
Efficient Local Unfolding with Ancestor Stacks
for Full Prolog

Germán Puebla1 , Elvira Albert2 , and Manuel Hermenegildo1 '3

1 School of Computer Science, Technical U. of Madrid, {german,herme}@f i.upm.es
2 School of Computer Science, Complutense U. of Madrid, elvira@sip.ucm.es

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New México, herme@unm.edu

Abs t r ac t . The integration of powerful partial evaluation methods into
practical compilers for logic programs is still far from reality. This is re-
lated both to 1) efficiency issues and to 2) the complications of dealing
with practical programs. Regarding efnciency, the most successful un­
folding rules used nowadays are based on structural orders applied over
(covering) ancestors, i.e., a subsequence of the atoms selected during a
derivation. Unfortunately, maintaining the structure of the ancestor re-
lation during unfolding introduces significant overhead. We propose an
efficient, practical local unfolding rule based on the notion of covering an­
cestors which can be used in combination with any structural order and
allows a stack-based implementation without losing any opportunities for
specialization. Regarding the second issue, we propose assertion-based
techniques which allow our approach to deal with real programs that
include (Prolog) built-ins and external predicates in a very extensible
manner. Finally, we report on our implementation of these techniques
in a practical partial evaluator, embedded in a state of the art compiler
which uses global analysis extensively (the Ciao compiler and, specifi-
cally, its preprocessor CiaoPP). The performance analysis of the resulting
system shows that our techniques, in addition to dealing with practical
programs, are also significantly more efficient in time and somewhat more
efficient in memory than traditional tree-based implementations.

1 Introduction

In spite of the important research efforts in the área, the integration of Partial
Deductíon (PD) [16, 8] methods into compilers seems to be still far from reality.
We believe tha t the general uptake of PD methods is being hindered by two fac-
tors: the relative inefñciency of the PD method, and the complications brought
about by the t reatment of real programs. Indeed, the integration of powerful
strategies to the unfolding rule -like the use of structural orders combined with
the ancestor re lat ion- can introduce a significant cost both in time and mem­
ory consumption of the specialization process. Regarding the t reatment of real
programs which include external predicates, non-declarative features, etc, the
complications range from how to identify which predicates include these non-
declarative features (ad-hoc but difñcult to maintain tables are often used in
practice for this purpose) to how to deal with such predicates during PD. A

http://upm.es
mailto:elvira@sip.ucm.es
mailto:herme@unm.edu

main objective of this paper is to contribute to the uptake of PE techniques by
addressing some of these issues.

State-of-the-art partial evaluators intégrate terminating unfolding rules for
local control based on structural orders, like homeomorphic embedding [14] which
can obtain very powerful optimizations. Moreover, they allow performing the or-
dering comparisons over subsequences of the full sequence of the selected atoms.
In particular, the use of ancestors for reñning sequences of visited atoms, orig-
inally proposed in [4], greatly improves the specialization power of unfolding
while still guaranteeing termination and also reduces the length of the sequences
for which admissibility of new atoms has to be checked. Unfortunately, having
to maintain dependency information for the individual atoms in each deriva-
tion during the generation of SLD trees has turned out to introduce overheads
which seem to cancel out the theoretical efñciency gains expected. In order to
address this issue, we introduce a novel unfolding rule based on the notion of
covering ancestors which allows a very efñcient implementation technique based
on stacks. Our technique can signiñcantly reduce the overhead incurred by the
use of covering ancestors without losing any opportunities for specialization. We
outline as well a generalization that allows certain non-leftmost unfoldings with
the same assurances.

In order to deal with real programs that include (Prolog) built-ins and exter-
nal predicates, we rely on assertion-based techniques [20]. The use of assertions
provides extensíbüíty in the sense that users and developers of partial evaluators
can deal with new external predicates during PE by just adding the proper asser­
tions to these predicates -without having to maintain ad-hoc tables or modifying
the partial evaluator itself. We report on our implementation of our technique
in a practical, state-of-the-art partial evaluator, embedded in a production com-
piler which uses assertions and global analysis extensively (the Ciao compiler [5]
and, speciñcally, its preprocessor CiaoPP[9]).

2 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [17] for details. Very briefly, an atom A is a syntactic construction
of the form p(ti,... ,tn), where p/n, with n > 0, is a predicate symbol and
t i , . . . ,tn are terms. The function pred applied to atom A, i.e., pred(A), returns
the predicate symbol p/n for A. A clause is of the form H <— B where its head
H is an atom and its body B is a conjunction of atoms. A definite program is a
ñnite set of clauses. A goal (or query) is a conjunction of atoms. The concept of
computatíon rule is used to select an atom within a goal for its evaluation.

Definition 1 (computation rule). A computation rule is a function 1Z frorn
goals to atoms. Let O be a goal of the form •*— Ai, .. . ,AR, . .. ,Ak, k > 1. If
TÍ(G) =AR we say that AR is the selected atom in O.

The operational semantics of deñnite programs is based on derivations.

Definition 2 (derivation step). Let G be <— Ai,..., AR, ... ,Ak- Let 1Z be a
computation rule and let TZ(G) =AR. Let C = H •*— Bi, ..., Bm be a renamed

apart clause in P. Then O' is derived from O and C via 1Z if the following
conditions hold:

9 = mgu(AR, H)
G' %s the goal <- 9{BÍ,..., Bm, Ai,..., AR_i, AR+Í,..., Ak)

The deñnition above differs from standard formulations (such as tha t in [17]) in
that the atoms newly introduced in G' are not placed in the same position where
the selected atom AR used to be, but rather they are placed to the left of any
atom in G. For deñnite programs, this is correct since goals are conjunctions,
which enjoy the commutative property.

