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Abstract. Here we model the effect of non-overlapping voxels on image
registration, and show that a major defect of overlap-only models—their
limited capture range—can be alleviated. Theoretically, we introduce
a maximum likelihood model that combines histograms of overlapping
and non-overlapping voxels into a common joint distribution. The con-
vex problem for the joint distribution is solved via iterative application
of replicator equations that converge monotonically. We then focus on
rigidly aligning images with unknown translation, where we present a
fast FFT-based method for computing joint histograms for all relative
translations of an image pair. We then apply this method to standard
overlap-only information theoretic registration criteria such as mutual
information as well as to our variants that exploit non-overlap. Our ex-
perimental results show that global optima correspond to the correct
registration generally only when non-overlapping image regions are in-
cluded.

1 Introduction

This paper addresses a long-standing complaint with intensity-based image reg-
istration methods: they generally converge correctly only if given an initial guess
within a limited “capture range” of the correct alignment. We are led to ask:
even if processing were free but no initial guess were given, do current regis-
tration criteria select the correct alignment? Unfortunately not, since the global
optima of information theoretic registration criteria such as entropy may be far
away from the correct result [5, p. R27]. Here we suggest a fix.

Spurious global optima can arise when there is too little overlap of the image
pair for reliable estimation of the joint distribution of corresponding voxels. We
thus revisit the concept of overlap beginning in §2, where we review a common
probabilistic registration model that assumes full overlap and which explains
why the joint histogram of the image pair can be used as an estimate of the
joint distribution of intensities of corresponding voxels. In §3, we generalize this
model to allow for merely partial overlap, and it is here we see terms in the
likelihood that depend on the non-overlapping voxels. The revised model gives
rise to a joint distribution that trades off the joint histogram on the overlapping
voxels with univariate histograms from the non-overlapping voxels, unlike [7,
9]. In §4, we solve for this joint distribution using a monotonically-convergent
iterative scheme, i.e., where no step size is required.



To solve for the alignment itself, we focus on the case of unknown translation.
In §5, we compute the globally optimal alignment to within one voxel using a
fast FFT-based method for computing joint and non-overlap histograms over all
translations. This also makes it practical to visualize various registration criteria
over the entire set of transformations, not only those within a local neighborhood
of a potential solution. These complex registration landscapes (§6) highlight
the difficulties that registration search strategies must confront, and put into
question the feasibility of local search for fully automatic (full capture range)
image registration. We suggest that global methods not based on local search
will be necessary in the absence of a good initial guess. In hindsight, the standard
practice of ignoring the non-overlap seems strange since it uses different image
data to evaluate competing alignments that differ in overlap. This violates the
principle that all hypotheses be compared using the same information.

2 Idealized Registration Configuration: Full Overlap

To introduce our argument and notation, we start with the simpler situation
where the effects of overlap are ignored. Let v : X — {1,.... M} andv:Y —
{1,..., N} be the two images to be aligned, where region X (resp. Y') is the finite
cardinality set of possible voxels (locations) and M (resp. N) is the number of
possible intensities for image u (resp. v). Typically, X and Y are the vertices
of a finite lattice in 2- or 3-dimensions. Thus u, = u(z) is the intensity (in the
range {1,...,M}) at voxel z € X and v, = v(y) is the intensity (in the range
{1,...,N}) at voxel y € Y.

The goal of intensity-based image registration is to optimally choose that
spatial transformation y = T'(x) that maps between the two image regions so
that u, and vp(y), the intensities at corresponding voxels z and T'(z), are in some
sense correlated, suggesting that their joint distribution will be important. We
assume that the intensities for pairs of corresponding voxels are independent and
identically distributed (IID), i.e., if 2’ # x, then (ug, vp(z)) and (ug, vp(r)) are
IID, each pair having joint distribution (probability mass function) p(m,n) =
Dmn,m € {1,...,M},n € {1,..., N}. Further assuming full overlap, i.e., that
the mapping T': X — Y is one-to-one and onto, the likelihood (joint probability)
of the two images is therefore

