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Abstract. This paper is motivated by the design of AES. We consider
a broader question of cryptanalysis of block ciphers having very good
non-linearity and diffusion. Can we expect anyway, to attacks such ci-
phers, clearly designed to render hopeless the main classical attacks 7
Recently a lot of attention have been drawn to the existence of mul-
tivariate algebraic relations for AES (and other) S-boxes. Then, if the
XSL-type algebraic attacks on block ciphers [11] are shown to work well,
the answer would be positive. In this paper we show that the answer is
certainly positive for many other constructions of ciphers. This is not
due to an algebraic attack, but to new types of generalised linear crypt-
analysis, highly-nonlinear in flavour. We present several constructions of
somewhat special practical block ciphers, seemingly satisfying all the de-
sign criteria of AES and using similar S-boxes, and yet being extremely
weak. They can be generalised, and evolve into general attacks that can
be applied - potentially - to any block cipher.
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1 Introduction

AES (Rijndael) [16,17] is a rather accomplished realisation of certain philosophy
that culminates two decades of research in the design of modern block ciphers. It
has important security margins and at present attacking full Rijndael is very am-
bitious. The research on AES focuses rather on better understanding its security
by following two paths. First approach analyses the security of reduced-round
versions of AES against known attacks. Another line of research is to attack,
instead of Rijndael, its design principles. Though the outcome of this approach
will in most cases give results not being directly applicable to AES, it remains
extremely interesting. This is because Rijndael pushes some of these design prin-
ciples such as high non-linearity or good diffusion to their theoretical limits, thus
giving us the opportunity and motivation to explore these limits, and uncover
possible pitfalls (are they serious or not).

For example the resistance of the Inverse function in GF(2") to linear, differ-
ential and higher-order differential attacks is exceptional and close to optimality,
see [4]. On page 6 of [18], the designers of AES say: “/...] The disadvantage of
these boxes is that they have a simple description in GF(2™), which is also the
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field in which the diffusion layer is linear. This may create uneasy feelings, but
we are not aware of any vulnerability caused by this property. For the time be-
ing we challenge cryptanalysts to demonstrate any vulnerability caused by this
property. Should such a vulnerability exist, one can always replace the Sboxes by
Sbozes with similar properties, that are not algebraic over GF(2™). [...]”

Unfortunately an important vulnerability of the inverse S-box does exist. It
follows the line of research that has already been around for some time now.
Historically the idea goes back to cryptanalysis of some rather esoteric public
key schemes by Patarin [31], greatly improved by Courtois [8,14], and followed
without proper acknowledgment by Faugeére and Joux [26]. The seminal idea
(due to Patarin) is to study the security of a cipher component not in terms of
Boolean/algebraic functions, but in terms of Boolean/algebraic relations that
involve both inputs and output bits. This idea is very powerful, and in the
last two years, it has led to a sudden collapse of several important families of
stream ciphers, as demonstrated by Courtois, Meier et al in [12,13,1,9,10] and
numerous other recent papers. But does it matter at all for block ciphers ?

An early warning has been issued by Jakobsen at Crypto’98 [24]. He proposes
attacks on block ciphers based on univariate (and tentatively also multivariate)
polynomial approximations, and already speaks explicitly of using (probabilistic)
algebraic relations. Jakobsen clearly makes his point showing that to obtain
secure ciphers “/...J it is not enough that round functions have high Boolean
complexity. Likewise, good properties against differential and linear attacks are
no guarantee either. In fact, many almost prefect non-linear functions should
be avoided exactly because they are too simple algebraically [...]”. Yet Jakobsen
did not propose neither really surprising nor really devastating attacks, and
so far his results are rather seen as a very special case of Generalised Linear
Cryptanalysis (GLC) that breaks badly some very special ciphers and has no
implication whatsoever for all the other ciphers.

Each Rijndael S-box, though very complex when regarded as a function, can
be characterised in several ways by algebraic relations, cf. [11,29], being true
with very high probability, usually 1. When the XL attack was first introduced
by Courtois, Klimov, Patarin and Shamir [6], it became sensible to combine these
ideas and to write the problem of recovering the AES key as solving a system
of multivariate quadratic equations. This seems, at first sight, rather extensively
stupid, as obviously we are facing an NP-complete problem, and any other cipher
can be attacked in a similar way. Even though for AES the system is somewhat
over-determined, and even with an optimistic evaluation of XL, there is clearly
no hope to get an attack faster than 23°°. Yet with time, this idea appeared
less and less stupid. Courtois and Pieprzyk proposed a method called XSL [11]
that allows to substantially lower the (still naive) complexity estimation of an
algebraic attack, by adapting the basic idea of XL to the sparsity and the specific
structure of these equations. Then Murphy and Robshaw followed [29] with an
(in theory) equivalent version of the same approach, writing quadratic equations
over GF(256) instead of GF'(2), yet yielding more sparsity, and giving hopes for
even faster attacks. Thus a rather outrageous idea appeared: this version of XSL
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attack appears (in first, very naive estimations) to have a potential to recover
an AES key in less than 2'2® AES computations, given only one single known
plaintext. So far the real feasibility of such attacks is far from being clear.