As customary, given a program P and a goal G, an SLD derivation for P U { G }
consists of a possibly infinite sequence G = GQ, G I , G2, • • • of goals, a sequence
Gi, G 2 , . . . of properly renamed apart clauses of P, and a sequence 9i, # 2 , . . . of
mgus such tha t each G¿+ i is derived from G¿ and G¿+i using 0¿+i. A derivation
step can be non-deterministic when AR unifies with several clauses in P, giving
rise to several possible SLD derivations for a given goal. Such SLD derivations can
be organized in SLD trees. A finite derivation G = GQ, G I , G 2 , . . . , Gn is called
successful if Gn is empty. In tha t case 9 = 61O2 . . . 9n is called the computed
answer for goal G. Such a derivation is called failed if it is not possible to
perform a derivation step with Gn.

In order to compute a partial deduction (PD) [16], given an input program
and a set of atoms (goal), the first step consists in applying an unfolding rule to
compute finite (possibly incomplete) SLD trees for these atoms. Given an a tom
A, an unfolding rule computes a set of finite SLD derivations Di,..., Dn (i.e., a
possibly incomplete SLD tree) of the form _D¿ = A,..., G¿ with computer answer
substi tution 9 i for i = 1, ...,n whose associated resultants are 6i(A) <— G¿.
Therefore, this step returns the set of resultants, i.e., a program, associated to
the root-to-leaf derivations of these trees. We refer to [14] for details. In order
to ensure the local termination of the PD algorithm while producing useful
specializations, the unfolding rule must incorpórate some non-trivial mechanism
to stop the construction of SLD trees. Nowadays, well-founded orderings (wfo)
[4,18] and well-quasi orderings (wqo) [22,13] are broadly used in the context
of on-line P E techniques (see, e.g., [8,15,22]). Formally, let <s be a wqo, we
denote by Admissible(A, (Ai,... ,An), <s), with n > 0, the t ru th valué of the
expression \M.¿, i G { l , . . . , n } : A <$ A4. In wfo, it is sufñcient to verify
that the selected atom is strictly smaller than the previous comparable one (if
one exists). Let < be a wfo, by Admissible(A, (Ai,..., An), <) , with n > 0, we
denote the t ru th valué of the expression A < An if n > 1 and true if n = 0. We
will denote by structural order a wfo or a wqo (written as < to represent any
of them). Among the structural orders, well-quasi orderings (and homeomorphic
embedding [10] in particular) have proved to be very powerful in practice.

State-of-the-art unfolding rules allow performing ordering comparisons over
subsequences of the full sequence of the selected atoms of a derivation by organiz-
ing atoms in a proof tree [3], achieving further specialization in many cases while
still guaranteeing termination. The essence of the most advanced techniques is
based on the notion of covering ancestors [4].

q s o r t ([] , R , R) . p a r t i t i o n ([] ,_, [] , []) .
qsort([X|L] ,R,R2) : - p a r t i t i o n ([E| R] ,C, [E| Lef t l] ,Right) : -

pa r t i t i on (L ,X ,L l ,L2) , E =< C, p a r t i t i o n (R , C , L e f t l , R i g h t) .
qsort(L2,Rl,R2) , p a r t i t i o n ([El R] ,C,Left , [El Rightl]) : -
qsor t (Ll ,R , [X |R1]) . E > C, p a r t i t i o n (R , C . L e f t , R i g h t l) .

Fig. 1. A quick-sort program

Def in i t ion 3 (ances tor re la t ion) . Given a derivation step and AR, BÍ, i =
1, .. ., m as in Def. 2, we say that AR is the parent of the instance of Bi,
i = 1,. . . ,m, in the resolvent and in each suhsequent goal where the instance
originating from Bi appears. The ancestor relation is the transitive closure of
the parent relation.

Usually, the ancestor test is only applied on comparable atoms, i.e., ancestor
atoms with the same predicate symbol. This corresponds to the original notion
of covering ancestors [4]. Given an a tom A and a derivation D, we denote by
Ancestors(A, D) the sequence of ancestors of A in D as deñned in Def. 3. It
captures the dependency relation implicit within a proof tree.

It has been proved [4] tha t any infinite derivation must have at least one
inadmissible covering ancestor sequence, i.e., a subsequence of the atoms selected
during a derivation. Therefore, it is sufñcient to check the selected ordering
relation < over the covering ancestor subsequences in order to detect inadmissible
derivations. An SLD derivation is safe with respect to an order (wfo or wqo) if
all covering ancestor sequences of the selected atoms are admissible with respect
to tha t order.

3 The Usefulness of Ancestors

We now illustrate some of the ideas discussed so far and, specially, the relevance
of ancestor tracking, through an example. Our running example is the program
in Figure 1, which implements the well known quick-sort algorithm, "qsort", us-
ing difference lists. Given an initial query of the form <—qsort(List,Result,Cont),
where List is a list of numbers, the algorithm returns in Result a sorted differ­
ence list which is a permutat ion of List and such tha t its continuation is Cont.
For example, for the query <— qsort([í, 1,1], L, []), the program should compute
L= [1 , 1 , 1] , constructing a finite SLD tree.

