniform distribution, the real local distribution differs from our approximation.

346 A. Maximov

However, in practice we will show that this does not make our distinguishers
worse.

3.1 Digraphs Approach, on the Instance of VMPC-n

In this subsection we give the idea of how a distinguisher for VMPC can be built.
In the previous work [5] the cipher RC4-n was analysed. The authors suggested
to observe two consecutive output symbols Ot, Ot+1, and the known variable
i jointly. For RC4-5 they could calculate theoretical probabilities Pr{(i, Ot =
x,Ot+1 = y)}, for all possible n3 values of the triple (i, x, y) (let us denote such
distribution as D(i,Ot,Ot+1)). But for RC4-8 they could only approximate the
bias for the distribution above due to the high complexity of calculations, and
show that a distinguisher needs around 230.6 samples (the required length of the
plaintext to know).

We use a similar idea to create a distinguisher for VMPC-n. For this purpose
we investigate the pair (Ot, Ot+1) in the following scheme.

i – known value at time t
j, P [·] – are from a random
source

1. Ot = P [P 2[j] + 1]
2. swap(P [i], P [j])
3. j′ = j + P [i + 1]
4. Ot+1 = P [P 3[j′] + 1]

Below we give the explicit algorithm to calculate the approximated distri-
bution table D(i,Ot,Ot+1). For each value i, in each cell of a table T we want
to store an integer number T [i, x, y] of possible pairs (i, P [·]), which cause the
corresponding output pair (Ot = x,Ot+1 = y). It means, that the probability of
any triple (i, Ot, Ot+1) is then calculated as:

Pr{(i, Ot = x,Ot+1 = y)} =
T [i, x, y]

q · q! . (4)

As we can see from the algorithm, its complexity is O(211n) 1. In our sim-
ulations we could manage to calculate the approximation of D(i,Ot,Ot+1) only
for the reduced version VMPC-4. The bias of such table appeared to be around
ε ≈ 2−8.7. It means that we can distinguish VMPC-4 from random having plain-
text of length around 218 4-bits symbols. For notation purposes, let DVMPC−n

(i,Ot,Ot+1)

be the distribution D(i,Ot,Ot+1) for VMPC-n, and similar for DRC4−n
(i,Ot,Ot+1)

.

1 The complexity to construct such a table with a similar algorithm for RC4-n is
O(26n) [5].

Two Linear Distinguishing Attacks on VMPC and RC4A 347

Algorithm 1. Recursive construction of the approximated distribution table
D(i,Ot,Ot+1)

Prepare the permuter: P [i] = ∞ at all positions, i.e., all cells of the permuter
are undefined. In the algorithm the operation define P [i] means that for the
cell i in the permuter P [·] we need to try all possible values 0 . . . (q−1). Note,
we cannot select a value which has been already used in another cell of the
permuter in a previous step. Before making a step back by the recursion,
restore the value P [i] = ∞. In the case when the cell P [i] was already defined
(is not ∞) due to previous steps, then we just go to the next step directly.
Do the following steps recursively:
· for all i = 0 . . . q − 1;
· for all j = 0 . . . q − 1;
· define P [j];
· define P 2[j];
· define P [P 2[j] + 1] ⇒ remember x = P [P 2[j] + 1];
· define P [i];
· swap(P [i], P [j]);
· define P [i + 1] ⇒ calculate j′ = j + P [i + 1];
· define P [j′], then P 2[j′], then P 3[j′];
· define P [P 3[j] + 1] ⇒ remember y = P [P 3[j] + 1];
· T [i, x, y]+ = (q − r)!, where r is the actual number of currently defined

cells in the permuter P [·].

The calculation of a similar distribution table for VMPC-8 meets compu-
tational difficulties, as well as for RC4-8 in [5]. One of the ideas in [5] was to
approximate the biases from small n’s to a larger n, but we decided not to go
this way. Instead, in the next sections we will present only precise theoretical
results on VMPC-8, and on the RC4 family of stream ciphers in general.