This paper is also exploiting, very loosely speaking the same, vulnerabilities
of the inverse function in GF(2") function. As Jakobsen in [24] we will work on
multivariate/univariate approximations and relations. Our goal is not to propose
attacks on AES, it is more educational: we wish to demonstrate that there are
ciphers that have very high-nonlinearity and exceptionally good diffusion but
can be broken in practice even for a very large number of rounds. We will make
extensive use of the inverse function in GF(2") and some of its linear equivalents,
both as a component for building highly insecure ciphers, and (quite surprisingly)
as the algebraic structure that can be exploited in attacks.

In this paper we follow the following methodology: first we develop some
results about composing functions with various operations. Then construct weak
contrived ciphers incorporating the inverse in GF(2"), thus looking secure and
satisfying all the known design criteria. Finally from here we develop general
families of attacks applicable to (more or less) any cipher. The paper is composed
of two rather independent parts. In the first part we study, improve and propose
attacks that are based on univariate algebraic equations/relations. These are
applied to propose weak Substitution-Permutation Network ciphers (SPN), and
will lead to describing a new very general class of attacks on such ciphers. In
the second part we are rather concerned with Feistel ciphers and we will study
attacks based on bi-variate and multivariate equations.

Part I - Insecure Substitution-Permutation Networks

2 Whitening Ciphers and Known Weak Constructions

We define a subclass of Substitution-Permutation Network (SPN) ciphers that
we call Whitening Ciphers. There are ciphers in which we alternatively XOR, the
state with some derived key K; € GF(2"), and some function F' : GF(2") —
GF(2™) that does not depend on the key and in most cases (but not always)
will be bijective and identical for every round.

K K5 Kn, -1 Kn

Fig. 1. Whitening Ciphers with identical round function F

Serpent [3] and Rijndael [16] are perfect examples of whitening ciphers. Many
other ciphers, for example DES and other Feistel ciphers that use XOR to com-
bine consecutive keys, can still be seen as whitening ciphers. In this case F' is not
bijective, a different F' is used in the first and the last round, the intermediate
data are redundant, and the key schedule is weak - some bits are always 0.

We start with some simple examples of insecure whitening ciphers.



4 Nicolas T. Courtois - AES 4 Conference - Bonn, 10-12 May 2004

2.1 When F is of Low Degree

For example n = 128, F' is a polynomial of degree 3, and the number of rounds
is N, = 16. Then the whole encryption function is a fixed key-dependent poly-
nomial of degree D = 36 ~ 225, This is not a big degree.

The resulting attack is called an instance deduction (cf. [20]) - it does not
recover the key but a partial equivalent of it, for example a formula that allows
to decrypt/encrypt a certain fraction of messages. Naively the full polynomial
can be recovered by Gaussian reduction given D known plaintexts. Alternatively,
Jakobsen and Knudsen show on page 5 in [22]. that it can be done much faster
in time essentially D, given D chosen plaintexts, In [25] it was claimed that it
should be done in time D even with D known plaintexts, but no proof is given
and the result does not seem to be true. At any rate, when D = 36 ~ 225 at
least the chosen plaintext attack can be handled in less than 1 second on a PC.

Remark: In practice, if we want to build such a cipher, an additional problem
will be to have F' that is bijective. When n is odd, GCD(3,2" — 1) = 1 and
X +— X3 can be used. Other solutions are known: Dickson polynomials. For
example when 2" = 2 mod 5 or 2" = 3 mod 5, the polynomial X° 4+ X3+ 1is a
permutation, see Section 7 of [27].

2.2 When F is Approximated by a Function of Low Degree

Then, following Jakobsen, the cipher is still insecure. When the whole cipher can
be approximated with a polynomial of degree D™V true with probability ¢™-,
then following [24], we may apply Sudan’s algorithm to recover this equation,

Ny
Ny -

with a complexity of these attacks being a low degree polynomial in E%

Remark: These attacks by polynomial interpolation can be declined in two
versions. It can be exploited as a known plaintext attack, and in this case it
is a special case of Generalised Linear Cryptanalysis (GLC). It can also be ex-
ploited in a chosen plaintext attack, and in this case it becomes a special case of
Higher-order Differential Attacks, see [22]. The second variant is less frequently
applicable in practice, but the complexity to recover the polynomial should be
lower (at least in the non-noisy case, as discussed above). Moreover for many
practical ciphers, there is no need at all for recovering the polynomial even in the
noisy case (). We can use a differential of some order that makes the polynomial
vanish, to detect the noisy polynomial approximation without recovering it, and
build a distinguisher on N, — 1 rounds that should allow key recovery for the
full cipher by guessing some relevant key bits in the last round.

