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Abs t r ac t . The integration of powerful partial evaluation methods into 
practical compilers for logic programs is still far from reality. This is re-
lated both to 1) efficiency issues and to 2) the complications of dealing 
with practical programs. Regarding efnciency, the most successful un­
folding rules used nowadays are based on structural orders applied over 
(covering) ancestors, i.e., a subsequence of the atoms selected during a 
derivation. Unfortunately, maintaining the structure of the ancestor re-
lation during unfolding introduces significant overhead. We propose an 
efficient, practical local unfolding rule based on the notion of covering an­
cestors which can be used in combination with any structural order and 
allows a stack-based implementation without losing any opportunities for 
specialization. Regarding the second issue, we propose assertion-based 
techniques which allow our approach to deal with real programs that 
include (Prolog) built-ins and external predicates in a very extensible 
manner. Finally, we report on our implementation of these techniques 
in a practical partial evaluator, embedded in a state of the art compiler 
which uses global analysis extensively (the Ciao compiler and, specifi-
cally, its preprocessor CiaoPP). The performance analysis of the resulting 
system shows that our techniques, in addition to dealing with practical 
programs, are also significantly more efficient in time and somewhat more 
efficient in memory than traditional tree-based implementations. 

1 Introduction 

In spite of the important research efforts in the área, the integration of Partial 
Deductíon (PD) [16, 8] methods into compilers seems to be still far from reality. 
We believe tha t the general uptake of PD methods is being hindered by two fac-
tors: the relative inefñciency of the PD method, and the complications brought 
about by the t reatment of real programs. Indeed, the integration of powerful 
strategies to the unfolding rule -like the use of structural orders combined with 
the ancestor re lat ion- can introduce a significant cost both in time and mem­
ory consumption of the specialization process. Regarding the t reatment of real 
programs which include external predicates, non-declarative features, etc, the 
complications range from how to identify which predicates include these non-
declarative features (ad-hoc but difñcult to maintain tables are often used in 
practice for this purpose) to how to deal with such predicates during PD. A 
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main objective of this paper is to contribute to the uptake of PE techniques by 
addressing some of these issues. 

State-of-the-art partial evaluators intégrate terminating unfolding rules for 
local control based on structural orders, like homeomorphic embedding [14] which 
can obtain very powerful optimizations. Moreover, they allow performing the or-
dering comparisons over subsequences of the full sequence of the selected atoms. 
In particular, the use of ancestors for reñning sequences of visited atoms, orig-
inally proposed in [4], greatly improves the specialization power of unfolding 
while still guaranteeing termination and also reduces the length of the sequences 
for which admissibility of new atoms has to be checked. Unfortunately, having 
to maintain dependency information for the individual atoms in each deriva-
tion during the generation of SLD trees has turned out to introduce overheads 
which seem to cancel out the theoretical efñciency gains expected. In order to 
address this issue, we introduce a novel unfolding rule based on the notion of 
covering ancestors which allows a very efñcient implementation technique based 
on stacks. Our technique can signiñcantly reduce the overhead incurred by the 
use of covering ancestors without losing any opportunities for specialization. We 
outline as well a generalization that allows certain non-leftmost unfoldings with 
the same assurances. 

In order to deal with real programs that include (Prolog) built-ins and exter-
nal predicates, we rely on assertion-based techniques [20]. The use of assertions 
provides extensíbüíty in the sense that users and developers of partial evaluators 
can deal with new external predicates during PE by just adding the proper asser­
tions to these predicates -without having to maintain ad-hoc tables or modifying 
the partial evaluator itself. We report on our implementation of our technique 
in a practical, state-of-the-art partial evaluator, embedded in a production com-
piler which uses assertions and global analysis extensively (the Ciao compiler [5] 
and, speciñcally, its preprocessor CiaoPP[9]). 

2 Background 

We assume some basic knowledge on the terminology of logic programming. See 
for example [17] for details. Very briefly, an atom A is a syntactic construction 
of the form p(ti,... ,tn), where p/n, with n > 0, is a predicate symbol and 
t i , . . . ,tn are terms. The function pred applied to atom A, i.e., pred(A), returns 
the predicate symbol p/n for A. A clause is of the form H <— B where its head 
H is an atom and its body B is a conjunction of atoms. A definite program is a 
ñnite set of clauses. A goal (or query) is a conjunction of atoms. The concept of 
computatíon rule is used to select an atom within a goal for its evaluation. 

Definition 1 (computation rule). A computation rule is a function 1Z frorn 
goals to atoms. Let O be a goal of the form •*— Ai, .. . ,AR, . .. ,Ak, k > 1. If 
TÍ(G) =AR we say that AR is the selected atom in O. 

The operational semantics of deñnite programs is based on derivations. 

Definition 2 (derivation step). Let G be <— Ai,..., AR, ... ,Ak- Let 1Z be a 
computation rule and let TZ(G) =AR. Let C = H •*— Bi, ..., Bm be a renamed 



apart clause in P. Then O' is derived from O and C via 1Z if the following 
conditions hold: 

9 = mgu(AR, H) 
G' %s the goal <- 9{BÍ,..., Bm, Ai,..., AR_i, AR+Í,..., Ak) 

The deñnition above differs from standard formulations (such as tha t in [17]) in 
that the atoms newly introduced in G' are not placed in the same position where 
the selected atom AR used to be, but rather they are placed to the left of any 
atom in G. For deñnite programs, this is correct since goals are conjunctions, 
which enjoy the commutative property. 

As customary, given a program P and a goal G, an SLD derivation for P U { G } 
consists of a possibly infinite sequence G = GQ, G I , G2, • • • of goals, a sequence 
Gi, G 2 , . . . of properly renamed apart clauses of P, and a sequence 9i, # 2 , . . . of 
mgus such tha t each G¿+ i is derived from G¿ and G¿+i using 0¿+i. A derivation 
step can be non-deterministic when AR unifies with several clauses in P, giving 
rise to several possible SLD derivations for a given goal. Such SLD derivations can 
be organized in SLD trees. A finite derivation G = GQ, G I , G 2 , . . . , Gn is called 
successful if Gn is empty. In tha t case 9 = 61O2 . . . 9n is called the computed 
answer for goal G. Such a derivation is called failed if it is not possible to 
perform a derivation step with Gn. 

In order to compute a partial deduction (PD) [16], given an input program 
and a set of atoms (goal), the first step consists in applying an unfolding rule to 
compute finite (possibly incomplete) SLD trees for these atoms. Given an a tom 
A, an unfolding rule computes a set of finite SLD derivations Di,..., Dn (i.e., a 
possibly incomplete SLD tree) of the form _D¿ = A,..., G¿ with computer answer 
substi tution 9 i for i = 1, ...,n whose associated resultants are 6i(A) <— G¿. 
Therefore, this step returns the set of resultants, i.e., a program, associated to 
the root-to-leaf derivations of these trees. We refer to [14] for details. In order 
to ensure the local termination of the PD algorithm while producing useful 
specializations, the unfolding rule must incorpórate some non-trivial mechanism 
to stop the construction of SLD trees. Nowadays, well-founded orderings (wfo) 
[4,18] and well-quasi orderings (wqo) [22,13] are broadly used in the context 
of on-line P E techniques (see, e.g., [8,15,22]). Formally, let <s be a wqo, we 
denote by Admissible(A, (Ai,... ,An), <s), with n > 0, the t ru th valué of the 
expression \M.¿, i G { l , . . . , n } : A <$ A4. In wfo, it is sufñcient to verify 
that the selected atom is strictly smaller than the previous comparable one (if 
one exists). Let < be a wfo, by Admissible(A, (Ai,..., An), < ) , with n > 0, we 
denote the t ru th valué of the expression A < An if n > 1 and true if n = 0. We 
will denote by structural order a wfo or a wqo (written as < to represent any 
of them). Among the structural orders, well-quasi orderings (and homeomorphic 
embedding [10] in particular) have proved to be very powerful in practice. 

State-of-the-art unfolding rules allow performing ordering comparisons over 
subsequences of the full sequence of the selected atoms of a derivation by organiz-
ing atoms in a proof tree [3], achieving further specialization in many cases while 
still guaranteeing termination. The essence of the most advanced techniques is 
based on the notion of covering ancestors [4]. 



q s o r t ( [ ] , R , R ) . p a r t i t i o n ( [] ,_, [ ] , [ ] ) . 
qsort([X|L] ,R,R2) : - p a r t i t i o n ( [E| R] ,C, [E| Lef t l ] ,Right) : -

pa r t i t i on (L ,X ,L l ,L2) , E =< C, p a r t i t i o n ( R , C , L e f t l , R i g h t ) . 
qsort(L2,Rl,R2) , p a r t i t i o n ( [El R] ,C,Left , [El Rightl] ) : -
qsor t (Ll ,R , [X |R1]) . E > C, p a r t i t i o n ( R , C . L e f t , R i g h t l ) . 

Fig. 1. A quick-sort program 

Def in i t ion 3 (ances tor re la t ion) . Given a derivation step and AR, BÍ, i = 
1, .. ., m as in Def. 2, we say that AR is the parent of the instance of Bi, 
i = 1,. . . ,m, in the resolvent and in each suhsequent goal where the instance 
originating from Bi appears. The ancestor relation is the transitive closure of 
the parent relation. 

Usually, the ancestor test is only applied on comparable atoms, i.e., ancestor 
atoms with the same predicate symbol. This corresponds to the original notion 
of covering ancestors [4]. Given an a tom A and a derivation D, we denote by 
Ancestors(A, D) the sequence of ancestors of A in D as deñned in Def. 3. It 
captures the dependency relation implicit within a proof tree. 

It has been proved [4] tha t any infinite derivation must have at least one 
inadmissible covering ancestor sequence, i.e., a subsequence of the atoms selected 
during a derivation. Therefore, it is sufñcient to check the selected ordering 
relation < over the covering ancestor subsequences in order to detect inadmissible 
derivations. An SLD derivation is safe with respect to an order (wfo or wqo) if 
all covering ancestor sequences of the selected atoms are admissible with respect 
to tha t order. 

3 The Usefulness of Ancestors 

We now illustrate some of the ideas discussed so far and, specially, the relevance 
of ancestor tracking, through an example. Our running example is the program 
in Figure 1, which implements the well known quick-sort algorithm, "qsort", us-
ing difference lists. Given an initial query of the form <—qsort(List,Result,Cont), 
where List is a list of numbers, the algorithm returns in Result a sorted differ­
ence list which is a permutat ion of List and such tha t its continuation is Cont. 
For example, for the query <— qsort([í, 1,1], L, []), the program should compute 
L= [ 1 , 1 , 1 ] , constructing a finite SLD tree. 

Consider now Fig. 2, which presents an incomplete SLD derivation for our 
quick-sort program and the query <— qsort([1,1,1], i?, []) using a leftmost unfold-
ing rule. For conciseness, predicates qsort and p a r t i t i o n are abbreviated as qs 
and p, respectively in the figure. Note tha t each atom is labeled with a number 
(an identifier) for future reference4 and a superscript which contains the list of 
ancestors of tha t atom. Let us assume tha t we use the homeomorphic embedding 
order [13] as structural order. If we check admissibility w.r.t. the full sequence 
of atoms, i.e., we do not use the ancestor relation, the derivation will stop when 

4 By abuse of notation, we keep the same number for each atom throughout the 
derivation although it may be further instantiated (and thus modified) in subsequent 
steps. This will become useful for continuing the example later. 



l .qs([ i , i , i ] ,R,D) { } 

p ( [ l ] , l , L , L 2 ) 