3.2 Theoretical Weakness of the RC4 Family of Stream Ciphers

The recursive Algorithm 1 is trivial and slow, but we use it to show the
further theoretical results. We prove that the approximated distribution ta-
ble D(i,Ot,Ot+1) cannot be the uniform distribution when n is larger than some
threshold n0. Moreover, we prove that each probability of the approximated dis-
tribution D(i,Ot,Ot+1) differs from the corresponding probability in the case of
a random source. In other words, the approximated distribution D(i,Ot,Ot+1) is
biased and we find the lower bound of the bias εmin.

Theorem 1. For VMPC-n, where n ≥ 8, under the assumptions made in Sec-
tion 1.3, the following hold.

1. Each probability Pr{(i, Ot = x,Ot+1 = y)} �= 1/q3 (in a random case it should
be 1/q3).

348 A. Maximov

2. The bias |DRandom − DVMPC−n
(i,Ot,Ot+1)

| is bounded by

q−8n ≤ εmin =
|δmin| · q · (q − 9)!

q!
≤ ε = |DRandom − DVMPC−n

(i,Ot,Ot+1)
|, (5)

where |δmin| is the minimum value, such that

(q − 1)(q − 2) · . . . · (q − 8) + δmin ≡ 0 (mod q).

3. For VMPC-8, we have εmin ≈ 2−56.8.

Proof:
1) Consider Algorithm 1. In the last step the value of r, the number of currently
placed positions in the permuter, can be at most 9. It means that when the algo-
rithm is finished, each cell in DVMPC−n

(i,Ot,Ot+1)
can be written in the form k · (q − 9)!,

for some integer number k.
On the other hand, for a truly random sequence, the probability must be

Pr{(i, Ot, Ot+1)} = 1/q3. From (4) it follows that k·(q−9)!
q·q! must be equal to 1

q3 ,
i.e.,

k must be equal to
q · (q − 1) · . . . · (q − 8)

q2
. (6)

Since k is an integer, then q must divide (q − 1) · . . . · (q − 8). It is easy to show
that starting from n ≥ 8 this is not true.
2) We now try to choose k such that Pr{(i, Ot, Ot+1)} is as close to 1/q3 as
possible. Let |δmin| be the smallest value such that (q − 1) · . . . · (q − 8) + δmin is
divisible by q. Then Pr{(i, Ot, Ot+1)} = 1

q3 ± q·|δmin|·(q−9)!
q3·q! . The minimum value

of |DRandom − DVMPC−n
(i,Ot,Ot+1)

| is then derived as

εmin = q3 · q · |δmin| · (q − 9)!
q3 · q! =

|δmin| · q · (q − 9)!
q!

. (7)

3) for VMPC-8, the minimum δmin is 128. Hence, the lower bound for the bias
is εmin ≈ 2−56.8.
�

For RC4-n a maximum of 6 positions can be fixed, if we use a similar algo-
rithm. Hence, all cells of the distribution table DRC4−n

(i,Ot,Ot+1)
can be written in the

form k · (q − 6)!. By similar arguments as above, we conclude:

Corollary 1. For RC4-n, n ≥ 4, under the assumptions made in Section 1.3,
the following hold.

1. Each probability in DRC4−n
(i,Ot,Ot+1)

�= 1/q3;
2. The minimum value |DRandom − DRC4−n

(i,Ot,Ot+1)
| is bounded by

q−5n ≤ εmin =
|δmin| · q · (q − 6)!

q!
≤ ε = |DRandom − DRC4−n

(i,Ot,Ot+1)
|, (8)

Two Linear Distinguishing Attacks on VMPC and RC4A 349

Fig. 2. Condition: Ot = Ot+1 = 0, i = 0, j = 1. The only case when the condition is
satisfied (left), and one of the cases when it is not (right)

where |δmin| is the minimum value, such that

(q − 1)(q − 2) · . . . · (q − 5) + δmin ≡ 0 (mod q);

3. For RC4-n, n = 4, . . . , 8, we have the following lower bounds.

n=4 n=5 n=6 n=7 n=8
δmin +8 −8 −8 −8 −120
εmin 2−15.46 2−21.28 2−26.65 2−31.83 2−33.01

�
The above theorem shows us the way how one can think when designing a new
cipher from the RC4 family of stream ciphers to avoid these weaknesses. For the
case of VMPC-8, for instance, we can say that the structure seem to be weak in
advance, without deep additional investigations of the cipher.