Prob{u, v|full overlap} = H P(Ug, V7 (a))s
reX
and the log likelihood is
Leg == Z log p(tz, V1(a))- (1)
reX

Recall the identity . d(k,n) = 1, where the Kronecker delta function 6(k, n)
is equal to 1 if K = n and is 0 otherwise. We apply this identity twice to obtain

L = Z lz 5(Uwam)‘| lz 6(UT(1)7n)‘| logp(umUT(m))' (2)

zeX L m



By changing the order of summation (permissible because all sums are finite),
we can write

Ly = Zaﬁ’n 108 P,y where @, , i= ampn = Z d(ug, m)o(vp(),n) (3)
m,n reX

is the joint histogram (raw, unnormalized counts) of intensity pairs at corre-
sponding voxels for transformation T'. Observe that Zm)n am,n = | X/, the num-
ber of voxels in X. To determine the unknown joint distribution p, we solve an
optimization problem: maximizing the (log) likelihood. We first show Ly, is well
behaved, and then show the solution is the normalized histogram.

Proposition 1. L,y is a concave function of p.

Proof. Observe in (3) that L,y is a nonnegatively-weighted sum of the concave
function log [4]. O

Let S be the simplex of distributions!
S :={pecRMVN:

DPm,n = 0,Ym,n; [Nonnegativity constraint] (4)
Z DPmon = 1}. [Normalization constraint] (5)
m,n

Observe that set S is convex.

Proposition 2. Fix transformation T and suppose azm > 0, for allm,n. Then
normalized histogram p* = a” /| X| is the global optimum of the convex problem

max L (T, p) subject to p € S.
P

Proof. We first ignore the nonnegativity constraint but later check that it is sat-
isfied. Applying the method of Lagrange multipliers to the constrained optimiza-
tion problem (now with only the normalization equality constraint having the La-
grange multiplier v), we seek the maximum of ¢(p,y) = Lean+7(>_,, , Pm,n—1)-
Recall that the first-order necessary conditions for optimality are obtained by
setting to zero the partial derivatives of ¢ with respect to the unknowns. Differ-
entiating w.r.t. pp.n, we get al, . /ph, , +7* = 0, and therefore p}, ,, = al , /7*.
Differentiating w.r.t. 7 we get the normalization constraint (5), and thus py, ,, =
apn/ Yok @y = g/ 1X|. Since af, |, is strictly positive, so is p}, ,,, and there-
fore the nonnegativity constraint is not active at p* and can be ignored. Since
L¢q is concave in p, the unique stationary point p* is the global maximizer. O

The following consequence of Prop. 2 may be viewed as a justification, first
shown in [7], for the use of minimum entropy for (fully overlapping) image reg-
istration: the transformation 7" that minimizes the empirical entropy of distri-
bution a”' /| X | maximizes the likelihood.

Corollary 1. L}, (T) := max, Ly (T, p) = —| X| entropy (aT /| X|).

! Here all distributions are normalized and histograms are unnormalized, unless oth-
erwise stated.



3 Realistic Registration Configuration: Partial Overlap

Now we include the effect of partial overlap of the two images. There are three
regions to consider: (a) the voxels that overlap, as before; (b) the voxels in image
u that do not map to voxels in image v; and (c¢) the voxels in image v that do
not get mapped to from image u. Even if the only dependencies are between
corresponding voxel intensities, as before, what distributions should be used for
the non-overlapping regions (b) and (c)? We suggest that no new information
about the non-overlapping voxels should be assumed; a non-overlapping voxel is
to be treated just the same as an overlapping voxel pair, but where one voxel of
the pair was not observed. In other words, the reason why there are no corre-
sponding v-voxels for the non-overlapping u-voxels is that we have limited our
region of interest (ROI) for image v, and vice versa. Thus we obtain the prob-
ability for intensity u, at non-overlapping voxel z by marginalizing the joint
distribution: sum the joint probability of u, and v, over all possible values of
the unknown v,. Specifically, if p(m,n) = pp, » is the joint distribution for in-
tensities u; = m and v, = n at corresponding voxels = and y, then the intensity
u; = m at non-overlapping voxel x is distributed according to the marginal dis-
tribution ), p(m,n). Similarly, the intensity v, = n at non-overlapping voxel y
is distributed according to the marginal distribution >, p(m,n).