Consider now Fig. 2, which presents an incomplete SLD derivation for our
quick-sort program and the query <— qsort([1,1,1], i?, []) using a leftmost unfold-
ing rule. For conciseness, predicates qsort and p a r t i t i o n are abbreviated as qs
and p, respectively in the figure. Note tha t each atom is labeled with a number
(an identifier) for future reference4 and a superscript which contains the list of
ancestors of tha t atom. Let us assume tha t we use the homeomorphic embedding
order [13] as structural order. If we check admissibility w.r.t. the full sequence
of atoms, i.e., we do not use the ancestor relation, the derivation will stop when

4 By abuse of notation, we keep the same number for each atom throughout the
derivation although it may be further instantiated (and thus modified) in subsequent
steps. This will become useful for continuing the example later.

l .qs([i , i , i] ,R,D) { }

p ([l] , l , L , L 2)

2.p([l , l] , l ,Ll,L2){ 1 } ,3.qs(L2,Rl,0){ 1 } ,4.qs(Ll,R, [1|R1]){1}

j{Ll^[l |L]}

5.1=^l{ 1 '2 } ,6.p([l] , l ,L,L2){ 1 '2 } ,3.qs(L2,Rl,0){ 1 } ,4.qs([l |L],R, [1|R1]){1}

I
{1 '2},3.qs(L2,Rl,Q)í1>,4.qs([l|L],R,[l|Rl])í1>

y{L^[l | l /]}

7.1=^l { 1 '2 '6 } ,8 .p(0, l ,L ' ,L2) { 1 '2 '6 } ,3 .qs(L2,Rl,0) { 1 } ,4 .qs([l , l |L ,] ,R,[l |Rl]) { 1 }

I
8.p([],l,L ,,L2){1 '2 '6},3.qs(L2,Rl,[]){1},4.qs([l,l |L ,],R,[l|Rl]){1}

j{L'M[] ,L2M[]}

3.qs(D,Rl,D)W, 4.qs([i, i],R, [l|Rl]){1}

j { R l ' ^ [] }

4.qs([l,l],R,[l])í1>

9. p ([l] , l , L l ' , L 2 ')
{1,4}

10.qs(L2', Rl', [1]){1'4}, l l .qs (Ll ' , R, [l|Rl']) 'n{M>

Fig. 2. Derivation with Ancestor Annotations

.0:
\

Q
10 11

Fig. 3. Proof tree for the example.

atom number 9, Le., p([l] , 1, L', L2'), is found for the second time. The reason is
that this a tom is not strictly smaller than atom number 6 which was selected in
the third step, indeed, they are equal modulo renaming.5

This unfolding rule is too conservative, since the process can proceed further
without risking termination. The crucial point is tha t the execution of a tom
number 9 does not depend on atom number 6 (and, actually, the unfolding
of 6 has been already completed when atom number 9 is being considered for
unfolding). Figure 3 shows the proof tree associated to this derivation where
nodes are labeled with the numbers assigned to each atom, instead of the atoms

5 Let us note that the two calis to the builtin predícate =< which appear in the deriva­
tion can be executed since the arguments are properly instantiated. However, they
have not been considered in the admissibility test since these calis do not endanger
the termination of the derivation, as we will discuss in Sect. 5.

themselves. Note that, in order to decide whether or not to evalúate atom number
9, it is only necessary to check that it is strictly smaller than atoms 4 and 1,
Le., than those which are its ancestors in the proof tree. On the other hand, and
as we saw before, if the full derivation is considered instead, as in Fig. 2, atom
9 will be compared also with atom 6 concluding imprecisely that the derivation
may not be safe.

Despite their obvious relevance, unfortunately the practical applicability of
unfolding rules based on the notion of covering ancestor is threatened by the
overhead introduced by the implementation of this notion. A naive implemen-
tation of the notion of ancestor keeps -for each atom- the list of its ancestors,
as it is depicted in Fig. 2. This implementation is relatively efñcient in time
but presents a high overhead in memory consumption. Our experiments show
that the partial evaluator can run out of memory even for simple examples. A
more reasonable implementation maintains the proof tree as a global structure.
This greatly reduces memory consumption but the cost of traversing the tree for
retrieving the ancestors of each atom introduces a signiñcant slowdown in the
PE process. We argüe that our implementation technique is efñcient in time and
space, overcoming the above limitations.

4 An Efñcient Implementat ion for Local Unfolding

Our deñnition of local unfolding is based on the notion of ancestor depth.

Definition 4 (ancestor depth). Gíven an SLD derivation D = GQ, • • • ,Gm

with Gm =<— Ai,..., Ak, k > 1, the ancestor depth of Ai for i = 1 , . . . , k,
denoted depth(Ai, D) is the cardinality of the ancestor relation for Ai in D.

Intuitively, the ancestor depth of an atom in a goal is the depth at which this
atom is located in the proof tree associated to the derivation.

Definition 5 (local computation rule). A computation rule TZ is local if
V_D = Goj • • •, Gn such that Gi =•*— An,..., Aim. for i = 0,.., n, it holds that:

depth{TZ{Gi),D) > depth{Ai:j, D) Vj = 1,. .*., m¿

Intuitively, a computation rule is local if it always selects one of the atoms which
is deepest in the proof tree for the derivation. As a result, local computation rules
traverse proof trees in a depth-ñrst fashion, though not necessarily left to right
ñor in any other ñxed order. Thus, in principie, in order to implement a local
computation rule we need to record (part of) the derivation history (its proof
tree). Note that the computation rule used in most implementations of logic
programming languages, such as Prolog, always selects the leftmost atom. This
computation rule, often referred to as left-to-right computation rule, is clearly a
local computation rule. Selecting the leftmost atom in all goals guarantees that
the selected atom is of maximal depth within the proof tree as it is traversed in a
depth-ñrst fashion -without the need of storing any history about the derivation.