On the contrary, for RC4A-8 our theorem gave us a very small lower bound,
so that a hypothetical distinguisher would be slower than an exhaustive search. It
means that this cipher would resist distinguishing attacks better than, for exam-
ple, VMPC-8 or RC4-8. Note, these conclusions were made with the assumptions
from Section 1.3. However, in the next sections we investigate digraphs for both
ciphers VMPC-n and RC4A-n in detail.

4 Our Distinguisher for VMPC-n

4.1 What the Probability That Ot = Ot+1 = 0, When i = 0 and
j = 1, Should Be?

If VMPC-n would be a truly random generator, then the answer to the question
of this section would be 1/q2, because when i and j are fixed, then Pr{Ot =

0 1 2

0 1 2

swap(P [i], P [j])

Case 1: P [j] = j

0 = Ot = P [P 2[j] + 1]

Effect: z �= 0, 1

Permuters = (q − 4)
� �� �

choose z

· 1
����

z+1

·(q − 4)!

i j

z

z

j′ = j + P [i + 1] = 1 + z
0 = Ot+1 = P [P 3[j′] + 1]
⇒ P 3[j′] + 1 m.b. = 2
⇒ P [1 + z] m.b. = 2
⇒ Effect: z �= −1, 0, 1, 2

... ...

xy y+1

... ...

xy y+1 0 1

0 1

swap(P [i], P [j])

Case 2: P [j] �= j, i, i − 1

0 = Ot = P [P 2[j] + 1]

Permuters = 0 (cannot exist)

i j

z

z

j′ = j + P [i + 1] = 1 + z
0 = Ot+1 = P [P 3[j′] + 1]
⇒ P 3[j′] + 1 m.b. = y + 1
⇒ j′ m.b. = y + 1 = z + 1
⇒ y = z – a contradiction!

350 A. Maximov

0, Ot+1 = 0|i = 0, j = 1,Random source} = 1/q2. In the case of VMPC-n this is
not true. The only case when the desired outputs can be produced is depicted
in Figure 2 (left). All the other permuters will lead to other pairs of outputs
(Ot, Ot+1) �= (0, 0). As an example, in Figure 2 (right) we show one of the cases,
which contradicts the desired conditions.

By this small investigation we have shown that

Pr{Ot =Ot+1 =0|i=0, j =1, VMPC-n}=(q − 4)(q − 4)!

q!
=

q − 4

q(q − 1)(q − 2)(q − 3)
≈1/q3

is significantly smaller compared to Pr{Ot = Ot+1 = 0|i = 0, j = 1,
Random source} = 1/q2. If we now assume that for the other values of j the
probability Pr{Ot = Ot+1 = 0|i = 0, j �= 1,VMPC-n} ≈ 1/q2 – like in a random
case, then we can derive that Pr{Ot = Ot+1 = 0|i = 0} is equal to (1

q · 1
q3 + q−1

q · 1
q2)

(in a random case it should be 1/q2). Then, we have a bias ε ≈ 2−3n, and our
hypothetical distinguisher needs to observe the event Ot = Ot+1 = i = 0 from
around 26n samples (27n bytes of the keystream). It means that VMPC-8 can
be distinguished from random having around 256 bytes of keystream. But this
estimated bias is still too rough for VMPC-8, and in the next section we show
how to compute the exact probability Pr{Ot = Ot+1 = 0|i = 0} for VMPC-8.