Region X Region Y

Y\T(A )

Image v

Fig. 1. Partially overlapping images v and v represent different regions of interest in
the patient. See text for notation.

When we explicitly consider partial overlap, both the domain of definition
and the mapping rule can vary (Fig. 1); thus the alignment transformation is
T: Ar — Y, where domain Ap C X is the set of voxels in image u that map
to voxels in image v. Note that T(Ar) C Y is the set of voxels in image v that
get mapped to. Thus the non-overlapping portion of image u is X \ Arp, i.e.,
everything in X but Arp; similarly, the non-overlapping part of image v(y) is
Y \T(Ar). Again assuming IID distributions, the probability of the image pair



u, v at transformation T is

Prob{u, v|partial overlap}

= [H p(uzavT(w))] X H Zp(uran) X H Zp(m,vy)

xEAT z€X\Ar n yeY\T(Ar) m

Again using the Kronecker identity and changing order of summation as in the
fully-overlapping case, the log likelihood is

Lpartial = Z logp(uwavT(r))

TEAT
+ Z 1og2p(uz,n)+ Z 10%2]9(77%”7;) (6)
zEX\Ar n yEY\T(Ar) m
= Zagz,n 1ngm,"

+> 05108 P+ Y chlog > pmn, (7)

where we define

a%’n = Q= Z O(tg, m)S(vp(z), ) (8)
TEAT
br = b, = Z 0 (g, m) 9)
zeX\Ar
cZ =y = Z 5(UT(x),n)7 (10)
yEY\T(Ar)

the (T-dependent) joint histogram for the overlapping region, and the histograms
for the non-overlapping regions of image v and v, respectively. Again we can
maximize this likelihood Lpartial to determine the unknown joint distribution
p. But unlike §2, clearly some sort of numerical optimization will be needed to
compute this p € S: we have to trade off the effects of the overlapping versus
the non-overlapping histograms. Fortunately, objective function Lpartial is well-
behaved, leading to a convex problem for p.

Proposition 3. Lyartial 25 a concave function of p.

Proof. Since log is concave and Zn Dm,n is affine in p, their composition log Zn Dm,n
is concave in p; similarly for log)"  pmn [4]. Thus, Lpartial, & nonnegatively-
weighted sum of concave functions, is concave. O

Before introducing our optimization strategy in §4, we suggest how this optimal
p be used.

Proposal 1 (Non-Overlap Imperative) Given partially overlapping images
u and v, to evaluate information-theoretic image comparison measures such as
joint entropy and mutual information, use the distribution p that mazimizes
Lpartial tnstead of the overlap-only-based normalized joint histogram.



4 Replicator Equations for Combining Histograms

Now we present an iterative method for estimating the distribution p that max-
imizes the log likelihood Lpartial for partial overlap. We suppress 1" for now as
it will be optimized for after we have optimized for p at each fixed T'. Since our
problem is to maximize concave Lpartial Over convex set S, we could attempt
to exploit the arsenal of convex programming. Instead, we suggest an iterative
technique with a simple implementation, where the iteration cost is low (unlike
other second-order methods that might apply) and which requires no tuning of
parameters at all. Specifically, the replicator equations for updated distribu-
tion p’ are similar to a gradient ascent on the log likelihood, except the gradient
multiplicatively—not additively—updates the previous distribution p, and the
result is normalized to sum to one to remain in the simplex of distributions:

/ L pmmme h I L
DPrn = e, where Ly, , :=

8Lpartial o Qm,n b Cn
2 Piglig

m

8pm,n Pm.n + Ej Pm,j * Zipi,n'

(11)
Observe that this simplex-preserving multiplicative update method converges in
one step to the the result in Prop. 2 if b and ¢ are both zero. More importantly,
in contrast to the undesirable instability of (additive) gradient ascent when too
large a step size is chosen, each multiplicative update increases the log likelihood
without choosing a step size.

