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My ostensible purpose in this talk is to describe some new results (found
in collaboration with Amitabha Roy) on expressibility of regular languages in
certain generalizations of first-order logic. [10]. This provides me with a good
excuse for describing some the work on the algebraic theory of regular languages
in what one might call “nonregular settings”.

The syntactic monoid and syntactic morphism of a regular language provide
a highly effective tool for proving that a given regular language is not expressible
or recognizable in certain compuational models, as long as the model is guaran-
teed to produce only regular languages. This includes finite automata, of course.
but also formulas of propositional temporal logic, and first-order logic, provided
one is careful to restrict the expressive power of such logics. (For example, by
only allowing the order relation in first-order formulas.)

Things become much harder, and quite a bit more interesting, when we drop
this kind of restriction on the model. The questions that arise are important
(particularly in computational complexity), and most of them are unsolved.
They all point to a rich theory that extends the reach of algebraic methods
beyond the domain of finite automata

1 Uniformizing Nonuniform Automata with Ram-
sey’s Theorem

Let’s start with an especially trivial application of the syntactic monoid: Let
¥ = {0, 1}, and consider the two languages

Li={weX :|lw=0 (mod2)}

and
Ly={we¥ :|w;=0 (mod2)}.



(We denote by |w|; the number of 1’s that in the string w.)

These two languages have the same syntactic monoid, namely the group of
two elements. It follows immediately that neither can be recognized by a finite
automaton whose transition monoid is aperiodic (i.e., contains no nontrivial
groups). Put another way, if ¢ : ¥* — M is a homomorphism onto a finite
aperiodic monoid, then there is no X C M such that ¢=1(X) = Ly, or ¢~ 1(X) =
Lo.

Suppose that instead of a homomorphism, we consider a map

YN xZT = M,
and extend it to ¥ : ¥* — M by mapping
W=01--0p

to

U(w) = (01,1)¢(02,2) - - - p(om, ).
You can think of this as a kind of “nonuniform automaton”, in which the state
transition induced by a letter depends on the position of the letter within the
input string. This obviously increases the computational power of the model,;
the languages recognized need not even be recursively enumerable! Can we
recognize L1 with such a setup? Can we recognize Lo?

The answer to the first question is “yes”: Let M be the aperiodic monoid
{1, a,b} with multiplication defined by Ma = a, Mb =b. Set ¢)(0,i) = b when-
ever i is odd, and 9(c,i) = a when i is even. Then L; = ¥~1(a).

But L, cannot be recognized. Let us suppose that we have some aperiodic
monoid M and map ¥ that does recognize Lo. We will show that in spite of the
unruliness of ¥, we can tame it so that it behaves like a homomorphism on a
large set of inputs: Since M is aperiodic, it satisfies some identity of the form
™ = 2"t for some n. Let 0 <4 < j, and let us color the segment (i, j) by the
pair

Ramsey’s Theorem guarantees the existence of a sequence
1 <dg < --- <i2n+2

such that each (i;,7;4+1) is has the same color (mg, m1). Consider a string wy €
3* of length 49,492 — 1 that has 1’s in positions i1,...,4,4+1, and 0’s elsewhere.
Then
U(wy) = 0 HmiHimy.
Let us change the last 1 in w; to 0, giving a new string we. We now have
U(wz) = C(0"~Hmimg™ = W0 mg = ¥ (ws),

but the numbers of 1’s in the two strings differ by 1. So W cannot recognize L.

We get the same conclusion if we allow M to contain nontrivial groups of odd
order. We get a similar conclusion if we replace Lo by the set of strings in which
the number of 1’s is divisible by ¢ > 1: This language cannot be recognized by
a map ¥ X Z* — M if every group in M has cardinality relatively prime to gq.



2 Programs over Finite Monoids

The results of the last section are due to Barrington and Straubing [5]. The
“nonuniform automata” we considered are special cases of programs over finite
monoids. These are defined as follows: With each integer n > 0 we associate a
sequence of instructions

(1/11,717@'1)7 sy (’(/}’r‘n,nu irn>7

where each i; € {1,...,n} and each 9, ,, is a map from ¥ into M. The value of
the program ¥ on
w=01- 0, €X"
is
Tn

U(w) = [[wjnlos,) € M
j=1

In other words, the program scans the input word in some haphazard order,
possibly revisiting the same input letter many times. At each input letter, the
program emits an element of M, which depends on both the letter itself and the
instruction. The product of these elements determines whether w is accepted
or not. We call the function n — r, the length of the program.

The nonuniform automata of the preceding section are programs that make
a single scan over their input strings. In fact, [5] establishes a stronger result:

Theorem 2.1. Let g > 0, and let L C {0,1}* be the set of strings in which the
number of 1’s is divisible by q. Let M be a finite monoid in which every group
has cardinality relatively prime to q. Then any program over M recognizing L
has length Q(nloglogn).