4.2 Calculating PrOt = Ot+1 = 0|i = 0, When j and P [·] Are
Random

We could calculate the complete distribution table D(i,Ot=x,Ot+1=y) for VMPC-
4, and the bias appeared to be ε ≈ 2−8.7. Unfortunately, we could not apply
Algorithm 1 for VMPC-8, because the complexity is 288 – infeasible for a common
PC. Instead, we propose to consider only two events {Ot = Ot+1 = 0} and
its complement for i = 0. We distinguish between the following two binary
distributions:

DVMPC−n =

(
Pr{Ot = Ot+1 = 0}

1 − Pr{Ot = Ot+1 = 0}
)∣∣∣∣

i=0

. and DRandom =

(
1/q2

1 − 1/q2

)∣∣∣∣
i=0

(9)

Here we give the algorithm to calculate the probability Pr{Ot = Ot+1 = 0|i =
0}. The Algorithm 2 has complexity O(25n), i.e., to calculate Pr{Ot = Ot+1 =
0|i = 0} for VMPC-8 we need to make only 240 operations. After simulation we
got the following result.

Theorem 2. For VMPC-8, under the assumptions made in Section 1.3,

Pr{Ot = Ot+1 = 0|i = 0} =
15938227062862998000

256 · 4096374767995023500000
,

and the bias is ε ≈ 2 · 2−23.98322 ≈ 2−23. I.e., we can distinguish VMPC-8 from
random having around 246 samples, or 28 ·246 = 254 bytes of the keystream, when
the two events from the equation (9) are considered. The cipher and random
distributions are the following,

Two Linear Distinguishing Attacks on VMPC and RC4A 351

DRandom =
(

2−16

1 − 2−16

)∣∣∣∣
i=0

, DVMPC−8 =
(

2−16 − 2−23.98

1 − 2−16 + 2−23.98

)∣∣∣∣
i=0

. (10)

�

Algorithm 2. Recursive computation of the probability Pr{Ot = Ot+1 =
0|i = 0}
We use the same operation define P [i] as in Algorithm 1.
Do the following steps recursively:
· for all j = 0 . . . q − 1;
· define P [j], then P 2[j];
· Since Ot = 0, then fix the position P [P 2[j] + 1] = 0. If this position is

already defined (�= ∞), and the value is not 0, or pointer to 0 is already
used, then track back by the recursion;

· define P [i = 0];
· swap(P [i], P [j]);
· set P [i + 1] = P [1], if possible, otherwise return by recursion;
· calculate j′ = j + P [i + 1] which is the same as j + P [1];
· Since Ot+1 = 0, and 0 is already placed in the permuter P [·], then we

know the value P 3[j′] + 1, hence, we also know the value P 3[j′] = c.
We can calculate the number of permuters of size q, where P 3[j′] = c,
and r positions are fixed from the previous steps, by the subalgorithm of
complexity O(q), given in Appendix A.

4.3 Simulations of the Attack on VMPC-n

Our theoretical distinguisher from the previous subsection is based on a few
assumptions from Section 1.3. First of all, by simulations we have checked the
distribution of the internal state of VMPC-n for different values of n, and we
did not find any noticeable anomalies. From this we conclude that the internal
state in real is distributed close to the uniform distribution, and our theoretical
distinguisher should work. Secondly, we can argue that the samples are quite
independent. It happens because each sample is connected to the known variable
i, and the distance between two samples (for a fixed i) is q rounds of the internal
loop.

Theorem 2 says that the complexity of the attack on VMPC-8 is O(254), and,
due to such a high complexity, we could not perform simulations of our attack
on this cipher. Instead, we could perform simulations on the reduced version
VMPC-4, and show the attack in practice.

VMPC-4 has one permuter of size 16, and the internal indices i and j
are taken modulo 16. In our simulations we made N = 234 iterations and
from 234 received samples we have constructed the type (empirical distribution)

352 A. Maximov

with probabilities Pr{Ot = x,Ot+1 = y|i}. Below we show this table (type)
partly.

N = 234 i=0 i=1 . . .
x ⇒ 0 1 2 . . . 0 1 2 . . .