What’s Next. So far we only have serious, but marginal attacks that op-
erate only on contrived (weak) ciphers. Later we will propose more general con-
structions of insecure ciphers, that can simultaneously incorporate several dif-
ferent components. At some point we will we obtain a completely general attack
that applies (potentially) to any cipher, contains the Jakobsen attacks described
above, contains the linear cryptanalysis, and - importantly - does break the
barrier of linear/low degree approximations.
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3 Insecure Ciphers Based on the Rijndael S-box

Some functions became favorite components for designing block ciphers because
they are anything but linear/low degree approximations. Let F = Inv be the
full-size inverse function with the usual 0 — 0:
Irv(X) = {X—l in GF(2") if X #0
0 otherwise

For now, it is full size, and the representation of the finite field is assumed
to be known (later we will consider hidden fields of unknown size).

We call an Almost-Invariant, any property that is invariant but remains true
with a slowly decreasing probability. We have the following theorem:

Theorem 3.0.1 (Almost-Invariant Polynomial Relation Attack).
For any cipher X — Y = Ex(X) that composes in any order

(a) N, applications of Inv in GF(2"),

(b) any number of XORs with different subkeys or constants,

(¢) any number of multiplications by a subkey or a constant, must be # 0,

there exist (a, 3,7,0) € GF(2")* such that:

N,
1 " N,

Proof. The proof is done by induction. We assume that for a cipher with N,.
rounds, there is an equation of the form

aXY + 68X +4Y +6=0
that holds for the fraction (1 — %)NT ofall (X,Y) = (X, Ex(X)). The cases
of adding one addition or one multiplication are obvious, the equation still exists.

—1 .
Whatifweaddanlm)?LetT:{Y 1fY7ép .
0 otherwise

We multiply the equation above by T":
odI'XY +BTX +~+TY + 6T =0

We have TY =1 for all X except when Y = 0. The resulting equation will
be true with probability that gets multiplied by (1 — 2%)

BTX +aX+dT+~v=0

The probability decreases. (This equation will probably not be true when X
is such that Y = 0, and T = 0, except if aX + v = 0 which is in general not
true.) This ends the proof. O

Remark: When N, is small, a special case of this theorem exists in another,
different form, see equation (6) on page 11 of Jakobsen and Knudsen paper [22]
(also appearing as (9) in [25]). Yet as it stands, the result of [22] is false and
below we give a generalised and corrected version of it. It can also be seen as
another, equivalent (but seemingly better) formulation of Theorem 3.0.1:

Theorem 3.0.2 (Homographic Approximation Version of Thm. 3.0.1).
For any cipher X +— Y = Ex(X) that composes in any order
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a) N, applications of Inv in GF(2"),

b) any number of XORs with different subkeys or constants,

¢) any number of multiplications by a subkey or a constant, must be # 0,
here exist (o, 3,7,9) € GF(2")* such that:

aX +p 1\ N,
Pxearem |Y = X 16 |Y = EK(X)} > <1 - 2n) > <1 — 2”>

Proof. The proof is obvious and even easier than for Theorem 3.0.1 above.

Comparison to [22]. First of all, our result is more general compared to (6)
in [22] that does not include the “multiplying by a constant” case (c). Moreover,
there are two flaws in the result of [22]: the authors assume that o # 0 and they
neglect the singularity problem of Inv claiming that the approximation would
be true all the time. Both these omissions are not serious when the number of
round is small N, < 2" and in this case the result (6) of [22] is true with good
probability - for ciphers combining only elements of type (a) and (b). Otherwise,
the correct result is our Theorem 3.0.2 or Theorem 3.0.1.

- ~

4 Composition and Approximation Properties of Inv

As we will see now, the theory of Rijndael Inwv is rich and non-trivial.

4.1 Homographic Functions
In mathematics the functions of the form X +— af(ig are called homographic
functions or linear fractional transformations or Mdbius transformations, see

. . a B
[35]. It is well known that they can be represented by 2 x 2 matrices ( e ) The

composition of these functions is equivalent to multiplying their matrices (!).

A cross-ratio of 4 pairwise different points R(t, u, v, w) = Z:—Z == is known
to be an invariant for such transformations The cross-ratio can therefore be
used in cryptanalysis as suggested by Vaudenay and Aoki, see Section 2.4. of [2].
However, for cryptanalysis of compositions such as in Theorems 3.0.2 and 3.0.1,

with Inv version of the inverse, it is again an almost-invariant, not an invariant.

4.2 What is the Difference Between Inv and the Inverse ?
More precisely, it will be invariant as long as we do not encounter any singularity
in which 0 is mapped to 0. Thus we have:

1. Rla+k,b+k,c+k,d+ k) = R(a,b,c,d),

2. R(pa, ub, pe, pd) = R(a,b, ¢, d) for p # 0,

3. R(1/a,1/b,1/c,1/d) = R(a,b,c,d) for non-zero elements,

4. R(1/a,1/b,1/c,0) = a/c- R(a,b,c,0).

This causes a discontinuity in the invariant.

We see that, the function Inv of Rijndael is not strictly speaking a homo-
graphic function. It is equal to a function of the form X +— a§i§ except in
one point, when 0 is mapped to 0. It is possible to see that this ”completion” is
the reason why in Theorems 3.0.2 and 3.0.1. the probability does decrease with
the number of rounds. Functions that we get by composition are less and less
homographic and this is why we talk about homographic approximation.