An instrumental observation in our approach is that if the proof tree which
is used in order to capture the ancestor relation is traversed depth-ñrst, left-
to-right, it can be interpreted as an activation tree [1]. In fact, the ancestor
subsequence in any point in time corresponds to the current control word [21]

by simply regarding selected atoms as procedure calis. The control word for
each execution state can be seen as the set of procedures whose execution has
started and is not yet completed, bearing a strong relation with the stack of
activation records which most compilers use as a run-time data structure. This
data structure takes normally the form of a stack, and this suggests one of
the central ideas of our approach: using stacks for storing ancestors. Another
important observation is that the control word idea does not need to be restricted
to leftmost computation and it works equally well as long as the computation
rule is local. Indeed, sibling atoms have the same ancestor depth, they can be
selected in any order and the notion of control word still applies. The advantages
of computing the control word instead of the proof tree are clear: the control word
corresponds to a single branch in the proof tree from the current selected atom
to all its ancestors in the proof tree. Thus, the control word offers advantages
both from memory and time consumption. The main difñculty for computing
control words is to determine exactly when each item in the control word should
be removed. To do this, we need to know when the computation of each predicate
is ñnished. In logic programming terminology this corresponds to determining
the success states for all predicates in the derivation. In principie, success states
are not observable in SLD resolution other than for the top-level query.

We now propose an easy-to-implement modiñcation to SLD resolution as
presented in Section 2 in which success states for all internal calis are observable
-and where the control word is available at each state. We will refer to this reso­
lution as SLD resolution with ancestor stacks, or ASLD for short. The proposed
modiñcation involves 1) augmenting goals with an ancestor stack, which at each
stage of the computation contains the control word of the derivation, which cor­
responds to the ancestors of the next atom which will he selected for resolution,
and 2) adding pseudo-atoms to the goals used during resolution which mark a
scope whose purpose is twofold: 2.1) when a mark is leftmost in a goal, it indi-
cates that the current state corresponds to the success state for the cali which
is now on top of the ancestor stack, i.e., the cali is completed, and the atom
on top of the ancestor stack should be popped; 2.2) the atoms within the scope
of the leftmost mark have maximal ancestor depth and thus a local unfolding
strategy can be easily deñned in the presence of these pseudo-atoms. We use the
pseudo-atom j (read as "pop") to indicate the end of a depth scope, i.e., after
it we move up in the proof tree. It is guaranteed not to clash with any existing
predicate ñame.

The following two deñnitions present the derivation rules in our ASLD se-
mantics. Now, a state S is a tupie of the form (G I AS) where G is a goal and AS
is an ancestor stack (or stack for short). To handle such stacks, we will use the
usual stack operations: empty, which returns an empty stack, push(AS, ítem),
which pushes ítem onto the stack AS, and pop(AS), which pops an element from
AS. In addition, we will use the operation cor\ter\ts(AS), which returns the se-
quence of atoms contained in AS in the order in which they would be popped
from the stack AS and leaves AS unmodiñed.

Definition 6 (derive). let G = <— Ai,..., AR, ... ,AJ. be a goal with A\^ \ .
let S = (G I AS) be a state and AS be a stack. let < be a structural order.

Let 1Z be a computation rule and let TZ(G) =AR with AR =/= f . Let C = H •*—
£>i,. .., Bm be a renamed apart clause. Then S' = (G' I AS') is derived from S
and C via 1Z if the following conditions hold:

Admissible(AR, contents(AS), <)

9 = mgu(AR, H)

G' %s the goal <- 9(BU . ..,Bm, | ,A1:..., AR-i, AR+1,. ..,Ak)

AS' = push(AS,ren((AR)))

The derive rule behaves as the one in Deñnition 2 but in addition: i) the mark
| ("pop") is added to the goal, and ii) a renamed apart copy of AR, denoted
ren(AR), is pushed onto the ancestor stack. As before, the derive rule is non-
deterministic if several clauses in P unify with the atom AR. However, in contrast
to Deñnition 2, this rule can only be applied if 1) the leftmost atom in the goal is
not a | mark, and 2) the current selected atom AR together with its ancestors
does constitute an admissible sequence. If 1) holds but 2) does not, this derivation
is stopped and we refer to such a derivation as ínadmíssíble.

Deñnition 7 (pop-derive). Let G = <— Ai,..., Aj. be a goal with Ai = j .
Let S = (G I AS) be a state and AS be a stack. Then S' = (G' I AS') with
G' =<— A2,... ,Ak and AS' = pop(AS) is pop-derived from S.

The pop-derive rule is used when the leftmost atom in the resolvent is a j
mark. Its effect is to eliminate from the ancestor stack the topmost atom, which
is guaranteed not to belong to the ancestors of any selected atom in any possible
continuation of this derivation.

Computation for a query G starts from the state SQ = (G I empty). Given
a non-empty derivation D, we denote by curr-goal(D) and curr_ancestors(D)
the goal and the stack in the last state in D, respectively. At each step of a
derivation D at most one rule, either derive or pop-derive, can be applied
depending on whether the ñrst atom in curr_goal(D) is a mark j or not.

Example 1. Fig. 4 illustrates the ASLD derivation corresponding to the deriva­
tion with explicit ancestor annotations of Fig. 2. Sometimes, rather than writing
the atoms themselves, we use the same numbers assigned to the corresponding
atoms in Fig. 2. Each step has been appropriately labeled with the applied
derivation rule. Although rule external-derive has not been presented yet, we
can just assume that the code for the external predicate =< is available and has
the expected behavior.