To get the probability of the event (Ot = x,Ot+1 = y)|i the cor-
responding cell should be divided by 162. In the case of a random
source each such event has the probability 1/162.

y ⇒ 0 0.92474 0.99866 1.00432 0.99287 0.99086 0.99890
1 1.00085 0.98815 1.01204 0.99309 0.99656 0.99068
2 1.00519 1.00569 1.00343 . . . 0.99496 1.06880 1.06524
3 1.00631 0.99999 0.99562 1.00080 0.99260 0.99767
...

...
...

...
...

...
...

15 0.99744 0.98926 1.00845 1.00052 0.99124 0.99495

This table represents the type DType and we can see that many probabilities
are far away from 1/162, and the most biased probability is in the cell (0, 0),
which corresponds to Pr{Ot = Ot+1 = 0|i = 0} = 0.924744

162 . When the type (the
table with probabilities) is derived, one can analyze two possible distinguishers
for VMPC-4.

(1) In the first scenario we consider the whole distribution table, i.e., we consider
all events of the form (i, Ot = x,Ot+1 = y). The probability of each event
in this case is 1/163. I.e., each cell of the table (type) should be divided by
1/163.
The bias of the received type is ε0 = 2−8.679648, which is close to the theoret-
ical value calculated in the previous section ε = 2−8.7. However, we could not
calculate a theoretical bias for VMPC-8, therefore, we consider the second
scenario;

(2) In this scenario we observe only two events {Ot = Ot+1 = 0|i = 0, the
others} – as in (9). As we have mentioned, the probability of the event
(Ot = Ot+1 = 0)|i = 0 is much lower than the corresponding probability in
the case of a random source. In this example, the received bias appears to be
ε0 = 2· 1.0−0.924744

162 ≈ 2−10.73205, which, again, is close to the theoretical value
ε = 2−10.755716 (calculated in a similar way as for VMPC-8 in Theorem 2).
For other values of n the simulation results are presented in the following
table.

n=3 n=4 n=5 n=6 n=7 n=8
Theoretical bias, ε 2−7.551 2−10.756 2−13.871 2−16.934 2−19.967 2−22.98

Simulations of the Attack on VMPC-n
Number of rounds made, N0 230 230 230 235 — —

The real bias, ε0 2−7.558 2−10.732 2−13.931 2−16.912 — —

Two Linear Distinguishing Attacks on VMPC and RC4A 353

Our simulations show that the attack on VMPC-n works in practice. We
have also shown that the dependency of the adjacent samples does not influence
much on the type.

5 Our Distinguisher for RC4A-n

5.1 Building a Distinguisher

In this section we investigate the cipher RC4A-n (see Figure 1(bottom)), and
propose our distinguisher for RC4A-8. We again idealize the situation by the pre-
liminary assumptions from Section 1.3, i.e., at any time t the values j1, j2, P1[·],
and P2[·] are considered from the uniform distribution, and unknown for us. We
would like to investigate the following scheme.

i – known value at time t-even
j1, j2, P1[·], P2[·] – are from a random source

1. Ot = P2[P1[i] + P1[j1]]
2. swap(P2[i], P2[j2])
3. Ot+1 = . . .
4. Ot+2 = P2[P1[i + 1] + P1[j1 + P1[i + 1]]]

For cryptanalysis of RC4A-n, we use ideas as before. Our methodology of
finding anomalies for both VMPC-n and RC4A-n was just to consider the dis-
tribution tables like D(i,Ot,Ot+2) for small values of n, using an Algorithm 1-
like procedure. If some anomaly is found then we concentrate on them in
particular for larger values of n, and try to understand why anomalies exist.

For RC4A-n we have noticed that Pr{Ot = Ot+2| i is even} �= 1/q, i.e.,
does not correspond to the random distribution, whereas the other probabili-
ties Pr{Ot �= Ot+2| i is even} are equal to each other, but not equal to 1/q.
From the other hand, all probabilities Pr{Ot = Ot+2| i is odd} = 1/q – cor-
respond to the random distribution. So, our target is to calculate the prob-
abilities Pr{Ot = Ot+2| i is even} for RC4A-8. We have used a similar idea
as in the Algorithm 2, but much simpler. Our optimized search algorithm to
find all such probabilities has complexity O(26n). The result of this work is the
following.