This ”completion” with 0 +— 0 has important and non-trivial properties.
There are three ways of defining the inverse function for a finite field:
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1. We can have a bijection on 255 elements GF(256)* — GF(256)*, thus avoid-
ing the pole. This is acceptable as long as inversion alone is concerned, but
in general makes it impossible composing with other homographic functions
to form a group: they would have poles at different places, and functions
with a different domain can not easily be composed.

2. We can have a bijection on 257 elements GF(256) — GF(256) with GF(256) =
GF(256) U {oco}. For example the inverse will be defined as:

L X1 if X ¢ {0,00}

o0 +— 0

This is an eminently interesting version. We can compose this function with
other homographic functions defined as follows:

xtd X ¢ {700}
Hapea(X) <, with det(}) #0.

—% 00
c

O =

a

(&3
When composing such functions we still get homographic invertible trans-
formations. They form a group.

3. We can have a bijection on 256 elements Inv : GF(256) — GF(256) that
is used in Rijndael. It is important to note that Inv can be seen as as
restriction to GF(256) of Invo T, with T being a function that swaps co and
0, leaving all the other points unchanged. This ”swap” that occurs in Inv
when we put 0 — 0 explains why when we compose Inv with key additions,
the composition function will be homographic with decreasing probability
as shown by Theorems 3.0.2 and 3.0.1.

4.3 Big and Small Groups, Group Approximation, AES and DES

The homographic function 1/X over GF(256) composes well with constant/key
additions and with constant/key multiplications to form a quite small group.
What is the group generated when we replace 1/X par Inv ? With good prob-
ability, we still get homographic functions, but the approximation probability
decreases with the number of rounds. The answer is non-trivial and rather sur-
prising. The group generated is the group of all permutations. Moreover, the
result remains true also when we do not use multiplications and compose only
Inv with additions of constants. We have the following result:

Theorem 4.3.1 (The Group Generated by Inv and XORs).
The group generated by composing Inv and constant/key additions is exactly
the group of all permutations of GF(2™).

The proof is given in Appendix A.

Consequences for Block Cipher Cryptanalysis

This fact is very closely related to the famous question whether DES is a group
or not. If DES were a group it would have serious consequences on the security
of DES, because it means that triple DES would not really be more secure than
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DES. Luckily it was concluded that DES is not a group [5] (for AES see [34]).
However, as we will explain now, the question of such attacks on triple DES
remains widely open. Assume that, as for Theorem 4.3.1 compared to Theorem
3.0.2, DES is not a group, but yet each 64-bit permutation obtained with DES
can be seen as equal with some probability, to an element of some group G. Then
even if this probability were quite small, (e.g. 2719), we would obtain an attack
on triple DES as follows. We try to guess a presumably 56-bit (maybe less) in-
formation that characterise the group element g € G expected to approximate
our triple DES instance. Given a pair (P, C) produced with the triple-DES, the
property C' = g(P) will be satisfied with probability 273°. A random permuta-
tion will satisfy it with a negligible probability of about 27%4. Thus the right g
can be detected in practice. We get a practical distinguishing attack requiring
about 2°¢ computations and O(23°) known plaintexts.

We conclude that it is not enough to show that DES or AES is not a group.
One should design block ciphers in such a way that the encryption operations
(or single round operations) should not belong to a small group, and should not
have “good” approximations by elements of some group that is not too large.

5 More Constructions of Insecure SPN Ciphers

With Theorem 3.0.1, we (already) get a very interesting result. We compose
Inv’s, multiplication by some (key-dependent or not) constants and XORs by
other constants. We get a family of block ciphers such that:

1. Tt is stable by composition of a few ciphers (but not for a big number).
2. Since they apply the inverse to the whole state, they are strongly resistant
to linear, differential and higher-order differential attacks, see [4].
3. The security of these ciphers (and also for more general ones we will propose
later) does not grow exponentially with the number of rounds:
(a) When the number of rounds is exponential, up to about 2", for example
N, = 2™, these ciphers can be easily broken given O(1) known plaintexts.
If our goal is only to distinguish the cipher from random, we can use the
cross-ratio (cf. Section 4.2 or [2]). For any 4-tuple of known plaintexts it
should be invariant with good probability. Otherwise, we use the equa-
tion of Theorem 3.0.1 that is true with large probability being at least
(1—1/2™)%" ~ 1/e. Any subset of four known plaintext allows to recover
the equation with good probability, that is then checked: should remain
valid for an important fraction of other plaintexts. We get an instance
deduction attack that recovers the («a, 3,7v,6) € GF(2")* and uses them
to encrypt/decrypt any message with good probability.
(b) However, when the number of rounds is very large, some of these ciphers
are provably secure without any assumption. This is an immediate
corollary of Theorem 4.3.1.