If we allow the program length to be polynomial in the input length, however,
we get the following remarkable result, due to Barrington [1]

Theorem 2.2. If M is a finite monoid that contains a nonsolvable group,then
every reqular language s recognized by some polynomial-length program over M.

This implies, for example, that Theorem 2.1 cannot be extended to polynomial-
length programs, since the set of strings in which the number of 1’s is divisible
by 7 is recognized by the alternating group As, whose order is 60. In fact,
Barrington showed that every language in the circuit complexity class NC! is
recognized by a polynomial-length program over As. (Any other nonsolvable
group will do.) It is this connection with circuit complexity that motivates the
interest in programs over monoids.

3 Programs, Logic and Circuits

Let’s take a look again at Theorem 2.2 and ask what happens when M contains
only solvable groups. Such monoids are called solvable monoids. If the program



into M is an ordinary homomorphism, then the language L recognized by the
program is recognized by M in the ordinary sense; in particular, the syntactic
monoid M (L) of L is solvable. Straubing, Thérien and Thomas [13] give a char-
acterization in generalized first-order logic of the regular languages recognized
by finite solvable monoids: Consider the logic in which variables represent po-
sitions in a string over X, and which there are the following relation symbols:
x < y, which is interpreted to mean that position x is to the left of positon y,
and QQ,x, where o € X, which is interpreted to mean that the letter in position
x is 0. In addition to the usual boolean operations and ordinary quantification,
we allow modular quantifiers 3" ™°4 9, where 3" ™°d 93¢ is interpreted to mean
“the number of positions x satisfying ¢ is congruent to r modulo gq.

A sentence in this logic accordingly defines a language over Y. For instance,
the formula ¢(z) given by

Jy(z <yA-Tz(z <zAz<y)AQosx AQoy)

says “position x and its successor both contain the letter ¢”, and thus the
sentence
30 mod 233'(]5(1')

defines the set of strings in which oo occurs an even number of times as a factor.
In [13] it is proved that the family of languages defined in this way is precisely
the family of regular languages over ¥ recognized by finite monoids in which
every group is solvable.

Suppose now that instead of a homomorphism, we have a polynomial-length
program over M. On an input of length n, the program emits a sequence

m1, M2, ..., Myk

of elements of M. We can view this sequence as an element w’ of M*, where we
treat M as a finite alphabet. We then have w € L if and only if w’ € L', where
L' is the set of strings in M* that multiply to a value in X.

Of course, L' is a regular language recognized by M, so by the theorem just
cited, L’ is defined by a sentence ¢’ using both modular and ordinary quantifiers,
and in which the only numerical predicate is < .

In [2] it is shown how we can rewrite this sentence to obtain a defining sen-
tence ¢ for L The essential idea is that each position in the w’ can be encoded by
a k-tuple of positions in w, and thus each variable in ¢’ is replaced by a k-tuple
of variables in ¢. However, in constructing the sentence for L, we are obliged
to introduce new numerical predicates that encode the nonuniform behavior
of the k-program W. This is no surprise: since k-programs over M can recog-
nize uncomputable languages, so we would necessarily introduce uncomputable
numerical predicates in the defining sentences.

Thus every language recognized by a polynomial-length program over a solv-
able monoid is definable by sentence with modular quantifiers (with no restric-
tion on the kinds of numerical predicates introduced into the sentence).

Conversely, every language defined by such a sentence is recognized by a
polynomial-length program over a finite solvable monoid. Thus we have:



Theorem 3.1. L C ¥* is defined by a sentence using modular and ordinary
quantifiers if and only if L is recognized by a polynomial-length program over a
finite solvable monoid.

Moreover, these are exactly the languages recognized by a special kind of
boolean circuit: polynomial-size, constant-depth families of circuits with un-
bounded fan-in gates to compute AND, OR, and MOD, for a modulus ¢ > 1
fixed throughout the family. In computational complexity theory, this class
of languages is called ACC. The connection between ACC' and programs over
solvable monoids was discovered by Barrington and Thérien [6]. We will not
discuss circuits further here, but instead concentrate on the representations of
ACC in terms of programs and logic.

4 The Main Question

As we’ve seen, when we do not restrict the numerical predicates that occur in
our quantified formulas, we obtain languages that have arbitrarily high com-
putational complexity, in the sense that they may be uncomputable, but have
tightly bounded computational complexity in quite a different sense, since they
are recognized by small circuits. However, the true computational power of such
circuits is an open question, since we do not even know how to show that ACC
does not contain N P-complete languages.