Theorem 3. For RC4A-n,
under the assumptions made in Section 1.3, consider the following vector of

events, and its random distribution,

Events =

⎛

⎜⎜⎜⎜⎜⎝

Ot = Ot+2|i = 0
Ot = Ot+2|i = 2

...
Ot = Ot+2|i = q − 2

other cases

⎞

⎟⎟⎟⎟⎟⎠
, DRandom =

⎛

⎜⎜⎜⎜⎜⎝

1/q2

1/q2

...
1/q2

1 − 1/(2q)

⎞

⎟⎟⎟⎟⎟⎠
. (11)

354 A. Maximov

For RC4A-8, the bias DRC4A−8 is ε ≈ 2 · 2−30.05. Hence, our distinguisher needs
around 258 bytes of the keystream.
�

5.2 Checking the Assumptions

By simulations we found that the internal state of RC4A-n is not close to the
uniform distribution. We could clearly see these anomalies running simulations
many times for different n each time sampling from at least N = 230 rounds of
the loop. To begin counting anomalies, we would like to note that the internal
variables j1, P1[·] are updated independently from j2, P2[·] as follows.

One-Round-Update for j∗, P∗[·], where ∗ is 1 or 2
1. i + +;
2. j∗+ = P∗[i]
3. swap(P∗[i], P∗[j∗])

It means that all anomalies found for j1, P1[·] are true for j2, P2[·] as well.
We found an event for which the probability is far from the probability of this

event in the case of a random source. In particular, Pr{j1 = i + 1} ≈ q−1
q2 , when

in the random case it should be 1/q. Other probabilities are Pr{j1|i, j1 �= i+1} ≈
q2−q+1
q2(q−1) . For example, for RC4A-4, it appeared that Pr{j1 = i+1} ≈ 0.05859375,
and the others are Pr{j1|i, j1 �= i} ≈ 0.06276042 – the difference is noticeable.
Some other less notable non-uniformities in the internal state also were found.

5.3 Simulations of the Attack on RC4A-n

Despite finding the non-uniformity of the internal state of RC4A-n we make a
set of simulations to see how our distinguisher behaves itself. We will consider
the attack scenario as in Theorem 3.

n=3 n=4 n=5 n=6 n=7 n=8
Theoretical bias, ε 2−10.014 2−14.005 2−18.001 2−22.00 2−26.00 2−29.05

Simulations of the Attack on RC4A-n
Number of rounds made, N0 230 230 234 240 240 —

The real bias, ε0 2−8.9181 2−12.2703 2−15.073 2−18.042 2−20.025 —

Note that the number of actual samples N0 in our simulations is larger than
1/ε20. From (3) it means that we have distinguished the cipher with a very small
probability of error, and the real theoretical bias without pre-assumptions should
be close to what we get in our simulations. From the table above we see that the
bias in practice (when the internal state is not from the unoform distribution)
is larger than the approximated value of the bias (the uniformly distributed
internal state), for n = 3, . . . , 7. The same behaviour of the distinguisher we
expect for n = 8 as well. Since we could not perform simulations for n = 8, we

Two Linear Distinguishing Attacks on VMPC and RC4A 355

decided to leave theoretical bias as the lower bound of the attack, i.e., ε = 2−29.05

for n = 8, the complexity is O(258). However, in the real life we expect this bias
to be even larger, and complexity of the attack lower.