It should be noted that, in the last state, the stack contains exactly the
ancestors of part i t ion([1] ,1 ,L1',L2'), i.e., the atoms 4 and 1, since the
previous calis to part i t ion have already ñnished and thus their correspond­
ing atoms have been popped off the stack. Thus, the admissibility test for
partit ion([1] ,1,L1' ,L2') succeeds, and unfolding can proceed further with-
out risking termination. Note that derive steps w.r.t. a clause which is a fact
are always followed by a pop-derive and thus they are optimized in the figure
(and in the implementation, described in Section 6) by not pushing the selected
atom AR onto the stack and not including a j mark into the goal which would
immediately pop AR from the stack.

({qs([l,l , l] ,R,D)} I []}

X derive

({2,3,4, T}l[qsor t ([l , l , l] ,R,[])]}
X derive

({5,6, T , 3 , 4 , T } I [par t ([l , l] , l ,Ll ,L2) ,qs([l , l , l] ,R, [])]}
X external —derive

({6, T , 3 , 4 , T}l [par t ([l , l] , l ,L l ,L2) ,qs([l , l , l] ,R,D)}]
X derive

({7,8, t , t , 3 ,4 , t } I [par t ([l] , l ,L ,L2) ,par t ([l , l] , l ,Ll ,L2) ,qs([l , l , l] ,R, [])]}
X external —derive

({8, t , t , 3 ,4 , t } I [part([l], l ,L ,L2) ,par t ([l , l] , l ,L l ,L2) ,qs([l , l , 1],R, •)]}
X derive,pop — derive

({ T , T ,3 ,4 , t } I [par t ([l] , l ,L ,L2) ,par t ([l , l] , l ,Ll ,L2) ,qs([l , l , l] ,R, [])]}
A, pop —derive

({ T , 3 , 4 , T}l [par t ([l , l] , l ,L l ,L2) ,qs([l , l , l] ,R ,D)]}
A, pop —derive

({3,4, T}l[qsort([l , l , l] ,R,[])]>
X derive,pop — derive

({4, T}l [qsor t ([i , i , i] ,R,0)]>
X derive

({par t ([l] , l ,L l ' ,L2 ') ,10 , l l , | , | } I [qsort([l, 1], R, [l]), qsort([l , 1, 1], R, [])]}

Fig. 4. ASLD Derivation for the example

Finally since the goals obtained by ASLD resolution may contain atoms of the
form | , resultants are cleaned up before being transferred to the global control
level or during the code generation phase by simply eliminating all atoms of the
form | .

It is easy to see that for each ASLD derivation Ds there is a corresponding
SLD derivation D with the same computed answer substitution and the same
goal without the j atoms. Such SLD derivation is the one obtained by per-
forming the same derive steps (with exactly the same clauses) using the same
computation rule and by ignoring the pop-derive steps since goals in SLD reso­
lution do not contain j atoms. We will use simplify(Ds) = D to denote that
D is the SLD derivation which corresponds to Ds-

We would now like to impose a condition on the computation rule which
allows ensuring that the contents of the stack are precisely the ancestors of the
atom to be selected.

Definition 8 (depth-preserving). A computation ruleTZ is depth-preserving
if for each non-empty goal O = •*— Ai, .. ., A¡~ with A\ ^ \ , 7Z(G) = AR and
]£{Al,...,AR}.

Intuitively, a depth-preserving computat ion rule always returns an atom which
is strictly to the left of the ñrst (leftmost) j mark. Note that j is used to
sepárate groups of atoms which are at different depth in the proof tree. Thus, the
notion of depth-preserving computation rules in ASLD resolution is equivalent
to tha t of local computation rules in SLD resolution.

P r o p o s i t i o n 1 (ances tor s tack) . Let Ds be an ASLD derivation for initial
query O in program P via a depth-preserving computation rule. Let D he an SLD
derivation such that simplify(Ds) = D. Let curr_goal(Ds) = Ai,. .., An, |
, . . . with Ai T¿ | for i = l , . . . , n . Let curr_ancestors(Ds) = AS. Then,
contents(J4S') = Ancestors(Ai, D) for i = 1 , . . . , n.

The next theorem guarantees tha t we do not lose any specialization opportuni-
ties by using our stack-based implementation for ancestors instead of the more
complex tree-based implementation, i.e., our proposed semantics will not stop
"too early". It is a consequence of the above proposition and the results in [4].

T h e o r e m 1 (accuracy) . Let D be an SLD derivation for query O in a program
P via a local computation rule. Let < be a structural order. If the derivation D
is safe w.r.t < then there exists an ASLD derivation Ds for O and P via a
depth-preserving computation rule such that simplify(Ds) = D.

Note tha t since our semantics disables performing any further steps as soon
as inadmissible sequences are detected, not all local SLD derivations have a
corresponding ASLD derivation. However, if a local SLD derivation is safe, then
its corresponding Ds derivation can be found.

It is interesting to note tha t we can allow more flexible computation rules
which are not necessarily depth-preserving while still ensuring termination. For
instance, consider state (Ai,..., An, | , AR, . . . I [Pi|P]} with j ^ {Ai,..., An}
and a non depth-preserving computation rule which selects the a tom AR to the
right of the j mark. Then, rule derive will check admissibility of AR w.r.t. all
atoms in the stack [Pi |P] . However, the topmost atom P i is an ancestor only of
the atoms Ai to the left of AR but it is not an ancestor of AR. The more j
marks the computat ion rule jumps over to select an atom, the more atoms which
do not belong to the ancestors of the selected atom will be in the stack, thus,
the more accuracy and efñciency we lose. In any case, the stack will always be
an over-approximation of the actual set of ancestors of AR.

In principie, our local unfolding rule based on ancestor stacks can be used
within any P D framework, including Conjunctive Partial Deduction (CPD). It
should be noted tha t some CPD examples may require the use of an unfolding
rule which is not depth-preserving to obtain the optimal specialization. As we
discuss above, we cannot ensure accuracy results in these cases but in turn the
use of local unfolding will clearly improve the efñciency of the PD process.