But what if a language L defined by such a sentence is known to be regular?
Let us first consider the case of a regular language defined by a first-order
sentence, without the use of modular quantifiers. The example given in the first
section shows that the syntactic monoid of such a language might contain a
group. Indeed, the sentence

Ve(Vy(y < z) — (z mod 2 =0))

defines the set of strings of even length. Let us suppose, however, that the input
alphabet X contains a neutral letter for L—that is, we suppose there exists o € X
such that ¢ is mapped to the identity element of the syntactic monoid of L. This
rules out such examples as the set of strings of even length. We can then show

Theorem 4.1. Let L C X* be a regular language such that 3 contains a neutral
letter for L. If L is defined by a first-order sentence, then M (L) is aperiodic.

This theorem is due to Barrington, et. al. [2]. The proof, however, requires
the solution of a difficult problem in circuit complexity. (The separation of AC°
from NC', see Furst, Saxe and Sipser [7].)

We do not know how to show that there is any regular language not definable
by a sentence with modular quantifiers. But it has long been conjectures that
nonsolvability is necessary for the behavior observed in Theorem 2.2.

Conjecture 4.2. Let L C X* be a regular language defined by a sentence that
inlcudes both modular and ordinary quantifiers. Suppose that 3 contains a neu-
tral letter for L. Then every group in M (L) is solvable.



This conjecture is equivalent to the assertion that the circuit complexity
class ACC is properly contained in the class NC', a long-unsolved problem
in computational complexity. (The neutral letter hypothesis is not, strictly
speaking, necessary, since if the conjecture is true in the above form it remains
true without the hypothesis.)

There is, as well, a purely modular form of the conjecture:

Conjecture 4.3. Let L C X* be a regular language defined by a sentence that
inlcudes only modular quantifiers. Suppose that ¥ contains a neutral letter for
L. Then M(L) is a solvable group..

How might we approach such a question? The arguments in Section 1 show
that for languages defined by single-scan programs, we can use Ramsey’s The-
orem to smooth out the non-uniformity in the program and make it look like a
homomorphism. Can we apply the same ideas to logical formulas? Perhaps we
can prove the conjectures for special classes of formulas.

If the only numerical predicate occurring in our formulas is the order rela-
tion, then Conjectures 4.2 and 4.3 hold because of the results, already cited,
in [13]. But this is what we have been calling a regular setting: Formulas such as
these cannot define nonregular languages. The simplest example of a nonregular
setting is provided by formulas in which, in addition to the ordering relation,
there are monadic numerical predicates (predicates with a single argument).
The following is from Straubing [11]:

Theorem 4.4. Conjectures 4.2 and 4.3 hold for formulas in which every nu-
merical predicate is the order relation or a monadic relation.

This holds because such formulas give rise to single-scan programs with
equivalent behavior. More general formulas give rise to programs whose length
is n* for k > 1, and uniformizing these is considerably more difficult.

5 Presburger Arithmetic and Active-Domain Sen-
tences

Presburger Arithmetic is the first-order theory of the natural numbers with
addition. In other words, a formula in this theory is just a first-order formula
(typically with free variables) with the single ternary predicate z = y 4+ z. A
formula such as

Jyz=y+vy)

expresses the property “x is even”. Of course, we need quantification to express
such a property. Suppose though, that we add some new symbols to our logic:
Specifically, we allow constants 0 and 1, and atomic formulas ¢ =,, ¢/, where ¢
and t' are terms, interpreted to mean ¢ and ¢’ are congruent modulo m. We can
express “r is even” by the quantifier free formula

T =5 0.



Presburger [9] showed that every formula in the original logic is equivalent to a
quantifier-free formula, provided we add the constants 0 and 1, extend the set
of relations to include ordering and all the formuals ¢ =, ¢’. (Since these can
all be expressed in the original logic, we do not change the properties definable
in Presburger arithmetic by adjoining them.)

We can use the apparatus of Presburger arithmetic to define languages: Let
us add a single unary predicate symbol 7. We interpret 7(z) to mean “the bit
in position z is 17. (In other words, w(x) has the same meaning as Qx, but it
is important in this context that there is no Qpx.) A sentence in this logic can
be interpreted in a string of bits and accordingly defines a language in {0, 1}*.
We also allow interpretation in infinite strings in {0, 1}*0%, that is, infinite bit
strings in which there are finitely many 1’s.

We say that a sentence in this logic is an active-domain sentence if every
quantifier occurs in the form

Jx(m(z) AY).

In other words, we only allow quantification over positions that contain a 1.
The same techniques used to prove quantifier elimination in Presburger arith-
metic can be used to show that every sentence in this logic is equivalent to an
active-domain sentence, provided we extend the signature to include 0,1, order-
ing, and congruence modulo k. A proof is outlined in Libkin [8].
When we have modular quantifiers available as well, active-domain quantifi-
cation means that every modular quantifer occurs in the form

3rmod dy(m(x) Ap).