6 Results and Conclusions

In this paper we have shown some theoretical weaknesses of the RC4 family
of stream ciphers. We have also investigated recently suggested stream ciphers
VMPC-n and RC4A-n, and found linear distinguishing attacks on them. They
are regarded as academic attacks which show weak places in these ciphers. The
summarizing table of our results is below:

Theoretical Our Distinguishers
Cipher Lower Bound for ε, Complexity (# of symbols)

n = 8 n = 3n = 4n = 5n = 6n = 7 n = 8
RC4-n (1987) 2−33 (Corr.1) — — — — — 230.6 (from [5])
VMPC-n (2004) 2−56.8 (Thr.1) 223 ∗ 229 235 241 248 254

RC4A-n (2004) — 218 228 236 244 252 258

The distinguisher for VMPC-8 that we propose is the following 2:

Distinguisher for VMPC-8:

1. Observe N = 254 output bytes. Calculate the
number L of occurences such that a = Ot =
Ot+1 = 0.

2. Calculate two distances:
λRandom = |2−16 − 28 · L/N |
λVMPC = |(2−16 − 2−23.98322) − 28 · L/N |

3. If λRandom > λVMPC then keystream of
VMPC-8, else a random sequence.

If the internal state of a cipher from the RC4 family is uniformly distributed,
then, based on our discussions in Section 3, we conclude that such ciphers are
not very secure. When the internal state is non-uniformly distributed then the
real bias would more likely be larger rather than smaller, and the complexity
of the attack would be lower, in most cases. That effect we could observe on
the example of RC4A-n. It seems that the security level of such constructions

2 The distinguisher for RC4A-8 is in a similar fashion as for VMPC-8.
∗ In the first scenario from Subsection 4.3 the attack complexity for VMPC-4 is O(218).

356 A. Maximov

depends more on the degree of the recursive relations between output symbols
and internal states, rather than on the length of the permuter(s).

One of the solutions to protect against of such distinguishing attacks is to
increase the number of accesses to the permuter(s) in the loop. This solution will
increase the relation complexity between adjacent outputs. Another solution is
to discard some output symbols before to accept one. Unfortunately, both the
suggestions significantly decrease the speed of these ciphers – the main purpose
of such designs (speed) is then destroyed.

Acknowledgements

We thank Willi Meier for his useful suggestions on this research direction that
made this paper possible. We also thank Thomas Johansson and anonymous
reviewers for their editing advises and critical comments.

References

1. N. Smart. Cryptography: An Introduction, 2003.

2. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley and Sons, New York, 2nd edition, 1996.

3. J.D. Golić. Linear statistical weakness of alleged RC4 keystream generator. In
W. Fumy, editor, Advances in Cryptology—EUROCRYPT’97, volume 1233 of Lec-
ture Notes in Computer Science, pages 226–238. Springer-Verlag, 1997.

4. L.R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Analy-
sis methods for (alleged) RC4. In K. Ohta and D. Pei, editors, Advances in
Cryptology—ASIACRYPT’98, volume 1998 of Lecture Notes in Computer Science,
pages 327–341. Springer-Verlag, 1998.

5. S. R. Fluhrer and D. A. McGrew. Statistical analysis of the alleged RC4 keystream
generator. In B. Schneier, editor, Fast Software Encryption 2000, volume 1978 of
Lecture Notes in Computer Science, pages 19–30. Springer-Verlag, 2000.

6. I. Mantin and A. Shamir. Practical attack on broadcast RC4. In M. Matsui,
editor, Fast Software Encryption 2001, volume 2355 of Lecture Notes in Computer
Science, pages 152–164. Springer-Verlag, 2001.

7. S. Paul and B. Preneel. Analysis of non-fortuitous predictive states of the
RC4 keystream generator. In T. Johansson and S. Maitra, editors, Progress in
Cryptology—INDOCRYPT 2003, volume 2904 of Lecture Notes in Computer Sci-
ence, pages 52–67. Springer-Verlag, 2003.

0 The work described in this paper has been supported in part by Grant VR 621-2001-
2149, in part by the Graduate School in Personal Computing and Communication
PCC++, and in part by the European Commission through the IST Program under
Contract IST-2002-507932 ECRYPT.