2.p([l , l] , l ,Ll,L2){ 1 } ,3.qs(L2,Rl,0){ 1 } ,4.qs(Ll,R, [1|R1]){1} 

j{Ll^[ l |L]} 

5.1=^l{ 1 '2 } ,6.p([l] , l ,L,L2){ 1 '2 } ,3.qs(L2,Rl,0){ 1 } ,4.qs([l |L],R, [1|R1]){1} 

I 
{1 '2},3.qs(L2,Rl,Q)í1>,4.qs([l|L],R,[l|Rl])í1> 

y{L^[ l | l / ]} 

7.1=^l { 1 '2 '6 } ,8 .p(0, l ,L ' ,L2) { 1 '2 '6 } ,3 .qs(L2,Rl,0) { 1 } ,4 .qs([ l , l |L ,] ,R,[ l |Rl]) { 1 } 

I 
8.p([],l,L ,,L2){1 '2 '6},3.qs(L2,Rl,[]){1},4.qs([l,l |L ,],R,[l|Rl]){1} 

j{L'M[] ,L2M[]} 

3.qs(D,Rl,D)W, 4.qs([i, i],R, [l|Rl]){1} 

j { R l ' ^ [ ] } 

4.qs([l,l],R,[l])í1> 

9. p ( [ l ] , l , L l ' , L 2 ' ) 
{1,4} 

10.qs(L2', Rl', [1]){1'4}, l l .qs (Ll ' , R, [l|Rl']) 'n{M> 

Fig. 2. Derivation with Ancestor Annotations 
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Fig. 3. Proof tree for the example. 

atom number 9, Le., p([l] , 1, L', L2'), is found for the second time. The reason is 
that this a tom is not strictly smaller than atom number 6 which was selected in 
the third step, indeed, they are equal modulo renaming.5 

This unfolding rule is too conservative, since the process can proceed further 
without risking termination. The crucial point is tha t the execution of a tom 
number 9 does not depend on atom number 6 (and, actually, the unfolding 
of 6 has been already completed when atom number 9 is being considered for 
unfolding). Figure 3 shows the proof tree associated to this derivation where 
nodes are labeled with the numbers assigned to each atom, instead of the atoms 

5 Let us note that the two calis to the builtin predícate =< which appear in the deriva­
tion can be executed since the arguments are properly instantiated. However, they 
have not been considered in the admissibility test since these calis do not endanger 
the termination of the derivation, as we will discuss in Sect. 5. 



themselves. Note that, in order to decide whether or not to evalúate atom number 
9, it is only necessary to check that it is strictly smaller than atoms 4 and 1, 
Le., than those which are its ancestors in the proof tree. On the other hand, and 
as we saw before, if the full derivation is considered instead, as in Fig. 2, atom 
9 will be compared also with atom 6 concluding imprecisely that the derivation 
may not be safe. 

Despite their obvious relevance, unfortunately the practical applicability of 
unfolding rules based on the notion of covering ancestor is threatened by the 
overhead introduced by the implementation of this notion. A naive implemen-
tation of the notion of ancestor keeps -for each atom- the list of its ancestors, 
as it is depicted in Fig. 2. This implementation is relatively efñcient in time 
but presents a high overhead in memory consumption. Our experiments show 
that the partial evaluator can run out of memory even for simple examples. A 
more reasonable implementation maintains the proof tree as a global structure. 
This greatly reduces memory consumption but the cost of traversing the tree for 
retrieving the ancestors of each atom introduces a signiñcant slowdown in the 
PE process. We argüe that our implementation technique is efñcient in time and 
space, overcoming the above limitations. 

4 An Efñcient Implementat ion for Local Unfolding 

Our deñnition of local unfolding is based on the notion of ancestor depth. 

Definition 4 (ancestor depth). Gíven an SLD derivation D = GQ, • • • ,Gm 

with Gm =<— Ai,..., Ak, k > 1, the ancestor depth of Ai for i = 1 , . . . , k, 
denoted depth(Ai, D) is the cardinality of the ancestor relation for Ai in D. 

Intuitively, the ancestor depth of an atom in a goal is the depth at which this 
atom is located in the proof tree associated to the derivation. 

Definition 5 (local computation rule). A computation rule TZ is local if 
V_D = Goj • • •, Gn such that Gi =•*— An,..., Aim. for i = 0,.., n, it holds that: 

depth{TZ{Gi),D) > depth{Ai:j, D) Vj = 1,. .*., m¿ 

Intuitively, a computation rule is local if it always selects one of the atoms which 
is deepest in the proof tree for the derivation. As a result, local computation rules 
traverse proof trees in a depth-ñrst fashion, though not necessarily left to right 
ñor in any other ñxed order. Thus, in principie, in order to implement a local 
computation rule we need to record (part of) the derivation history (its proof 
tree). Note that the computation rule used in most implementations of logic 
programming languages, such as Prolog, always selects the leftmost atom. This 
computation rule, often referred to as left-to-right computation rule, is clearly a 
local computation rule. Selecting the leftmost atom in all goals guarantees that 
the selected atom is of maximal depth within the proof tree as it is traversed in a 
depth-ñrst fashion -without the need of storing any history about the derivation. 