Very recently, A. Roy and I [10] showed that the elimination of non-acitive-
domain quantifiers can be extended to formulas that contain modular as well as
ordinary quantifers:

Theorem 5.1. Let L C {0,1}* or L C {0,1}*0%. Suppose L is defined by a
sentence ¢, with both modular and ordinary quantifiers and with relation symbols
+ and 7. Then L is defined by an active-domain sentence ¢' with modular and
ordinary quantifers, constant symbols 0 and 1, and relation symbols +, < and
=, . Moreover, the moduli of the modular quantifiers in ¢’ all occur in ¢.

6 Ramsey’s Theorem Again

We can talk about active-domain sentences with reference to arbitrary alphabets
Y of input letters, not just the binary alphabet {0,1}. We simply designate
some T € ¥ to be the “inactive letter”, and require all quantifiers to occur in
the context
Q.Z‘( \/ Qs N D),
oHFT

where Q is either an ordinary existential quantifier, or a modular quantifier.



Theorem 6.1. Conjectures 4.2 and 4.3 are true for languages defined by active-
domain sentences in which the neutral letter is inactive. Moreover, every such
language is itself reqular and its syntactic monoid is a solvable monoid (in Con-
jecture 4.2) or a solvable group (in Conjecture 4.3).

There is no restriction in the foregoing theorem on the numerical predicates
that can occur in the sentence. Combining this with Theorem 5.1, we obtain
the main result of [10]:

Theorem 6.2. Conjecture 4.2 is true for languages defined by sentences in
which the only numerical predicate symbol is +.

Let us sketch how Theorem 6.1 is proved. Once again, we can use Ramsey’s
theorem to uniformize a non-uniform computation. This time the uniformiza-
tion functions at the level of the formula, instead of the program. Following
Libkin [8], we were able to prove:

Theorem 6.3. Let L C X*. Suppose LO¥ is defined by an active-domain sen-
tence ¢ with both modular and ordinary quantifiers, and arbitrary numerical
predicates. Then there is an infinite subset Y of N, and a sentence v, with the
following properties: (a) The only numerical predicate in i is < . (b) 1 has both
ordinary and modular quantifiers, and the modulus of every modular quantifier
in 1 also occurs in ¢. (¢) ¥ is an active-domain sentence. (d) If w € ¥* and all
the active letters in w are in positions belonging to Y, then w € L if and only if
w satisfies 1.

In other words, nonuniform sentences (those with unrestricted numerical
predicates) behave exactly like highly uniform sentences (those in which the
only numerical predicate is <) when restricted to some large set of positions.
This is precisely analogous to the behavior we observed in Section 1.

Now let L C ¥* be a language with a neutral letter defined by an active-
domain sentence ¢ in which the neutral letter 7 is inactive. Then L0% is also
defined by ¢, and thus there is an infinite subset Y of N and a sentence ¥ as in
the theorem above. Let

Y={yi<y2<---}.

Let w = o1---0, € ¥*, and consider the word w’ of length y, such that the
yt" letter of w’ is o, and all the other letters are equal to the neutral letter 7.
Then w € L if and only if w’ € L if and only if w’ satisfies v. But since 1 uses
only active-domain quantification and has only < for a numerical predicate, this
occurs if and only if w satisfies 1. This means that L is regular and its syntactic
monoid contains only solvable groups.

7 Conclusions

Much of what we have described can be viewed as a generalization of the work
in Barrington, et. al. [4] on the ”Crane Beach Conjecture” from the domain of
first-order formulas with + to formulas with modular quantifiers and +. The



outstanding challenge, of course, is to extend our non-expressibility results to
formulas with arbitrary numerical predicates.

There are, however, considerable technical obstacles to doing so. We might
try to approach the problem by first showing that Conjecture 4.2 holds when
we adjoin the numerical predicate X (integer multiplication). (The resulting
logic is important from a computational standpoint, since it defines precisely
the languages in a natural uniform version of ACC [3].) But in [4] it is shown
that when this is done, one can define languages with neutral letters that are not
regular. Together with Theorem 6.1 this implies, in particular, that one cannot
eliminate non-active-domain quantification from such a formula. Quantifier-
elimination techniques may still be useful, however—it would be enough to
show the reduction to active-domain quantification under the assumption that
the language defined is regular. It may be necessary to begin with very simple
formulas: In Straubing [12] something of the kind is carried out for the modular
analogue of boolean combinations of ¥; sentences. Once again, Ramsey theory
is an essential ingredient.

Results like Theorem 2.2 show that nonsolvable groups have special com-
putational properties. What we have been trying to do is show that the non-
solvability is essential—that monoids with only solvable groups have radically
different computation capabilities. Completing this program would extend the
application of finite semigroups in computation well beyond the domain of finite
automata.
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