5 Assertion-based Unfolding for External Predicates

Most of real-life Prolog programs use predicates which are not deñned in the
program (module) being developed. We will refer to such predicates as external.
Examples of external predicates are the traditional "built-in" predicates such as

arithmetic operations (e.g., i s / 2 , <, =<, etc.) or basic inpu t /ou tpu t facilities. We
will also consider as external predicates those deñned in a different module, pred-
icates written in another language, etc. This section deals with the difñculties
which such external predicates pose during PD.

When an atom A, such tha t pred(A) = p/n is an external predicate, is se-
lected during PD, it is not possible to apply the derive rule in Deñnition 2 due
to several reasons. First, we may not have the code deñning p/n and, even if
we have it, the derivation step may introduce in the residual program calis to
predicates which are private to the module M where p/n is deñned. In spite of
this, if the executable code for the external predicate p/n is available, and under
certain conditions, it can be possible to fully evalúate calis to external predi-
cates at specialization time. We use Exec(Sys, M, A) to denote the execution
of atom A on a logic programming system Sys (e.g., Ciao or Sicstus) in which
the module M where the external predicate p/n is deñned has been loaded.
In the case of logic programs, Exec(Sys, M, A) can return zero, one, or several
computed answers for M U A and then execution can either terminate or loop.
We will use substi tution sequences [6] to represent the outcome of the execution
of external predicates. A substitution sequence is either a ñnite sequence of the
form (0 i , . . . , 6n), n > 0, or an incomplete sequence of the form (é>i,. . . , 6n, _L),
n > 0, or an infinite sequence (é>i,. . . , é>¿,...}, i G IV*, where W* is the set of
positive natural numbers and _L indicates tha t the execution loops. We say tha t
an execution universally terminotes if Exec(S,ys, M, A) = {9\,..., 9n), n > 0.

In addition to producing substitution sequences, it can be the case tha t the
execution of atoms for (external) predicates produces other outcomes such as
side-effects, errors, and exceptions. Note tha t this precludes the evaluation of
such atoms to be performed at P E time, since those effects need to be per-
formed at run-time. We say tha t an expression is evaluable when its execution
1) universally terminates, 2) it does not produce side-effects, 3) it is sufñciently
instantiated to be executed, 4) it does not issue errors and 5) it does not genér­
ate exceptions. Clearly, some of the above properties are not computable (e.g.,
termination is undecidable in the general case). However, it is often possible to
determine some sufficient conditions (SC) which are decidable and ensure that ,
if an a tom A satisfies such conditions, then A is evaluable. Intuitively, SC can
be thought of as a traditional precondition which ensures a certain behaviour of
the execution of a procedure provided they are satisfied. To formalize this, we
propose to use the "computational assertions" which are part of the assertion
language [20] of CiaoPP in order to express tha t a certain predicate is evaluable
under certain conditions. The following deñnition introduces the notion of an
eval annotation as (part of) a computational assertion. We use id to denote the
empty substitution, Le., V t , id(í) = t.

D e ñ n i t i o n 9 (eval a n n o t a t i o n s) . Let p/n be an external predicate defined in
module M. The assertion : - t r u s t comp p (X l , . . . ,Xn) : SC + eval. in the
code for M is a corred eval annotation for predicate p/n in a logic programming
system Sys if V#7 the expression 9{SC) is evaluable, and

ifExec(Sys,M,6(SC)) = (id) then 6(p(Xl, ...,Xn)) is evaluable

One of the advantages of using this kind of assertion is tha t it makes it possible
to deal with new external predicates (e.g., written in other languages) in user
programs or in the system libraries without having to modify the partial evalu-
ator itself. Also, the fact tha t the assertions are co-located with the actual code
deñning the external predicate, Le., in the module M (as opposed to being in
a large table inside the PD system) makes it more difñcult for the assertion to
be left out of sync when a modiñcation is made to the external predicate. We
believe this to be very important to the maintainability of a real application or
system library.

Example 2. The computational assertions in CiaoPP for the builtin predicate <
include, among others, the following one:

: - t r u s t comp A =< B : (a r i t h e x p r (A) , a r i t h e x p r (B)) + e v a l .

which states tha t if predicate =</2 is called with both arguments instantiated to
a term of type ar i thexpr , then the cali is evaluable. The type a r i t h e x p r cor-
responds to arithmetic expressions which, as expected, are built out of numbers
and the usual arithmetic operators. The type a r i t h e x p r is expressed in Ciao as
a unary regular logic program. This allows using the underlying Ciao system in
order to effectively decide whether a term is an a r i t h e x p r or not.

The following deñnition extends our ASLD semantics by providing a new rule,
external -der ive , for evaluating calis to external predicates. Given a sequence
of substitutions (0\,..., 0n), we define Subst((0\,..., 0n)) = {0\,..., 9n}.

Def in i t ion 10 (ex terna l -der ive) . LetSys be a logic programming system. Let
O = •*— Ai,..., AR, ..., Ak he a goal. Let S = (O I AS) be a state and AS
a stack. Let 1Z be a computation rule such that TZ(G) =AR with pred(Ap) =
p/n an external predicate from module M. Let C be a renamed apart asser­
tion : - t r u s t comp p (X l , . . . ,Xn) : SC + eval. Then, S' = (G1 I AS') is ex-
ternal-derived from S and C via 1Z in Sys if: 1) a = mgu(An,p(Xl, ...,Xn)),
2) Exec(Sys,M,a(SC)) = (id), 3) 0 e Subst(Exec(Sys,M,AR)), 4) G' is the
goal 6(AÍ, .. .,AR_UAR+1,.. .,Ak), 5)AS' = AS.