5.1 Combining with Polynomial Equations

We will combine our class of insecure ciphers with the Jakobsen attack of [24]:
we allow also components that are polynomials of small degree.
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Theorem 5.1.1 (Higher-Degree Homographic Approximation Attack).
For any cipher X — Y = E(X) that mixes:

(a) N, applications of Inv in GF(2"),

) any number of XORs with different subkeys or constants,

(¢) any number of multiplications by a subkey or a constant, must be # 0,

) small number of rounds that are small degree polynomials with the total

product of their degrees being D.

(e) all these combined with noise, or equivalently we assume that all the com-
ponents of the cipher are not (a-d) but equal to such with some probability
e;, and with total combined approximation probability being ¢ = []&;.

Then there exist two polynomials P(X) and Q(X) of degree D such that:

N,
Pxeccriem nggg | Y:EK(X)} Zs(l—;n) 25(1_]2\2)

Resulting Attack: The existence of such polynomial relations can be effi-
ciently checked with a bivariate version of the Sudan’s Algorithm, see [24].

Proof of Theorem 5.1.1. Again the proof is done by induction and we
need to verify step by step that all transformations preserve the property, with
degree of the polynomials increasing multiplicatively in the case (d). The cases
(a) and (c) are completely trivial. For (b) we write: P(X)/Q(X)+C = (P(X)+
C-Q(X))/Q(X). For (d) we observe that if we apply a polynomial of degree Dy
A=ag...ap, XP* to a fraction (P(X)/Q(X)) of two polynomials of degree Dy
the result can be written as:

aQ(X)Pr + a1 P(X)'Q(X)Pr=1 + .. ap, P(X)P
QX)™ '
Clearly a fraction of two polynomials of degree D1 Ds. This ends the proof.
(|

5.2 Further Extension

Our class of insecure ciphers (and our attack) can be extended by using au-
tomorphisms of the finite field GF(2™). This allows to encompass more linear
equivalents of the inverse function (so far we used only X +— a/X). It also allows
to include polynomials that are of high degree without increasing the final D.

Theorem 5.2.1 (Extended Higher-Degree Homographic Attack).
For any cipher X — Y = E(X) that mixes:

) N, applications of Inv in GF(2"),

) any number of XORs with different subkeys or constants,

) any number of multiplications by a subkey or a constant, must be # 0,

) small number of rounds that are small degree polynomials with the total
product of their degrees being D,

(e) any number of squares in GF(2"),

(f) all these combined with noise, or equivalently we assume that all the com-

ponents of the cipher are not (a-d) but equal to such with some probability

e;, and with total combined approximation probability being ¢ = []e&;.

(

(a
(b
(
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Then there exist » € IN and two polynomials P(X) and Q(X) of degree D such

that: (x7) N

P(X 1\ N,

P | Y =—"= | Y =FEg(X)| >2c|1—=— >ell——
I
Proof. The proof is nearly the same. We observe that the Frobenius auto-
morphism (e) commutes with all the other operations (a-d), except it replaces
constants/subkeys by a different constant, and polynomials by a different poly-
nomial. Therefore we can safely put all squares at the beginning and we get the
result from Theorem 5.1.1. ad
Resulting Attack: It is still possible to check if such equation exists, we

guess r € {0,n — 1} and proceed with a version of Sudan’s Algorithm cf. [24].

6 New General Attack on Whitening Ciphers

Now we will introduce a new very general attack that can be applied to poten-
tially any whitening cipher (and even to other ciphers). The idea is as follows:
consider 128-bit whitening cipher. It is very unlikely that it has any kind of
equational property such as in Theorem 5.2.1. However if we select some, say
4 bits in one round, and a different set of 4 bits in the next round input, and
choose some special representation of the field GF(2%), approximations of the
form gg%;g such as as in Theorem 5.2.1 may indeed exist.

Summary of the General Attack. We resume here all the different choices
that the attacker should explore to find the best attack of this type.

1. Choose the size of the field, for example m = 4.

2. Select some input and output m-bit masks for one round that can be the
same (invariant attacks) or different (much more possibilities). These masks
can be subsets of bits, can be linear selection functions and can even by
arbitrary non-linear functions GF(2)" — GF(2)™.

3. Masks should be selected in such a way that a bias exists from the infor-
mation theoretical point of view: the output mask seen as a parameterised
function of the inputs should not be uniform.

4. Select a representation of the two finite fields.

5. Choose parameters (D, ¢), guess r, and find the polynomial equation of The-
orem 5.2.1 by a version of Sudan’s algorithm, cf. [24].

6. By combining connecting approximations of this type, exactly as in linear
cryptanalysis, we obtain attacks for an arbitrary number of rounds.

6.1 Our New Attack - Summary of What We Get

1. The possibilities offered by this attack are very large and given a cipher it is
hard to know if it can be efficiently applied.

2. Tt is a special case of GLC. (Looking for attacks that are excessively general
doesn’t make sense, as we will not be able to explore them and to see if they
do apply to a particular cipher).

3. It is not excessively general. Given a particular cipher such as AES, it is
hard but probably still possible to find all interesting ways of applying it.
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. It contains linear cryptanalysis. (When m = 1. Masks are multivariate
functions GF(2") — GF(2'), approximation by homographic functions in
GF(2') amounts to using only the identity function in GF(2).).