An instrumental observation in our approach is that if the proof tree which 
is used in order to capture the ancestor relation is traversed depth-ñrst, left-
to-right, it can be interpreted as an activation tree [1]. In fact, the ancestor 
subsequence in any point in time corresponds to the current control word [21] 



by simply regarding selected atoms as procedure calis. The control word for 
each execution state can be seen as the set of procedures whose execution has 
started and is not yet completed, bearing a strong relation with the stack of 
activation records which most compilers use as a run-time data structure. This 
data structure takes normally the form of a stack, and this suggests one of 
the central ideas of our approach: using stacks for storing ancestors. Another 
important observation is that the control word idea does not need to be restricted 
to leftmost computation and it works equally well as long as the computation 
rule is local. Indeed, sibling atoms have the same ancestor depth, they can be 
selected in any order and the notion of control word still applies. The advantages 
of computing the control word instead of the proof tree are clear: the control word 
corresponds to a single branch in the proof tree from the current selected atom 
to all its ancestors in the proof tree. Thus, the control word offers advantages 
both from memory and time consumption. The main difñculty for computing 
control words is to determine exactly when each item in the control word should 
be removed. To do this, we need to know when the computation of each predicate 
is ñnished. In logic programming terminology this corresponds to determining 
the success states for all predicates in the derivation. In principie, success states 
are not observable in SLD resolution other than for the top-level query. 

We now propose an easy-to-implement modiñcation to SLD resolution as 
presented in Section 2 in which success states for all internal calis are observable 
-and where the control word is available at each state. We will refer to this reso­
lution as SLD resolution with ancestor stacks, or ASLD for short. The proposed 
modiñcation involves 1) augmenting goals with an ancestor stack, which at each 
stage of the computation contains the control word of the derivation, which cor­
responds to the ancestors of the next atom which will he selected for resolution, 
and 2) adding pseudo-atoms to the goals used during resolution which mark a 
scope whose purpose is twofold: 2.1) when a mark is leftmost in a goal, it indi-
cates that the current state corresponds to the success state for the cali which 
is now on top of the ancestor stack, i.e., the cali is completed, and the atom 
on top of the ancestor stack should be popped; 2.2) the atoms within the scope 
of the leftmost mark have maximal ancestor depth and thus a local unfolding 
strategy can be easily deñned in the presence of these pseudo-atoms. We use the 
pseudo-atom j (read as "pop") to indicate the end of a depth scope, i.e., after 
it we move up in the proof tree. It is guaranteed not to clash with any existing 
predicate ñame. 

The following two deñnitions present the derivation rules in our ASLD se-
mantics. Now, a state S is a tupie of the form (G I AS) where G is a goal and AS 
is an ancestor stack (or stack for short). To handle such stacks, we will use the 
usual stack operations: empty, which returns an empty stack, push(AS, ítem), 
which pushes ítem onto the stack AS, and pop(AS), which pops an element from 
AS. In addition, we will use the operation cor\ter\ts( AS), which returns the se-
quence of atoms contained in AS in the order in which they would be popped 
from the stack AS and leaves AS unmodiñed. 

Definition 6 (derive). let G = <— Ai,..., AR, ... ,AJ. be a goal with A\^ \ . 
let S = (G I AS) be a state and AS be a stack. let < be a structural order. 



Let 1Z be a computation rule and let TZ(G) =AR with AR =/= f . Let C = H •*— 
£>i,. .., Bm be a renamed apart clause. Then S' = (G' I AS') is derived from S 
and C via 1Z if the following conditions hold: 

Admissible(AR, contents(AS), <) 

9 = mgu(AR, H) 

G' %s the goal <- 9(BU . ..,Bm, | ,A1:..., AR-i, AR+1,. ..,Ak) 

AS' = push(AS,ren((AR))) 

The derive rule behaves as the one in Deñnition 2 but in addition: i) the mark 
| ("pop") is added to the goal, and ii) a renamed apart copy of AR, denoted 
ren(AR), is pushed onto the ancestor stack. As before, the derive rule is non-
deterministic if several clauses in P unify with the atom AR. However, in contrast 
to Deñnition 2, this rule can only be applied if 1) the leftmost atom in the goal is 
not a | mark, and 2) the current selected atom AR together with its ancestors 
does constitute an admissible sequence. If 1) holds but 2) does not, this derivation 
is stopped and we refer to such a derivation as ínadmíssíble. 

Deñnition 7 (pop-derive). Let G = <— Ai,..., Aj. be a goal with Ai = j . 
Let S = (G I AS) be a state and AS be a stack. Then S' = (G' I AS') with 
G' =<— A2,... ,Ak and AS' = pop(AS) is pop-derived from S. 

The pop-derive rule is used when the leftmost atom in the resolvent is a j 
mark. Its effect is to eliminate from the ancestor stack the topmost atom, which 
is guaranteed not to belong to the ancestors of any selected atom in any possible 
continuation of this derivation. 

Computation for a query G starts from the state SQ = (G I empty). Given 
a non-empty derivation D, we denote by curr-goal(D) and curr_ancestors(D) 
the goal and the stack in the last state in D, respectively. At each step of a 
derivation D at most one rule, either derive or pop-derive, can be applied 
depending on whether the ñrst atom in curr_goal(D) is a mark j or not. 

Example 1. Fig. 4 illustrates the ASLD derivation corresponding to the deriva­
tion with explicit ancestor annotations of Fig. 2. Sometimes, rather than writing 
the atoms themselves, we use the same numbers assigned to the corresponding 
atoms in Fig. 2. Each step has been appropriately labeled with the applied 
derivation rule. Although rule external-derive has not been presented yet, we 
can just assume that the code for the external predicate =< is available and has 
the expected behavior. 

It should be noted that, in the last state, the stack contains exactly the 
ancestors of part i t ion( [1] ,1 ,L1',L2'), i.e., the atoms 4 and 1, since the 
previous calis to part i t ion have already ñnished and thus their correspond­
ing atoms have been popped off the stack. Thus, the admissibility test for 
partit ion( [1] ,1,L1' ,L2') succeeds, and unfolding can proceed further with-
out risking termination. Note that derive steps w.r.t. a clause which is a fact 
are always followed by a pop-derive and thus they are optimized in the figure 
(and in the implementation, described in Section 6) by not pushing the selected 
atom AR onto the stack and not including a j mark into the goal which would 
immediately pop AR from the stack. 