Notice that , since after computing Exec(Sys, M, AR) the computation oí AR is
finished, there is no need to push (a copy of) AR into AS and the ancestor stack
is not modified by the ex terna l -der ive rule. This rule can be nondeterministic
if the substi tution sequence for the selected a tom AR contains more than one
element, Le., the execution of external predicates is not restricted to atoms which
are deterministic. The fact tha t AR is evaluable implies universal termination.
This in tu rn guarantees tha t in any ASLD tree, given a node S in which an
external a tom has been selected for further resolution, only a finite number of
descendants exist for S and they can be obtained in finite time.

Example 3. Consider the assertion in Example 2 and the atoms 5 and 7, which
are of the form 1=<1, in the ASLD derivation of Fig. 2. Both atoms can be
evaluated because Exec(«ao, arithmetic, (arithexpr(1), arithexpr(1))) = (id).
This is a sufñcient condition for Exec(ciao, arithmetic, (1 = < 1)) to be evaluable.
Its execution returns Exec(ciao, arithmetic, (1 = < 1)) = (id).

Bench
advisor3
nrev_80
nrev_38
permute_7
permute_6
query
qsort_80
qsort_33
rev_80
zebra

Execution Times
Relation

144
mem

998
mem

476
166

mem
686
984

1562

Trees
192

106490
2804
5226

614
214

98514
2432
1102
2276

Stacks
106

15040
806

2800
336
116

8970
454
960
994

MEcce

1240
64970
4370

34680
3530
1290

71870
4580
1400

186620

Overall

Relative Speed Up
Relation

1.36
oo

1.24
oo

1.42
1.43

oo
1.51
1.02
1.57

mem

Trees

1.81
7.08
3.48
1.87
1.83
1.84

10.98
5.36
1.15
2.29

7.19

MEcce

11.70
4.32
5.42

12.39
10.51
11.12
8.01

10.09
1.46

187.75

12.25

Table 1. Comparison of Proof Trees Vs.Ancestor Stacks (Execution Time)

6 Experimental Results

We have implemented in our PD system the unfolding rule we propose, together
with other variations in order to evalúate the efñciency of our proposal. Our PD
system has been integrated in a practical state of the art compiler which uses
global analysis extensively: the CiaoPP preprocessor [9]. For the tests, the whole
system has been compiled using Ciao 1.11^275 [5], with the bytecode generation
option. All of our experiments have been performed on a Pentium 4 at 2.4GHz
and 512MB RAM running GNU Linux RH9.0. The Linux kernel used is 2.4.25.

The results in terms of execution time are presented in Table 1. The pro-
grams used as benchmarks are indicated in the Bench column. We have chosen
a number of classical programs for the analysis and PD of logic programs as
benchmarks. In order to factor out the cost of global control, we have used in
our experiments initial queries which can be fully unfolded using homeomorphic
embedding with ancestors. The program advisor3 is a variation of the advisor
program in the DPPD [12] library. The programs query and zebra are classical
benchmarks for program analysis. Programs qsort_80 and qsort_33 correspond
to the quick-sort program shown in the paper with pseudo-random lists of natu­
ral numbers of length 80 and 33 respectively. nrev_80 and nrev_38 correspond to
the well-known naive reverse with lists of 80 and 38 natural numbers. rev_80 is
a reverse program with linear complexity which uses an accumulator. The initial
query is, as before, a list of 80 natural numbers. Finally, permute is a permu-
tation program which uses a nondeterministic deletion predicate. It is partially
evaluated w.r.t. a list of 6 and 7 elements respectively. None of advisor3, query,
ñor zebra can be fully unfolded using homeomorphic embedding over the full
sequence of selected atoms. Also, nrev and, as seen in the running example,
qsort are potentially not fully unfolded if the input lists contain repetitions un-
less ancestors are considered. In the table, the following group of columns show
execution time of the unfolding process with the different implementations of
unfolding:

Relation We refer to an implementation where each atom in the resolvent is
annotated with the list of atoms which are in its ancestor relation, as done
in the example in Figure 2.

TVees This column refers to the implementation where the ancestor relations of
the different atoms are organized in a proof tree.

Stacks The column Stacks refers to our proposed implementation based on
ancestor stacks.

MEcce We have also measured the time that it takes to process the same
benchmarks using Leuschel's M-Ecce (modular Ecce [12]) system, compiled
with the same versión of Ciao and in the same machine.

The last set of columns compare the relative measures of the different approaches
w.r.t. the Stacks algorithm. Finally, in the last row, labeled Overall, we sum-
marize the results for the different benchmarks using a weighted mean, which
places more importance on those benchmarks with relatively larger unfolding
figures. We use as weight for each program its actual unfolding time. We believe
that this weighted mean is more informative than the arithmetic mean, as, for
example, doubling the speed in which a large unfolding tree is computed is more
relevant than achieving this for small trees.