. It contains all the attacks of Jakobsen from [24]. It goes beyond: it works
locally instead of globally, and does no longer require the components to
have low degree approximations.

. Though both previous attacks will be easily prevented if only we use one
big I'nv function inside the cipher, the new attack can tolerate an arbitrary
number of inverses (of the same size m). Thus it allows to cryptanalyse many
ciphers that have very high non-linearity and resist to classical attacks.

. Since it is a generalised linear attack, it is possible to show by using the
Fourier Transform, that if the selection of the m bits is done in a linear
way, and if m is small, this attack cannot be “much” faster than the best
linear attack on the same cipher. It can however be strictly better (and it is
obvious to construct examples by embedding noisy polynomials in a round
function). In the case of non-linear selection functions, or if m is bigger (e.g.
> 32) these attacks can be much faster than any other known attack, as it
was already the case in our simple example, cf. point 3a in Section 5.

. With this attack it is obvious and easy to construct many quite complex
ciphers such that their complexity does not grow exponentially with the
number of rounds. All we need is to embed in each round an arbitrary
combination of the components of Theorem 5.2.1, with the input and the
output being hidden. This embedded approximation can be systematically
(i.e. for every round) highly non-linear and can also be systematically non-
polynomial.
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Part II - Constructing Insecure Feistel Ciphers

7 Weak Feistel Ciphers Based on the Inverse S-box

In this section we will exploit a special case of Bi-Linear Cryptanalysis (BLC)
[7], being itself a special case of Generalised Linear Cryptanalysis (GLC) [21].We
do not really need to understand the whole BLC [7], and only recall the basic
principles of BLC when needed. This paper can be read independently without
knowing BLC. BLC allows to construct ciphers that look secure w.r.t. the state of
the art in cryptanalysis, yet there are extremely weak. For example, we consider
a Feistel cipher in which the round function is given by:

filX)=K; -Inv(X) in GF(2"),

with K; € GF(2") being the partial key. We will show that this cipher is
insecure. Our notations are as follows: We consider a Feistel cipher with N,
rounds. Let I; € GF(2") and O; € GF(2") denote respectively the input and
the output of the i-th round function i = 1..N,., let (Lo, Rg) be the input and
(Ln,, Rn,) be the output. (Note: in this paper we use “untwisted” version of the
Feistel schemes, as on the right-hand figure, page 254 in [28]. Thus the meaning
of L and R is as on Fig. 2 and differs from several other papers).

We have then (see Fig. 2) or [7]):

[N/2] [N-/2] N,
Ly, -Ry,®Lo-Ro= Y, Osi1-Toiin @ Y Dni-Oy=)» L0
i=1 i=1 i=1
LQ * RO
Y
B oi+L |4 =  LFRy — LoxRy
L1 * R1
Y
>~ L+0, HP = Ry — Wl/
Lg * RQ
B Osxls [+ =  Lz3xRs — LysAD
Y Ls * Ry Y

Fig. 2. The principle of Bi-linear Cryptanalysis over GF(2") for a Feistel cipher
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For every round ¢, by definition of the round function, we have:
1

I; - O; = K; with probability (1 — o

And thus we get the following I/O sum for the whole cipher:

N N.
1 s
LNT . RNr ® Lo- Ry = E K; with probability (1 — 2n>

We do not know Y K; but i%_éan be recovered from one known plaintext.
Then, this equation allows to distinguish our cipher from a random permutation
given 2 plaintexts, for N, < 2™ and with negligible error probability of about
27", Even when the number of rounds is N, = 2" our characteristic is true with
probability (1—1/2")%" ~ 1/e and thus the cipher can be still distinguished from
random with good error probability, given about O(e?), i.e. a small constant
number of plaintexts. (Our formula allows also to recover the plaintext if a half
of it can be guessed in a dictionary attack.)
We get a cipher with the following properties:

. Tt is based on the inverse in GF(2%).

. It mixes two group operations: addition and multiplication in GF(2").

. It has very good diffusion and avalanche properties.

. It is composed of very “good” Boolean functions (cf. [4]) and thus resists to
all common attacks on block ciphers including L.C and DC.

5. Yet the security of it does not grow exponentially with the number of rounds.

It is easy to break in practice even for 2" rounds, given about 10 plaintexts.

=W N

7.1 More Weak Feistel Ciphers Based on the Inverse S-box
What we described here is a very special case of the general family of insecure
Feistel ciphers specified in [7]. It is possible to see that in general we have:

Theorem 7.1.1 (General Construction of Weak Feistel Ciphers). If the
round function is such that there is a symmetric quadratic multivariate relation
over GF(2) (or any other field) between the input and output bits, then the
cipher is insecure and can be distinguished from a random permutation given a
small constant number of plaintexts.

We omit the proof. (This result is new, but rather obvious if we read [7].)