({qs([l,l , l] ,R,D)} I []} 

X derive 

({2,3,4, T}l[qsor t ( [ l , l , l ] ,R,[] ) ]} 
X derive 

({5,6, T , 3 , 4 , T } I [par t ( [ l , l ] , l ,Ll ,L2) ,qs( [ l , l , l ] ,R, [])]} 
X external —derive 

({6, T , 3 , 4 , T}l [par t ( [ l , l ] , l ,L l ,L2) ,qs( [ l , l , l ] ,R,D)}] 
X derive 

({7,8, t , t , 3 ,4 , t } I [par t ( [ l ] , l ,L ,L2) ,par t ( [ l , l ] , l ,Ll ,L2) ,qs([ l , l , l ] ,R, [])]} 
X external —derive 

({8, t , t , 3 ,4 , t } I [part([l], l ,L ,L2) ,par t ( [ l , l ] , l ,L l ,L2) ,qs( [ l , l , 1],R, •)]} 
X derive,pop — derive 

({ T , T ,3 ,4 , t } I [par t ( [ l ] , l ,L ,L2) ,par t ( [ l , l ] , l ,Ll ,L2) ,qs([ l , l , l ] ,R, [])]} 
A, pop —derive 

( { T , 3 , 4 , T}l [par t ( [ l , l ] , l ,L l ,L2) ,qs( [ l , l , l ] ,R ,D)]} 
A, pop —derive 

({3,4, T}l[qsort([ l , l , l ] ,R,[])]> 
X derive,pop — derive 

({4, T}l [qsor t ( [ i , i , i ] ,R,0)]> 
X derive 

({par t ( [ l ] , l ,L l ' ,L2 ' ) ,10 , l l , | , | } I [qsort([l, 1], R, [l]), qsort([ l , 1, 1], R, [])]} 

Fig. 4. ASLD Derivation for the example 

Finally since the goals obtained by ASLD resolution may contain atoms of the 
form | , resultants are cleaned up before being transferred to the global control 
level or during the code generation phase by simply eliminating all atoms of the 
form | . 

It is easy to see that for each ASLD derivation Ds there is a corresponding 
SLD derivation D with the same computed answer substitution and the same 
goal without the j atoms. Such SLD derivation is the one obtained by per-
forming the same derive steps (with exactly the same clauses) using the same 
computation rule and by ignoring the pop-derive steps since goals in SLD reso­
lution do not contain j atoms. We will use simplify(Ds) = D to denote that 
D is the SLD derivation which corresponds to Ds-

We would now like to impose a condition on the computation rule which 
allows ensuring that the contents of the stack are precisely the ancestors of the 
atom to be selected. 

Definition 8 (depth-preserving). A computation ruleTZ is depth-preserving 
if for each non-empty goal O = •*— Ai, .. ., A¡~ with A\ ^ \ , 7Z(G) = AR and 
]£{Al,...,AR}. 



Intuitively, a depth-preserving computat ion rule always returns an atom which 
is strictly to the left of the ñrst (leftmost) j mark. Note that j is used to 
sepárate groups of atoms which are at different depth in the proof tree. Thus, the 
notion of depth-preserving computation rules in ASLD resolution is equivalent 
to tha t of local computation rules in SLD resolution. 

P r o p o s i t i o n 1 (ances tor s tack) . Let Ds be an ASLD derivation for initial 
query O in program P via a depth-preserving computation rule. Let D he an SLD 
derivation such that simplify(Ds) = D. Let curr_goal(Ds) = Ai,. .., An, | 
, . . . with Ai T¿ | for i = l , . . . , n . Let curr_ancestors(Ds) = AS. Then, 
contents(J4S') = Ancestors(Ai, D) for i = 1 , . . . , n. 

The next theorem guarantees tha t we do not lose any specialization opportuni-
ties by using our stack-based implementation for ancestors instead of the more 
complex tree-based implementation, i.e., our proposed semantics will not stop 
"too early". It is a consequence of the above proposition and the results in [4]. 

T h e o r e m 1 (accuracy) . Let D be an SLD derivation for query O in a program 
P via a local computation rule. Let < be a structural order. If the derivation D 
is safe w.r.t < then there exists an ASLD derivation Ds for O and P via a 
depth-preserving computation rule such that simplify(Ds) = D. 

Note tha t since our semantics disables performing any further steps as soon 
as inadmissible sequences are detected, not all local SLD derivations have a 
corresponding ASLD derivation. However, if a local SLD derivation is safe, then 
its corresponding Ds derivation can be found. 

It is interesting to note tha t we can allow more flexible computation rules 
which are not necessarily depth-preserving while still ensuring termination. For 
instance, consider state (Ai,..., An, | , AR, . . . I [Pi|P]} with j ^ {Ai,..., An} 
and a non depth-preserving computation rule which selects the a tom AR to the 
right of the j mark. Then, rule derive will check admissibility of AR w.r.t. all 
atoms in the stack [Pi |P] . However, the topmost atom P i is an ancestor only of 
the atoms Ai to the left of AR but it is not an ancestor of AR. The more j 
marks the computat ion rule jumps over to select an atom, the more atoms which 
do not belong to the ancestors of the selected atom will be in the stack, thus, 
the more accuracy and efñciency we lose. In any case, the stack will always be 
an over-approximation of the actual set of ancestors of AR. 

In principie, our local unfolding rule based on ancestor stacks can be used 
within any P D framework, including Conjunctive Partial Deduction (CPD). It 
should be noted tha t some CPD examples may require the use of an unfolding 
rule which is not depth-preserving to obtain the optimal specialization. As we 
discuss above, we cannot ensure accuracy results in these cases but in turn the 
use of local unfolding will clearly improve the efñciency of the PD process. 