Let us explain the results in Table 1. Times are in milliseconds, measuring
runtíme, and are computed as the arithmetic mean of five runs. Three enfries in
the Relation column contain the valué "mem", instead of a number, to indicate
that the PD system has run out of memory. For each of these three cases, we
have repeated the experiment with the largest possible initial query that Re­
lation can handle in our system before running out of memory. This explains
that the three benchmarks are specialized w.r.t. two different initial queries. As
it can be seen in the column for relative speedups, Relation is quite efñcient
in time for those benchmarks it can handle, though a bit slower than the one
based on stacks. However, its memory consumption is extremely high, which
makes this implementation inadmissible in practice. Regarding column Trees,
the implementation based on proof trees has a good memory consumption but
is slower than Relation due to the overhead of traversing the tree for retrieving
the ancestors of each atom. In comparison to M-ecce, the results provide evi-
dence that our proof tree-based implementation is indeed comparable to state
of the art systems, since the execution times are similar in some cases or even
better in others. The last set of columns compares the relative execution times
of the different approaches w.r.t. the Stacks algorithm which is the fastest in all
cases. Indeed, Stacks is even faster than the implementation based on explicitly
storing all ancestors of all atoms (Relation) while having a memory consump­
tion comparable to (and in fact, slightly better than) the implementation based
on proof trees. The actual speedup ranges from 1.15 in the case of rev_80 to
10.98 in the case of qsort_80. This variation is due to the different shapes which
the proof trees can have for the (derivations in the) SLD tree. In the case of rev,
the speedup is low since the SLD tree consists of a single derivation whose proof
tree has a single branch. Thus, in this case considering the ancestor sequence
is indeed equivalent to considering the whole sequence of selected atoms. But
note that this only happens for binary clauses. It is also worth noticing that the

speedup achieved by the Stacks implementation increases with the size of the
SLD tree, as can be seen in the three benchmarks which have been specialized
w.r.t. different queries. The overall resulting speedup of our proposed unfolding
rule over other existing ones is signiñcant: over 7 times faster than our tree-based
implementation.

We have also studied the memory required by the unfolding process (for lack
of space details are in [19]). As for the case of execution time, the Stacks al­
gorithm presents lower consumption than any other algorithm for all programs
studied. The memory required by the Relation algorithm precludes it from
its practical usage. Regarding the Stacks algorithm, not only it is signiñcantly
faster than the implementation based on trees. Also it provides a relatively im-
portant reduction (1.18 overall, computed again using a weighted mean) in mem­
ory consumption over TVees, which already has a good memory usage.

Altogether, when the results of Table 1 and the memory figures are combined,
they provide evidence that our proposed techniques allow signiñcant speedups
while at the same time requiring somewhat less memory than tree based imple-
mentations and much better memory consumptions than implementations where
the ancestor relation is directly computed. This suggests that our techniques are
indeed effective and can contribute to making PD a practical tool.

As for future work, we plan to provide additional solutions for the problems
involved in non-leftmost unfolding for programs with extra logical predicates
beyond those presented in the literature [11,7, 2,14]. In particular, the intensive
use of static analysis techniques in this context seems particularly promising. In
our case we plan to take advantage of the fact that our PD system is integrated
in CiaoPP which includes extensive program analysis facilities.

References

1. A. V. Alio, R. Sethi, and J. D. Ullman. Compilers - Principies, Techniques and
Tools. Addison-Wesley, 1986.

2. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languages. Journal of Functional and Logic Programming,
2002(1), 2002.

3. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91-124, 1991.

4. M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding
Infinite Unfolding during Partial Deduction. New Generation Computing, 1(11):47-
79, 1992.

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and
G. Puebla (Eds.). The Ciao System. Reference Manual (vi.10). Technical Report
CLIP3/97.1.10(04), School of Computer Science (UPM), August 2004. Available
at h t t p : / / c l i p . d i a . f i . u p m . e s / S o f t w a r e / C i a o / .

6. B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence Based Abstract In-
terpretation of Prolog. Theory and Practice of Logic Programming, 2(l):25-84,
2002.

7. S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP
with Dynamic Scheduling and CCP. In Proc. of the ACM Sigplan PEPM'97,
pages 137-150. ACM Press, New York, 1997.

8. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM'93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88-98. ACM Press, 1993.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In Proc.
ofSAS'03, pages 127-152. Springer LNCS 2694, 2003.

10. J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture.
Transactions of the American Mathematical Society, 95:210-225, 1960.

11. Michael Leuschel. Partial evaluation of the "real thing". Proceedings of LOP-
STR'94 and META'94, Lecture Notes in Computer Science 883, pages 122-137.
Springer-Verlag.

12. Michael Leuschel. The ECCE partial deduction system and the DPPD library of
benchmarks. Obtainable via ht tp: / /www.ecs.soton.ac.uk/~mal, 1996-2002.

13. Michael Leuschel. On the power of homeomorphic embedding for online termina-
tion. In Giorgio Levi, editor, Static Analysis. Proceedings of SAS'98, LNCS 1503,
pages 230-245, Pisa, Italy, September 1998. Springer-Verlag.

14. Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through
partial deduction: Control issues. Theory and Practice of Logic Programming, 2(4
& 5):461-515, July & September 2002.

15. Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation
and polyvariance in partial deduction of normal logic programs. A CM Transactions
on Programming Languages and Systems, 20(l):208-258, January 1998.

16. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217-242, 1991.

17. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

18. B. Martens and D. De Schreye. Automatic finite unfolding using well-founded
measures. The Journal of Logic Programming, 28(2):89-146, August 1996.

19. G. Puebla, E. Albert, and M. Hermenegildo. Efñcient Local Unfolding with Ances-
tor Stacks for Full Prolog. Technical Report CLIP2/2005.0, Technical University
of Madrid, February 2005.

20. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23-61. Springer LNCS 1870, 2000.

21. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages: Word
Language Grammar, volume 1. Springer-Verlag, 1997.

22. M.H. S0rensen and R. Glück. An Algorithm of Generalization in Positive Super-
compilation. In Proc. of ILPS'95, pages 465-479. The MIT Press, 1995.

http://clip.dia.fi.upm.es/Software/Ciao/
http://fi.upm.es/Software/Ciao/.
http://www.ecs.soton.ac.uk/~mal