Further Extensions. Obviously the equations can be probabilistic. Also
the representation of the field may be secret, however here, unlike in Section 6,
if this representation is linear over GF'(2), it does not help: bi-linear equations
over GF(2%) always give bi-linear equations over GF(2). Then, given a cipher it
becomes a hard problem to see if it is weak w.r.t. such attacks, even if we are
aware of Theorem 7.1.1. Moreover weak ciphers do not limit to these specified
by this theorem. In general the multivariate bi-linear relations can also include
some linear parts that, when combined for a whole cipher, can be recovered from
linear cryptanalysis. Below we such example, that really does not look as a weak
cipher, yet it can be broken easily even for one thousand rounds.

Example. We consider a 64-bit Feistel cipher with 32-bit constant parameter
(¢,¢) € GF(2'9)? expanded key being (K1, K{,...,Ky,, K} and in which the
round function is (x,z’) — (y,y') with z,2’,y,y’ € GF(2!%) defined as:
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y = % in GF(2'9)
This cipher looks very secure, yet we have the following symmetric relation
with additional linear terms, true with probability about 1 — 271°:
zy+a'y = K+ K, +yc+y'd in GF(2'%)
This implies that for the whole cipher, if we denote the left part of the input
by (Lo, L) and so on respectively, we have in GF(2'6):

LN, Ry, ®Ly, Ry, ®Lo-Ro® Ly Ry = Z (KioK)® Z (c:0:8c"-05) =
i=1...N, i=1...N,
= Y (KioK)@c-(Lo®Ly, ®Ro®Ry,) & - (L ® Ly, ® Ry & Ry,).
i=1...N,

This equation holds with probability about (1 —2715)¥" and allows to dis-
tinguish the cipher from a random permutation given a few plaintexts, whatever
is the number of rounds, for up to about 2!° rounds. Another very weak cipher
based on inverse in GF'(2™).

Extensions of this particular construction. As in [7] it is possible to
see that if G(z,2') is a component (that can be key-dependent) such that fixed
some linear combination of outputs of G is biased, then we can replace K; by
K; 4+ G(z,2') and K| by K]+ G(x,2’) in our definition of the round function,
and the cipher will still be weak. We can also replace x + z’ by an arbitrary
function of two variables (the same in both parts).

{y:w@ﬁfinlcme)

8 Generalised Feistel Ciphers

We can use similar tricks to ciphers similar to SHA or Skipjack, and give many
other constructions of insecure ciphers based on the inverse in GF(2™). We give
here an example. We will build a 64-bit block cipher. We divide our 64-bit state

in 4 parts a, b, ¢, d and each round is as follows:
b+—a

c—b
d—c
a—d+ K;-Inv(a+b+c)
Again it looks very good, mixes all kind of operations... and is very weak.
It can be broken, not exactly by bi-linear cryptanalysis (BLC), but by a more
general attack that can be called Multi-Linear Cryptanalysis (MLC). For
example, we consider the following expression in GF (2'6):
ab+ ac+ ad + be + bd + cd
It is symmetric by any permutation of the 4 parts. After one round of en-
cryption the same expression becomes:
ab+ac+be+ [d+ K; - Inv(a+b+c)](a+b+c)
The difference between the two previous expressions is:
K; -Inv(a+b+c)-(a+b+¢)
which is equal to K; with probability close to 1. Again, we can sum up these
differences over the whole cipher and this allows to break our cipher given O(1)
plaintexts for a large number of rounds up to about 2'6.
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8.1 Higher Degree Multi-Linear Cryptanalysis
MLC is not limited to quadratic equations. It is easy to show the following result:

Theorem 8.1.1 (General Principle of Multi-Linear Cryptanalysis).
Consider a cipher with d parts in GF(2") in which each round transforms
(@1,...,aq) — (a},...,a)) = (aa® Fx(a1,...,a4-1),01,...,aq—1) with an arbi-
trary function F. Let P(ay,...,aq) be an arbitrary d-linear function in GF(2").
Then for each round we have:

P(ay,...,aq) — P(ay,...,a,,a)) = Plai,a2,...,aq-1, Fx(ai,...,a4-1))

With this, we can construct multi-linear characteristics for an arbitrary num-
ber of rounds of a Feistel cipher. they will be composed of a common (the same
for every round) d-linear part and some (d — 1)-linear expressions that connect
one round to another.

Simple Example: We leave the reader the pleasure to find that the following
two ciphers are very easy to break by the new MLC attack:

b—a b—a
c—b c—b
d—c d—c
a — d+ K; - Inv(abe) a — d+ K; - Inv(ab + bc + ac)

Extensions: There are many extensions and generalisations possible. We
expect that several real-life ciphers such as SHACAL or Skipjack should have
interesting attacks of this type. However the number of possible MLC attacks
is quite big. and systematic exploration of these attacks will not be obvious to
achieve.