Definition 1. Continuous mapping f : D — D is growth transformation
for objective function ¢ : D — R if ¢(f(p)) > ¢(p), for all p € D.

The concept of growth transformation was used in papers by Baum and cowork-
ers [2,3] and Pelillo [6] to characterize the dynamics of replicator equations,
which are a particular class of relaxation labeling processes [8], for certain poly-
nomial objective functions ¢ that arise in evolutionary game theory, computer
vision and parameter estimation for Markov chains. Although our objective func-
tion Lpartial is non-polynomial, we have obtained the same result.

Proposition 4. Update (11) is a growth transformation for Lpartia : S — R.

Explicitly, this states that Lpartial(p’) > Lpartial(p), for any distribution p € S
and its update p’ from (11): we can depend on the update to monotonically
improve the log likelihood. We have proved Prop. 4 using the log-sum and
arithmetic-geometric means inequalities [1].

Because the replicator equations describe a growth transformation for Lpartial,
the choice of initial distribution p° that starts the iterations is unimportant, but
to avoid degeneracies we suggest that all components be non-zero. We use the
normalized version of overlap histogram a as the initial condition in our experi-
ments. To maximize Lpartial, We iteratively apply the replicator equations until
a termination condition is satisfied. In our experiments, we simply stopped after
completing only two iterations.



5 FFTs for Global Optimization of Translation

Designers of information theoretic objective functions for image registration have
not insisted that global optima approximate the true solution, and have instead
focused on local optima. Perhaps this bias stems from the seeming intractability
of computing the global optimum. To illustrate, even when 7' is restricted to a
translation and n = | X| ~ 10° to 10° is the number of voxels, O(n) operations
are required to compute the joint histogram at each of O(n) possible translations,
for an apparent total of O(n?) operations to find the global optimum! These two
onerous O(n) are usually [10] reduced to O(1) by (i) using statistical sampling
to approximate the joint distribution and (ii) abandoning global optimization
entirely for local, greedy search.

Here we introduce a method to allow exact global optimization of translation
for information theoretic objectives in only O(knlogn) operations, where k =
MN is the number of bins in the joint histogram. This technique applies to
both the full overlap and partial overlap likelihoods, as well as to any registration
method that that requires computation of the joint distribution, such as entropy,
mutual information [10], and normalized mutual information [9]. The trade-oft
is histogram resolution for image resolution, which is often acceptable because
the joint histogram requires crude quantization just to maintain sufficient bin
counts for reliability.

The main idea is that the (m,n)-th bin of the joint histogram is the cross-
correlation a;, , = >, f(x)g(x +t) =: corryy(t) between two binary vectors
f(x) :=6(uz, m) and g(y) := 6(vy,n), where y = T'(x) := x +¢ for translation ¢.
The translation is a 2- or 3-dimensional vector depending on the dimensionality
of images v and v. Zero-padding f and ¢ to an appropriate size I or 3 for 2-
or 3-d, resp., we can avoid wrap around artifacts in assuming their periodicity,
and thus apply Fourier methods. Specifically, if the discrete Fourier transform
of f at frequency vector w is f(w) = f(x)e=?™ =/l and z* is the complex
conjugate of z € C, we know that corry ,(w) = F*(w)g(w). Thus for the (m, n)-th
bin, computing aﬁ,n over all translations takes O(nlogn) work using the FFT.
By performing this over all k£ bins we can calculate the joint histogram over all
translations in O(knlogn) time.

The non-overlap histograms b7 and ¢’ require a similar approach, because
they depend on the non-constant region of overlap Ar. (We cannot simply com-
pute the histograms for each image; we need a histogram for each possible over-
lap.) For b”', our computation is based on a cross-correlation between f and a
mask (of ones) the size of image v. For ¢, the cross-correlation is between a
u-sized mask and g. Each also requires O(knlogn) computations.

Given the overlap and non-overlap histograms, for each translation we can
solve the optimization problem for p in §4 with O(k) work, and all translations
with O(kn) work. Evaluating any of the optimization criteria Lsu, Lpartial,
entropy, mutual information or normalized mutual information is only O(kn)
more work and the selection of its global optimum takes O(n) time for a grand
total of O(knlogn) operations.



6 Experimental Results

To test the effect of including non-overlapping image portions, we evaluated
several registration criteria over all 2-d translations, thus computing a “reg-
istration landscape”. For joint distribution estimates using overlapping image
portions only, the criteria included mutual information, normalized mutual in-
formation, and L¢,. For the non-overlap-based joint distribution computed by
optimizing Lpartial W.I.t. p, these criteria, as well as Lparial, Were also used
to form landscapes. For joint distribution ¢ = (¢m,n), the formula for mutual
information is MI (¢) = entropy (3_,, ¢m,n) + entropy (3, ¢m,n) — entropy (q),
and for normalized mutual information it is NMI(q) = [entropy (>_,, ¢m,n) +
entropy (3, ¢m.n)]/entropy (¢). All joint histograms had 16 uniformly-spaced
bins to which we added 0.1 to avoid degeneracy. Computations (in Numeri-
cal Python under GNU/Linux) used up to 0.5GB and took tens of seconds
on a 2.4GHz Intel Xeon. We began with a synthetic example where each im-
age started as a common uniform(0,1) noise field, to which independent uni-
form(0,1) noise was added (Fig. 2). Figs. 3, 4, and 5 show registration re-
sults for T1-, T2-, and PD-weighted MRIs of the same brain (images from
http://www.bic.mni.megill.ca/brainweb). To combat the spatially nonhomoge-
neous statistics induced by the black background, the images in Fig. 4 and 5
were thresholded at 2 out 256 gray levels, and the supra-threshold mask was
regularized by morphologically closing and then opening by a 3-pixel disk, with
the background of the resulting masked image indicated by a checkerboard. His-
tograms were then computed using only non-background pixels. In contrast to
the concave dependency of Lpartial and Ly on distribution p, observe that the
landscapes are highly non-concave functions of translation 7. Thus it will be
difficult to significantly increase the capture range of standard methods that
locally search for T'. Unsurprisingly, local search usually finds only local optima.
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tration landscapes for criteria computed using joint distribution of overlapping voxels
only (left to right: mutual information (MI), normalized mutual information (NMI),
and Lgn=weighted negative entropy (-Ent)). The same criteria are shown in middle
row, except non-overlapping pixels were also included to compute joint distribution
p via minimization of Lpartiai (see §4). Bottom right shows evaluation of optimized
Ly artia(T) at translation T'. The white circle and green triangle indicate the computed
global optimum of landscape and ground truth translation, respectively. Observe that
criteria computed using only the overlap (top) incorrectly have global optima in the
corners due to spurious responses from small sample effects, i.e., the image pair over-
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Fig. 3. T2- and PD-weighted MRIs images of human head with restricted ROIs. Top
3x3 image grid shows entire registration landscapes (see Fig. 2 for explanation), while
bottom 3x3 grid shows zoom of vicinity of ground truth showing nearby local peak.
Most current registration methods use a local search strategy for finding this peak.
However, the many spurious peaks, especially in overlap-only landscapes, confound
local search unless a close initial guess is provided. The large background in image v
is a major violation of the homogeneity /IID assumption. Fig. 5 reduces these artifacts
by automatically masking out the background.
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Fig. 4. T2- and PD-weighted MRIs images of human head with restricted ROIs, with
background elimination via thresholding. Checkerboard indicates background, which
was masked out of histogram computations to ensure greater statistical spatial ho-
mogeneity. Registration landscapes using non-overlap pixels (middle row and bottom
right) have correct global optima; overlap-only landscapes still have only correct local
optima.
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Fig.5. T2- and PD-weighted MRIs (top 3x3 grid) and T2- and T1-weighted MRIs
(bottom 3x3 grid), with full ROI and background-elimination. The spurious global
optima for overlap-only landscapes occur on the outer rim of the Minkowski sum of
the masks of the two brain regions and are due to small sample effects, similar to
the noisy corner/border responses in Fig. 2. Registration landscapes using non-overlap
pixels here also have correct global optima, as well as much smoother response in the
periphery.