5 Assertion-based Unfolding for External Predicates 

Most of real-life Prolog programs use predicates which are not deñned in the 
program (module) being developed. We will refer to such predicates as external. 
Examples of external predicates are the traditional "built-in" predicates such as 



arithmetic operations (e.g., i s / 2 , <, =<, etc.) or basic inpu t /ou tpu t facilities. We 
will also consider as external predicates those deñned in a different module, pred-
icates written in another language, etc. This section deals with the difñculties 
which such external predicates pose during PD. 

When an atom A, such tha t pred(A) = p/n is an external predicate, is se-
lected during PD, it is not possible to apply the derive rule in Deñnition 2 due 
to several reasons. First, we may not have the code deñning p/n and, even if 
we have it, the derivation step may introduce in the residual program calis to 
predicates which are private to the module M where p/n is deñned. In spite of 
this, if the executable code for the external predicate p/n is available, and under 
certain conditions, it can be possible to fully evalúate calis to external predi-
cates at specialization time. We use Exec(Sys, M, A) to denote the execution 
of atom A on a logic programming system Sys (e.g., Ciao or Sicstus) in which 
the module M where the external predicate p/n is deñned has been loaded. 
In the case of logic programs, Exec(Sys, M, A) can return zero, one, or several 
computed answers for M U A and then execution can either terminate or loop. 
We will use substi tution sequences [6] to represent the outcome of the execution 
of external predicates. A substitution sequence is either a ñnite sequence of the 
form ( 0 i , . . . , 6n), n > 0, or an incomplete sequence of the form (é>i,. . . , 6n, _L), 
n > 0, or an infinite sequence (é>i,. . . , é>¿,...}, i G IV*, where W* is the set of 
positive natural numbers and _L indicates tha t the execution loops. We say tha t 
an execution universally terminotes if Exec(S,ys, M, A) = {9\,..., 9n), n > 0. 

In addition to producing substitution sequences, it can be the case tha t the 
execution of atoms for (external) predicates produces other outcomes such as 
side-effects, errors, and exceptions. Note tha t this precludes the evaluation of 
such atoms to be performed at P E time, since those effects need to be per-
formed at run-time. We say tha t an expression is evaluable when its execution 
1) universally terminates, 2) it does not produce side-effects, 3) it is sufñciently 
instantiated to be executed, 4) it does not issue errors and 5) it does not genér­
ate exceptions. Clearly, some of the above properties are not computable (e.g., 
termination is undecidable in the general case). However, it is often possible to 
determine some sufficient conditions (SC) which are decidable and ensure that , 
if an a tom A satisfies such conditions, then A is evaluable. Intuitively, SC can 
be thought of as a traditional precondition which ensures a certain behaviour of 
the execution of a procedure provided they are satisfied. To formalize this, we 
propose to use the "computational assertions" which are part of the assertion 
language [20] of CiaoPP in order to express tha t a certain predicate is evaluable 
under certain conditions. The following deñnition introduces the notion of an 
eval annotation as (part of) a computational assertion. We use id to denote the 
empty substitution, Le., V t , id(í) = t. 

D e ñ n i t i o n 9 (eval a n n o t a t i o n s ) . Let p/n be an external predicate defined in 
module M. The assertion : - t r u s t comp p ( X l , . . . ,Xn) : SC + eval. in the 
code for M is a corred eval annotation for predicate p/n in a logic programming 
system Sys if V#7 the expression 9{SC) is evaluable, and 

ifExec(Sys,M,6(SC)) = (id) then 6(p(Xl, ...,Xn)) is evaluable 



One of the advantages of using this kind of assertion is tha t it makes it possible 
to deal with new external predicates (e.g., written in other languages) in user 
programs or in the system libraries without having to modify the partial evalu-
ator itself. Also, the fact tha t the assertions are co-located with the actual code 
deñning the external predicate, Le., in the module M (as opposed to being in 
a large table inside the PD system) makes it more difñcult for the assertion to 
be left out of sync when a modiñcation is made to the external predicate. We 
believe this to be very important to the maintainability of a real application or 
system library. 

Example 2. The computational assertions in CiaoPP for the builtin predicate < 
include, among others, the following one: 

: - t r u s t comp A =< B : ( a r i t h e x p r ( A ) , a r i t h e x p r ( B ) ) + e v a l . 

which states tha t if predicate =</2 is called with both arguments instantiated to 
a term of type ar i thexpr , then the cali is evaluable. The type a r i t h e x p r cor-
responds to arithmetic expressions which, as expected, are built out of numbers 
and the usual arithmetic operators. The type a r i t h e x p r is expressed in Ciao as 
a unary regular logic program. This allows using the underlying Ciao system in 
order to effectively decide whether a term is an a r i t h e x p r or not. 

The following deñnition extends our ASLD semantics by providing a new rule, 
external -der ive , for evaluating calis to external predicates. Given a sequence 
of substitutions (0\,..., 0n), we define Subst((0\,..., 0n)) = {0\,..., 9n}. 

Def in i t ion 10 ( ex terna l -der ive ) . LetSys be a logic programming system. Let 
O = •*— Ai,..., AR, ..., Ak he a goal. Let S = (O I AS) be a state and AS 
a stack. Let 1Z be a computation rule such that TZ(G) =AR with pred(Ap) = 
p/n an external predicate from module M. Let C be a renamed apart asser­
tion : - t r u s t comp p ( X l , . . . ,Xn) : SC + eval. Then, S' = (G1 I AS') is ex-
ternal-derived from S and C via 1Z in Sys if: 1) a = mgu(An,p(Xl, ...,Xn)), 
2) Exec(Sys,M,a(SC)) = (id), 3) 0 e Subst(Exec(Sys,M,AR)), 4) G' is the 
goal 6(AÍ, .. .,AR_UAR+1,.. .,Ak), 5)AS' = AS. 

Notice that , since after computing Exec(Sys, M, AR) the computation oí AR is 
finished, there is no need to push (a copy of) AR into AS and the ancestor stack 
is not modified by the ex terna l -der ive rule. This rule can be nondeterministic 
if the substi tution sequence for the selected a tom AR contains more than one 
element, Le., the execution of external predicates is not restricted to atoms which 
are deterministic. The fact tha t AR is evaluable implies universal termination. 
This in tu rn guarantees tha t in any ASLD tree, given a node S in which an 
external a tom has been selected for further resolution, only a finite number of 
descendants exist for S and they can be obtained in finite time. 

Example 3. Consider the assertion in Example 2 and the atoms 5 and 7, which 
are of the form 1=<1, in the ASLD derivation of Fig. 2. Both atoms can be 
evaluated because Exec(«ao, arithmetic, (arithexpr(1), arithexpr(1))) = (id). 
This is a sufñcient condition for Exec(ciao, arithmetic, (1 = < 1)) to be evaluable. 
Its execution returns Exec(ciao, arithmetic, (1 = < 1)) = (id). 



Bench 
advisor3 
nrev_80 
nrev_38 
permute_7 
permute_6 
query 
qsort_80 
qsort_33 
rev_80 
zebra 

Execution Times 
Relation 

144 
mem 

998 
mem 

476 
166 

mem 
686 
984 

1562 

Trees 
192 

106490 
2804 
5226 

614 
214 

98514 
2432 
1102 
2276 

Stacks 
106 

15040 
806 

2800 
336 
116 

8970 
454 
960 
994 

MEcce 

1240 
64970 
4370 

34680 
3530 
1290 

71870 
4580 
1400 

186620 

Overall 

Relative Speed Up 
Relation 

1.36 
oo 

1.24 
oo 

1.42 
1.43 

oo 
1.51 
1.02 
1.57 

mem 

Trees 

1.81 
7.08 
3.48 
1.87 
1.83 
1.84 

10.98 
5.36 
1.15 
2.29 

7.19 

MEcce 

11.70 
4.32 
5.42 

12.39 
10.51 
11.12 
8.01 

10.09 
1.46 

187.75 

12.25 

Table 1. Comparison of Proof Trees Vs.Ancestor Stacks (Execution Time) 

6 Experimental Results 

We have implemented in our PD system the unfolding rule we propose, together 
with other variations in order to evalúate the efñciency of our proposal. Our PD 
system has been integrated in a practical state of the art compiler which uses 
global analysis extensively: the CiaoPP preprocessor [9]. For the tests, the whole 
system has been compiled using Ciao 1.11^275 [5], with the bytecode generation 
option. All of our experiments have been performed on a Pentium 4 at 2.4GHz 
and 512MB RAM running GNU Linux RH9.0. The Linux kernel used is 2.4.25. 

The results in terms of execution time are presented in Table 1. The pro-
grams used as benchmarks are indicated in the Bench column. We have chosen 
a number of classical programs for the analysis and PD of logic programs as 
benchmarks. In order to factor out the cost of global control, we have used in 
our experiments initial queries which can be fully unfolded using homeomorphic 
embedding with ancestors. The program advisor3 is a variation of the advisor 
program in the DPPD [12] library. The programs query and zebra are classical 
benchmarks for program analysis. Programs qsort_80 and qsort_33 correspond 
to the quick-sort program shown in the paper with pseudo-random lists of natu­
ral numbers of length 80 and 33 respectively. nrev_80 and nrev_38 correspond to 
the well-known naive reverse with lists of 80 and 38 natural numbers. rev_80 is 
a reverse program with linear complexity which uses an accumulator. The initial 
query is, as before, a list of 80 natural numbers. Finally, permute is a permu-
tation program which uses a nondeterministic deletion predicate. It is partially 
evaluated w.r.t. a list of 6 and 7 elements respectively. None of advisor3, query, 
ñor zebra can be fully unfolded using homeomorphic embedding over the full 
sequence of selected atoms. Also, nrev and, as seen in the running example, 
qsort are potentially not fully unfolded if the input lists contain repetitions un-
less ancestors are considered. In the table, the following group of columns show 
execution time of the unfolding process with the different implementations of 
unfolding: 



Relation We refer to an implementation where each atom in the resolvent is 
annotated with the list of atoms which are in its ancestor relation, as done 
in the example in Figure 2. 

TVees This column refers to the implementation where the ancestor relations of 
the different atoms are organized in a proof tree. 

Stacks The column Stacks refers to our proposed implementation based on 
ancestor stacks. 

MEcce We have also measured the time that it takes to process the same 
benchmarks using Leuschel's M-Ecce (modular Ecce [12]) system, compiled 
with the same versión of Ciao and in the same machine. 

The last set of columns compare the relative measures of the different approaches 
w.r.t. the Stacks algorithm. Finally, in the last row, labeled Overall, we sum-
marize the results for the different benchmarks using a weighted mean, which 
places more importance on those benchmarks with relatively larger unfolding 
figures. We use as weight for each program its actual unfolding time. We believe 
that this weighted mean is more informative than the arithmetic mean, as, for 
example, doubling the speed in which a large unfolding tree is computed is more 
relevant than achieving this for small trees. 

Let us explain the results in Table 1. Times are in milliseconds, measuring 
runtíme, and are computed as the arithmetic mean of five runs. Three enfries in 
the Relation column contain the valué "mem", instead of a number, to indicate 
that the PD system has run out of memory. For each of these three cases, we 
have repeated the experiment with the largest possible initial query that Re­
lation can handle in our system before running out of memory. This explains 
that the three benchmarks are specialized w.r.t. two different initial queries. As 
it can be seen in the column for relative speedups, Relation is quite efñcient 
in time for those benchmarks it can handle, though a bit slower than the one 
based on stacks. However, its memory consumption is extremely high, which 
makes this implementation inadmissible in practice. Regarding column Trees, 
the implementation based on proof trees has a good memory consumption but 
is slower than Relation due to the overhead of traversing the tree for retrieving 
the ancestors of each atom. In comparison to M-ecce, the results provide evi-
dence that our proof tree-based implementation is indeed comparable to state 
of the art systems, since the execution times are similar in some cases or even 
better in others. The last set of columns compares the relative execution times 
of the different approaches w.r.t. the Stacks algorithm which is the fastest in all 
cases. Indeed, Stacks is even faster than the implementation based on explicitly 
storing all ancestors of all atoms (Relation) while having a memory consump­
tion comparable to (and in fact, slightly better than) the implementation based 
on proof trees. The actual speedup ranges from 1.15 in the case of rev_80 to 
10.98 in the case of qsort_80. This variation is due to the different shapes which 
the proof trees can have for the (derivations in the) SLD tree. In the case of rev, 
the speedup is low since the SLD tree consists of a single derivation whose proof 
tree has a single branch. Thus, in this case considering the ancestor sequence 
is indeed equivalent to considering the whole sequence of selected atoms. But 
note that this only happens for binary clauses. It is also worth noticing that the 



speedup achieved by the Stacks implementation increases with the size of the 
SLD tree, as can be seen in the three benchmarks which have been specialized 
w.r.t. different queries. The overall resulting speedup of our proposed unfolding 
rule over other existing ones is signiñcant: over 7 times faster than our tree-based 
implementation. 

We have also studied the memory required by the unfolding process (for lack 
of space details are in [19]). As for the case of execution time, the Stacks al­
gorithm presents lower consumption than any other algorithm for all programs 
studied. The memory required by the Relation algorithm precludes it from 
its practical usage. Regarding the Stacks algorithm, not only it is signiñcantly 
faster than the implementation based on trees. Also it provides a relatively im-
portant reduction (1.18 overall, computed again using a weighted mean) in mem­
ory consumption over TVees, which already has a good memory usage. 

Altogether, when the results of Table 1 and the memory figures are combined, 
they provide evidence that our proposed techniques allow signiñcant speedups 
while at the same time requiring somewhat less memory than tree based imple-
mentations and much better memory consumptions than implementations where 
the ancestor relation is directly computed. This suggests that our techniques are 
indeed effective and can contribute to making PD a practical tool. 

As for future work, we plan to provide additional solutions for the problems 
involved in non-leftmost unfolding for programs with extra logical predicates 
beyond those presented in the literature [11,7, 2,14]. In particular, the intensive 
use of static analysis techniques in this context seems particularly promising. In 
our case we plan to take advantage of the fact that our PD system is integrated 
in CiaoPP which includes extensive program analysis facilities. 

References 

1. A. V. Alio, R. Sethi, and J. D. Ullman. Compilers - Principies, Techniques and 
Tools. Addison-Wesley, 1986. 

2. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languages. Journal of Functional and Logic Programming, 
2002(1), 2002. 

3. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic 
Programs. Journal of Logic Programming, 10:91-124, 1991. 



4. M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding 
Infinite Unfolding during Partial Deduction. New Generation Computing, 1(11):47-
79, 1992. 

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and 
G. Puebla (Eds.). The Ciao System. Reference Manual (vi.10). Technical Report 
CLIP3/97.1.10(04), School of Computer Science (UPM), August 2004. Available 
at h t t p : / / c l i p . d i a . f i . u p m . e s / S o f t w a r e / C i a o / . 

6. B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence Based Abstract In-
terpretation of Prolog. Theory and Practice of Logic Programming, 2(l):25-84, 
2002. 

7. S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP 
with Dynamic Scheduling and CCP. In Proc. of the ACM Sigplan PEPM'97, 
pages 137-150. ACM Press, New York, 1997. 

8. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of 
PEPM'93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88-98. ACM Press, 1993. 

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In Proc. 
ofSAS'03, pages 127-152. Springer LNCS 2694, 2003. 

10. J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture. 
Transactions of the American Mathematical Society, 95:210-225, 1960. 

11. Michael Leuschel. Partial evaluation of the "real thing". Proceedings of LOP-
STR'94 and META'94, Lecture Notes in Computer Science 883, pages 122-137. 
Springer-Verlag. 

12. Michael Leuschel. The ECCE partial deduction system and the DPPD library of 
benchmarks. Obtainable via ht tp: / /www.ecs.soton.ac.uk/~mal, 1996-2002. 

13. Michael Leuschel. On the power of homeomorphic embedding for online termina-
tion. In Giorgio Levi, editor, Static Analysis. Proceedings of SAS'98, LNCS 1503, 
pages 230-245, Pisa, Italy, September 1998. Springer-Verlag. 

14. Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through 
partial deduction: Control issues. Theory and Practice of Logic Programming, 2(4 
& 5):461-515, July & September 2002. 

15. Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation 
and polyvariance in partial deduction of normal logic programs. A CM Transactions 
on Programming Languages and Systems, 20(l):208-258, January 1998. 

16. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The 
Journal of Logic Programming, 11:217-242, 1991. 

17. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987. 

18. B. Martens and D. De Schreye. Automatic finite unfolding using well-founded 
measures. The Journal of Logic Programming, 28(2):89-146, August 1996. 

19. G. Puebla, E. Albert, and M. Hermenegildo. Efñcient Local Unfolding with Ances-
tor Stacks for Full Prolog. Technical Report CLIP2/2005.0, Technical University 
of Madrid, February 2005. 

20. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint 
Logic Programs. In Analysis and Visualization Tools for Constraint Programming, 
pages 23-61. Springer LNCS 1870, 2000. 

21. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages: Word 
Language Grammar, volume 1. Springer-Verlag, 1997. 

22. M.H. S0rensen and R. Glück. An Algorithm of Generalization in Positive Super-
compilation. In Proc. of ILPS'95, pages 465-479. The MIT Press, 1995. 

http://clip.dia.fi.upm.es/Software/Ciao/
http://fi.upm.es/Software/Ciao/.
http://www.ecs.soton.ac.uk/~mal