9 Conclusion

Proposing insecure ciphers with highly non-linear components may look as an
exercise with no definite purpose. However each time we do so, we can usually
formulate a general class of attacks that can potentially be applied to (more or
less) any cipher. In this paper we introduced several new types of Generalised
Linear Cryptanalysis. The universe of such attacks is unfortunately excessively
rich, and remains largely unexplored. We show their interest by constructing
various insecure ciphers. Their specific form is not trivial and is determined by
the high level structure of the cipher. Locally, they exploit the existence if some
non-linear multivariate relations that come from the inverse S-box. This demon-
strates that such S-boxes can be dangerous and lead to devastating attacks.

In order to prevent such attacks, we advocate, following [11], to use S-boxes
that have no such simple polynomial relations. In particular, for software encryp-
tion, we can afford to use reasonably large random S-boxes. This should prevent
all known attacks on block ciphers: linear/differential cryptanalysis with gen-
eralisations, all kinds of attacks described in this paper, and also any kind of
global algebraic attack such as XSL [11].

Acknowledgments: We would like to thank Louis Goubin and Lars Knud-
sen for helpful remarks and encouragements.
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A Proof of Theorem 4.3.1

In this section we give the proof of Theorem 4.3.1:

Theorem 4.3.1 (The Group Generated by Inv and XORs).
The group generated by composing Inv and key additions is exactly the
group of all permutations of GF(2").
Proof: Let K = GF(2") and let a € K — {0}. The following equality holds
for all X € K and any ring/field of characteristic 2:
a*X = ;1
1/a+ pr——
We propose to replace the inverse in K by the Rijndael inverse. We get the
following function defined for X € K (a is a constant non-zero parameter):
A(X)=1Inv(1/a® Inv(a® Inv(1/a ® X)))
Again, since Inv and X — 1/X are almost always equal, this function must
be equal to a®>X with overwhelming probability. By inspection we verify that:
Au(X) =a®X for X ¢ {0,1/a}
A.(1/a) =0
Al(0)=a
Example: when a = 1, we get a function B = A; that is equal to identity
except that it swaps two points 0 and 1:
A1(X)=X for X ¢{0,1}
A1(1)=0
A1(0) =1
We will construct more functions that exchange points. Let a ¢ {0,1}. We

define: Co(X) = Au(A1(AL (X))

1
a

By inspection we verify that this function exchanges exactly two points a

2.

and a“: Co(X) =X for X ¢ {a,a?}
Cola) = a?
Ca(a®) = a

For the next step, we observe that for any field K = GF(2") the square is a
permutation and +/a is well defined. We define the following function:

Do(X) = Appo(ya) (Ca(Ay5(X)))
By inspection we verify that for @ ¢ {0,1} this function exchanges exactly

two points 1 and a: Du(X) = X for X ¢ {1,a}
D,(1)=a
Dy(a) =1
We verified that it remains true also for a = 0 (otherwise we could use B = A,
to exchange 0 and 1). Thus we can exchange 1 and any other point. Finally we
can exchange any couple of points (a, b) as follows:
Ew=DgoDyoD, for a#1,b#1
{Ela—Eal =D, for a#1.
The transformations F,;, generate the group of all permutations. a



The Inverse S-box and Non-Linear Attacks on Block Ciphers 19

B The Whitening Paradox

In this part we will describe a paradox that is a straightforward consequence of
the present work. This part do not appear in the Springer version of this paper,
only in the later extended version. It has also been outlined at the rump session
of Crypto 2004 see [15].

Introduction. The starting question is the following: we built a cipher with
Inv, XOR with some key, Inv etc. How many rounds are necessary to make it
secure 7 If we look at our proof of Theorem 4.3.1 above, we see that at most 45
rounds are necessary to exchange 2 elements a and b. Thus at most 45-2" rounds
are necessary to obtain an arbitrary permutation of GF(2"). (And it cannot be
less than 1/n - log2(2"!) ~ 2™.) Thus with 45 - 2" rounds we achieve the best
possible, information-theoretic, security: the system can be made to become a
random permutation with uniform probability distribution.

Here starts the paradox: When we look at Theorem 3.0.1, our cipher should

be a homographic function with probability that is a constant:
45.27
1 45

e
2’!‘L

This result assumes that all the whitening keys are random and independent,
and then the fraction of about e™*® inputs does never encounter a singularity
of Inv during all the 45 - 2™ rounds. For this fraction there is a homographic
approximation that can be recovered by Gaussian reduction from 3 plaintexts
for which it holds. To find such 3 plaintexts by exhaustive search we need on
average about e34° tries, which is still a constant. (We assume here that n is
sufficiently large).

In the construction however, 45 - 2" rounds are sufficient to cover up the
whole input space with points that will always encounter a singularity at some
round, and there is no homographic approximation. The encryption function can
be just anything (an arbitrary permutation of GF(2")).

Due to this construction, we call the Inv S-box a “cryptographic black hole”:
it can absorb astronomical quantities of whitening and remain pitch black, (i.e.
insecure). However if we do the whitening in a specific way, we can succeed to
achieve “lily-white”: the highest level of security possible for a block cipher.

We have a cipher which is extremely insecure for random of pseudo-random
choice of internal key material, but is extremely secure for a special choice of
key material. We call it “whitening paradox”.