The information in this document reflects only the author’s views, is provided as
is and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Two Linear Distinguishing Attacks on VMPC and RC4A 357

8. B. Zoltak. VMPC one-way function and stream cipher. In B. Roy and W. Meier,
editors, Fast Software Encryption 2004, volume 3017 of Lecture Notes in Computer
Science, pages 210–225. Springer-Verlag, 2004.

9. S. Paul and B. Preneel. A new weakness in the RC4 keystream generator and an
approach to improve the security of the cipher. In B. Roy and W. Meier, editors,
Fast Software Encryption 2004, volume 3017 of Lecture Notes in Computer Science,
pages 245–259. Springer-Verlag, 2004.

10. D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Yung, editor, Advances in Cryptology—CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 515–532. Springer-Verlag,
2002.

Appendix A: Subalgorithm for Algorithm 2

Problem statement: We are given a permuter template of size q, where r
positions are already placed, whereas the rest are undefined. We want to calculate
the number of permuters satisfying the given template, such that P 3[j′] = c,
where j′ and c are some known positions in the permuter.

Sub-Algorithm:a

1. Go forward by the path j′ → P [j′] → P 2[j′] → P 3[j′], as much as
possible, but not more then 3 steps. Let g be the point in this path where
we have stopped, and lg be the number of steps we made (from 0 to 3).

2. Go backward by the path c → P−1[c] → P−2[c] → P−3[c], as much as
possible, but not more then 3 steps. Let h be the point in the path where
we have stoped, and lh be the number of steps we made (from 0 to 3).

3. if (lg = 3 and g �= c) or (lh = 3 and h �= j′) then return 0;
if (lg = 3 and g = c) or (lh = 3 and h = j′) then return (q − r)!;
if (lg + lh ≥ 3) return 0;

4. Count the number t1 of positions x �= g, h in the permuter P [·] for which
P [x] = P−1[x] = ∞ (see Fig. 3(1)).
Count the number t2 of positions x �= g, h, for which P [x] �= ∞, g, h, and
P−1[x] = P 2[x] = ∞ (see Fig. 3(2)).

5. Now there could be 7 possibilities to connect positions g and h, and they
are depicted in Figure 3(a–g):
a) g = h, lg + lh = 0 ⇒ add (q − r − 1)! combinations;
b) g = h, lg + lh = 0, t1 ≥ 2 ⇒ add t1(t1 − 1)(q − r − 3)! combinations;
c) g = h, lg + lh = 0 ⇒ add t2(q − r − 2)! combinations;
d) g �= h, lg + lh = 2 ⇒ add (q − r − 1)! combinations;
e) g �= h, lg + lh = 1 ⇒ add t1(q − r − 2)! combinations;
f) g �= h, lg + lh = 0, t1 ≥ 2 ⇒ add t1(t1 − 1)(q − r − 3)! combinations;
g) g �= h, lg + lh = 0 ⇒ add t2(q − r − 2)! combinations;

a The complexity of the subalgorithm is O(q)

358 A. Maximov

...

g h

a)

b)

c)

d)

f)

g)

e)

2)

1)
dist=3 − lg − lh

t1

t1

t1

t1t1

t2

t2

Count t1 of such

Count t2 of such

∞ ∞

∞∞

Fig. 3. Possibilities to connect g and h, used in subalgorithm

	Introduction
	Notations
	Preliminaries: A Linear Distinguishing Attack
	Cryptanalysis Assumptions

	Descriptions of VMPC-n, RC4-n, and RC4A-n
	Investigation of the RC4 Family of Stream Ciphers
	Digraphs Approach, on the Instance of VMPC-n
	Theoretical Weakness of the RC4 Family of Stream Ciphers

	Our Distinguisher for VMPC-n
	What the Probability That $Ot=O_t+1=0$, When i=0 and j=1, Should Be?
	Calculating $PrOt=O_t+1=0|i=0$, When j and P[] Are Random
	Simulations of the Attack on VMPC-n

	Our Distinguisher for RC4A-n
	Building a Distinguisher
	Checking the Assumptions
	Simulations of the Attack on RC4A-n

	Results and Conclusions

