Skip to main content

Information Fusion in Biomedical Image Analysis: Combination of Data vs. Combination of Interpretations

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

Information fusion has, in the form of multiple classifier systems, long been a successful tool in pattern recognition applications. It is also becoming increasingly popular in biomedical image analysis, for example in computer-aided diagnosis and in image segmentation. In this paper, we extend the principles of multiple classifier systems by considering information fusion of classifier inputs rather than on their outputs, as is usually done. We introduce the distinction between combination of data (i.e., classifier inputs) vs. combination of interpretations (i.e., classifier outputs). We illustrate the two levels of information fusion using four different biomedical image analysis applications that can be implemented using fusion of either data or interpretations: atlas-based image segmentation, “average image” tissue classification, multi-spectral classification, and deformation-based group morphometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22, 418–435 (1992)

    Article  Google Scholar 

  2. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Machine Intell. 20, 226–239 (1998)

    Article  Google Scholar 

  3. De Santo, M., Molinara, M., Tortorella, F., Vento, M.: Automatic classification of clustered microcalcifications by a multiple expert system. Pattern Recognit 36, 1467–1477 (2003)

    Article  Google Scholar 

  4. Rogova, G.L., Stomper, P.C.: Information fusion approach to microcalcification characterization. Inform. Fusion 3, 91–102 (2002)

    Article  Google Scholar 

  5. Sboner, A., Eccher, C., Blanzieri, E., Bauer, P., Cristofolini, M., Zumiani, G., Forti, S.: A multiple classifier system for early melanoma diagnosis. Artif. Intell. Med. 27, 29–44 (2003)

    Article  Google Scholar 

  6. Gefen, S., Tretiak, O.J., Piccoli, C.W., et al.: ROC analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis. IEEE Trans. Med. Imag. 22, 170–177 (2003)

    Article  Google Scholar 

  7. Miller, M.I., Christensen, G.E., Amit, Y., Grenander, U.: Mathematical textbook of deformable neuroanatomies. Proc. Natl. Acad. Sci. 90, 11944–11948 (1993)

    Article  MATH  Google Scholar 

  8. Rohlfing, T., Brandt, R., Menzel, R., Maurer Jr., C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21, 1428–1442 (2004)

    Article  Google Scholar 

  9. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximisation of mutual information. IEEE Trans. Med. Imag. 16, 187–198 (1997)

    Article  Google Scholar 

  10. Rohlfing, T., Maurer Jr., C.R.: Multi-classifier framework for atlas-based image segmentation. Pattern Recogn. Lett. (2005) (in press)

    Google Scholar 

  11. Rueckert, D., Sonoda, L.I., Hayes, C., et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18, 712–721 (1999)

    Article  Google Scholar 

  12. Rohlfing, T., Maurer Jr., C.R.: Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Trans. Inform. Technol. Biomed. 7, 16–25 (2003)

    Article  Google Scholar 

  13. Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence study. Comput. Vision Image Understanding 77, 192–210 (2000)

    Article  Google Scholar 

  14. Collins, D.L., Zijdenbos, A.P., Kollokian, V., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imag. 17, 463–468 (1998)

    Article  Google Scholar 

  15. Park, H.J., Westin, C.F., Kubicki, et al.: White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensorMRI study. NeuroImage 23, 213–223 (2004)

    Article  Google Scholar 

  16. Brandt, R., Rohlfing, T., Ryback, J., et al.: An average three-dimensional atlas of the honeybee brain based on confocal images of 20 subjects. J. Comp. Neurol (2005) (in press)

    Google Scholar 

  17. Pfefferbaum, A., Lim, K.O., Desmond, J.E., Sullivan, E.V.: Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study. Alcohol. Clin. Exp. Res. 20, 752–757 (1996)

    Article  Google Scholar 

  18. Pfefferbaum, A., Rosenbloom, M., Serventi, K.L., Sullivan, E.V.: Corpus callosum, pons, and cortical white matter in alcoholic women. Alcohol. Clin. Exp. Res. 26, 400–406 (2002)

    Article  Google Scholar 

  19. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Map. 17, 143–155 (2002)

    Article  Google Scholar 

  20. Studholme, C., Cardenas, V., Blumenfeld, R., et al.: Deformation tensor morphometry of semantic dementia with quantitative validation. NeuroImage 21, 1387–1398 (2004)

    Article  Google Scholar 

  21. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imag. 22, 1014–1025 (2003)

    Article  Google Scholar 

  22. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hiddenMarkov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20, 45–57 (2001)

    Article  Google Scholar 

  23. Studholme, C., Hill, D.L.G., Hawkes, D.J.: Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med. Phys. 24, 25–35 (1997)

    Article  Google Scholar 

  24. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32, 71–86 (1999)

    Article  Google Scholar 

  25. Chung, M.K., Worsley, K.J., Paus, T., et al.: A unified statistical approach to deformationbased morphometry. NeuroImage 14, 595–606 (2001)

    Article  Google Scholar 

  26. Studholme, C., Cardenas, V., Maudsley, A., Weiner, M.: An intensity consistent filtering approach to the analysis of deformation tensor derived maps of brain shape. NeuroImage 19, 1638–1649 (2003)

    Article  Google Scholar 

  27. Rohlfing, T., Brandt, R., Maurer Jr., C.R., Menzel, R.: Bee brains, B-splines and computational democracy: Generating an average shape atlas. In: Staib, L. (ed.) IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, Kauai, HI, pp. 187–194. IEEE Computer Society, Los Alamitos (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rohlfing, T., Pfefferbaum, A., Sullivan, E.V., Maurer, C.R. (2005). Information Fusion in Biomedical Image Analysis: Combination of Data vs. Combination of Interpretations. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_13

Download citation

  • DOI: https://doi.org/10.1007/11505730_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics