Skip to main content

Tunneling Descent Level Set Segmentation of Ultrasound Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

The presence of speckle in ultrasound images causes many spurious local minima in the energy function of active contours. These minima trap the segmentation prematurely under gradient descent and cause the algorithm to fail. This paper presents a substantially new reformulation of Tunneling Descent, which is a deterministic technique to escape from unwanted local minima. In the new formulation, the evolving curve is represented by level sets, and the evolution strategy is obtained as a sequence of constrained minimizations.

The algorithm is used to segment the endocardium in 115 short axis cardiac ultrasound images. All segmentations are achieved without tweaking the energy function or numerical parameters. Experimental evaluation of the results shows that the algorithm overcomes multiple local minima to give segmentations that are considerably more accurate than conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wagner, R.F., Smith, S.W., Sandrick, J.M., Lopez, H.: Statistics of speckle in ultrasound B-scans. I.E.E.E. Trans. Son. Ultra. 30, 156–163 (1983)

    Article  Google Scholar 

  2. Shankar, P.M.: A general statistical model for ultrasonic scattering from tissues. IEEE Trans. Ultrasonic, Ferro., Freq. Contr. 47(3), 727–736 (2000)

    Article  Google Scholar 

  3. Tao, Z., Beaty, J., Jaffe, C.C., Tagare, H.D.: Gray level models for segmentating myocardium and blood in cardiac ultrasound images. In: Proceedings ISBI 2002 (2002)

    Google Scholar 

  4. Tao, Z., Jaffe, C.C., Tagare, H.D.: Tunneling Descent: A new algorithm for active aontour segmentation of ultrasound images. In: Proceedings, IPMI 2003 (2003)

    Google Scholar 

  5. Butkhardt, C.B.: Speckle in ultrasound B-mode scans. I.E.E.E. Trans. Son. Ultra. SU-25, 1–6 (1978)

    Google Scholar 

  6. Belohlacek, M., Greenleaf, J.F.: Detection of cardiac boundaries in echocardiographic images using a customized order statistics filter. Ultrasonic Imaging 19(2), 127–137 (1997)

    Google Scholar 

  7. Bamber, J.C., Daft, C.: Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images. In: Ultrasonics, January 1986, pp. 41–44 (1986)

    Google Scholar 

  8. Muzzolini, R., Yang, Y., Pierson, R.: Multiresolution texture segmentation with application to diagnostic ultrasound images. IEEE Trans. Med. Img. 12(1) (March 1993)

    Google Scholar 

  9. Czerwinski, N., Jones, D.L., O’Brien Jr., W.D.: Line and boundary detection in speckle images-Application to medical ultrasound. IEEE Trans. Med. Img. 8(2), 126–136 (1999)

    Article  Google Scholar 

  10. Parker, A.D., Hill, A., Taylor, C.J., Cootes, T.F., Jin, X.Y., Gibson, D.G.: Application of point distribution models to the automated analysis of echocardiograms. In: Computers in Cardiology, 1994, September 1994, pp. 25–28 (1994)

    Google Scholar 

  11. Hill, A., Taylor, C.J.: Model-based image interpretation using genetic algorithms. Image and Vision Computing 10(5) (June 1992)

    Google Scholar 

  12. Mulet-Parada, M., Noble, J.A.: Intensity-invariant 2D+T acoustic boundary detection. In: Proceedings, Workshop on Biomedical Image Analysis 1998 (June 1998)

    Google Scholar 

  13. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1996)

    Google Scholar 

  14. Perkins, C.: A convergence analysis of Dykstra’s algorithm for phlyhedral sets. SIAM. J. Numer. Anal. 40(2), 792–804 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chan, T., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2) (Febuary 2001)

    Google Scholar 

  16. Tao, Z., Tagare, H.D.: Stopping rules for active contour segmentation of ultrasound images. In: Proceedings, SPIE Medical Imaging 2005 (2005)

    Google Scholar 

  17. Tao, Z., Tagare, H.D.: Tunneling descent for M.A.P. active contour segmentation., Technical Report No. 05.01 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, Z., Tagare, H.D. (2005). Tunneling Descent Level Set Segmentation of Ultrasound Images. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_62

Download citation

  • DOI: https://doi.org/10.1007/11505730_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics