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Abstract. We consider defenses against confidentiality and integtiacks on
data following break-ins, or so-called intrusion resis&torage technologies. We
investigate the problem of protecting secret data, assyanrattacker is inside a
target network or has compromised a system.

We give a definition of the problem area, and propose a solUtAST, that uses
large, structured files to improve the secure storage ofatdduor secret data.
Each secret has its multiple shares randomly distributeghirextremely large
file. Random decoy shares and the lack of usable identifit&tformation pre-
vent selective copying or analysis of the file. No single mdrthe file yields
useful information in isolation from the rest. The file’seiand structure there-
fore present an enormous additional hurdle to attackeesnating to transfer,
steal or analyze the data. The system also has the remagkabplerty of healing
itself after malicious corruption, thereby preservingtbtite confidentiality and
integrity of the data.

1 Introduction

Security technologies have traditionally focused on peteéndefenses. By itself, this
approach creates what has been called a lobster-modelwoftgeor “a sort of crunchy
shell around a soft, chewy center” [Che90]. If an attackenaggs to get into the net-
work, it becomes very difficult to detect or prevent furthecsrity compromises.

This has prompted the development of secure storage taasifjat resist against
successful attacks. This paper studies the problem of gihogesecret data under the
assumption that an attacker has already broken throughretiaork perimeter (or is an
“insider”). We give a formal definition of the problem, andepent one solution called
VAST. The key idea is to distribute secret data in an extrgree storage system
without exploitable identification information. Our VASTosage system is orthogonal
and complimentary to existing data protection technigsiesh as encryption, in that it
makes attacks much more difficult to succeed.

In this paper, we describe the design rationales, datatstesgcand algorithms. We
also describe an implementation of such a system, to denad@stcceptable normal
use. Specifically, we make the following contributions:

Definition of Secure Storage ProblemWe formally describe the problem of se-
cure storage of secrets in Section 3.1. We describe an ebdat type that is a large
storage table composed of records. Operations includalinétion, insertion and dele-
tion. We also describe security properties that the tabteogrerations must guarantee.
This general description of the problem formalizes intougiesistant systems, and en-
courages further research into this general problem area.



Storage Scheme for Secret DatdBased on the abstract data type, we propose the
VAST storage system, which uses extremely large (e.g.byeessized) files to store
secret information. In VAST, a secret is broken into shaisgiduted over a large file,
so that no single portion of the file holds recoverable infation.

2 Related Work

VAST of course fits into the larger field of fault-tolerant siss generally, and intrusion-
tolerant systems specifically. There has been a considesaibunt of work on tolerant
and dependable file storage. Many works have used secr@glarpart of a resilient
data storage system [WB®0,LAV01]. Of particular relevance is [FDP91,FDR92],
and Rabin’s work in [Rab89], which all used secret sharingragaformation disper-
sal technique for security and redundancy. Our work is imalar vein, but seeks to
leverage tradeoffs between disk I/O speeds and memdigeahfile stores, without the
need to distribute shares among hosts.

Many other intrusion resistant systems have usagimentation-and-scattering, a
technigue similar to VAST’s hashing store of secret shares|[DFF88], the SAT-
URNE research project describe the fragmentation-antesoay scheme. Stored data
was cut into insignificant fragments, and replicated ovestavork. The distribution of
the fragments obliged attackers to compromise numerowosiress before they could
read, modify or destroy sensitive data. Instead of distirilgiresources over a network,
VAST keeps all fragmented data in a single file, albeit ususdread over several drives.

The tremendous time difference between memory and drivea&motivated work
in complexity analysis [AKL93,AV87]. The general goal okte works is to describe
a lower bound on algorithms and demonstrate a minimal nurob&0 operations.
VAST works in the opposite direction, and seeks to maximieertumber of required
I/O operations to slow attackers.

Components of VAST were inspired by other results. For exantipe large table in
VAST is similar in principle to the solution in [Mau92], wheea short (weak) key and
a long plaintext were kept secure by using a publicly-adbésstring of random bits
whose length greatly exceeded that of the plain text. In J89], the authors created a
very similar model for memory storage, and generally déscrhow to create a storage
system that can forget any secret. Their solution assuneedxistence of a small and
fixed storage area that the adversary cannot read, whickrgiffom VAST's large,
unfixed, and readable storage tables.

Other areas of research have used techniques similar to M&3T's distribu-
tion of shares over a table has a superficial resemblancaadabng [KP0O]. VAST's
ability to recover and heal corrupted messages also ressmtyizantine storage sys-
tems [MR98], or even the larger field of error correction @Ad@&ST combines existing
approaches in a new and interesting way.



3 Designing Large Files for Valuable Data

Below, we describe an abstract secure storage problem,uyukst relevant design
considerations for any solution. We then propose the VASTagle system, and detail
its operation.

3.1 Secure Storage Problem Statement

For this paper, we address the following specific scenargsufing an attacker has
penetrated a storage system, what reasonable measurgséwpt the compromise of
stored secret data through brute-force analysis, suchyasréeking, dictionary pass-
word guessing, and similar attacks?

We formally describe the secure storage of data in largesads follows. A large
tableT has parametess:, r, m, d, K). The table is used to storerecords of- bits. The
table itself ism bits in size, wheren > nr, and usuallyn > nr. The valued deter-
mines a fraction of the tabl®, < d < 1. The valueK, described below, is a threshold
used to measure security properties. The table supportsitb&ing operations.

1. Initialize . An init() function iteratively initializes each of therecords inT".
2. Add. An add() operation inserts data into the table.

3. Delete A delete() operation removes entries from the table.

4. Find. A find() operation retrieves information from the table.

The security property of the table is the following statetm&uppose we initialize
the table and then perform a series of insertion operatiest, suppose we use only
dm bits from the table. Given a valug and using onlylm bits, the probability one can
can correctly computgind(z) is at most2~X. In other words, ifdm bits are stolen
or analyzed, there’s only a small chance thatan be recovered from the exposed
portion of the table. We can also state a stronger securitygsty for the table, so that
it also provides semantic security. Again assuming anlybits are used, the semantic
security property holds that one cannot comptited(x) correctly, and further cannot
obtain one bit ofr with any advantage ovéj+ 2-K,

It is not obvious that one can create a table with these ptiegseReasoning about
the problem points to one possible solution. To start, wenktimat our overall goal is
to increasek’, which minimizes the probability of a successful attackeGtrategy to
accomplish this is to encrypt the datg,inserted into the table, since this makes linear
scans of the table much more difficult, and forces the attadkeperform brute-force
attacks on the encryption scheme. A second strategy is tonypincreasen, but also
to distributex in such a way tha# ~ 1 before recovering becomes possible. In other
words, we should store data in a large table such that amglgzémalld fraction of the
table cannot yield..

An additional, practical benefit derives from using a lagjgé sizem. If the table
is large, andr is stored such that must be near 1, then in practical terms this means
analyzing the table’sn bits will require enormous resources. We know, for example,
that 1/0 access is extremely slow compared to memory acéddsd3]. We therefore
should design our table with a goal opposite of Vitter's waorikimizing I/O operations



in algorithms [AV87]. Instead, we wish tmaximize the 1/O operations (and therefore,
the time) required for analysis.

The above discussion suggests making the table size largec@hsequence is that
an attack will take more time to succeed. With 1/O operatigmeral orders of magni-
tude slower than memory access [HP03], this means analyisieguire repeated disk
access.

3.2 Design Considerations for Secure Data Storage Problems

In most attacks on data confidentiality and integrity, thacker first needs to get hold
of the target data, usually by copying it offsite. In thisaak set up stage, time is pro-
portional to the size of data. For example, if the attackerdseo transfer data on a
link with a capacity ofC' data units per unit time, then the time it takes to transféa da
with size D willbe T' = %. If the target data is actually small in size, we better prbte
the data by dispersing it in a large storage file without ampl@itable” identification
information. This will force the attacker to process theirentarge storage to recover
the target information. If the table size is tera-scale, the time needed to steal the file
is potentially prohibitive.

In order to slow the attack, we need to force it to carry outengperations. For
attacks on confidentiality and integrity, a simple protectscheme is to fragment the
data and distribute the shares throughout the large files,Tton each attack (trial)
that involves locating shares and guessing (brute-foradyaimg the data), instead of
spending timel” for one target, it now must spend timd” if k£ fragments are needed
to reconstruct the data.

3.3 The VAST Storage System

We now describe the design of our large file scheme, usingdit@ard database stor-
age system as a motivating example. User financial recomdstared in a file, and
retrieved using keys, passwords or PINs that hash to agptepable entries. (Without
significant modification, the system could be used in almaogtgassword-based au-
thentication system.) A readable metadata index file stheeselevant information for
each user, including user namegand saltss, so, .. ., sk, €ach a random number. The
metadata identification (or user identity) file does not rteduk read-protected because
it contains no secret. (In practice, of course, one miglatéterestrict access to this file
as well; however, our analysis presumes it has been accegsadattacker.)

The data storage file is a very large tablavith m entries in which multiple shares
of data are randomly distributed. There are no empty ertigeause the table is initially
filled with random bit strings that look like valid shares.

We next study the data structures and algorithms for thes l&afgle file. The main
design goals are:

Functional From the functionality point of view, the table must storeafinial in-
formation reliably so that the data is retrievable only wlaeproper key is presented.
This corresponds to theld() and find() operations noted in section 3.1.

Secure From the data security point of view, the design objectivéoisnake it
very difficult and slow for an attacker to steal the large infation file and extract the



information using brute-force key guessing or dictionattaeks. That is, it costs the
attacker maximally (in time, or other resources) with eachss. This corresponds to
the security principle noted in section 3.1.

Below, we discuss how to achieve these goals.

Storing Unguessable Shares of Randonin order to force the attacker to read all
shares with each guess, VAST is based on secret sharing(BSHaiancial data for
each user is stored under their unique namen a large table. The data is accessed
through the use of a keyey, andk random saltssy, so, . . ., k.

To add a user and data into the system (iti€() operation in Section 3.1), we first
take the user’s financial information (e.g., a credit canchbar) M/, and add any needed
padding to match the length df5, a large random number selected for each insertion
of M. We will use X; to refer to the padded informatialf. Together,X; and X,
may be considered as a message and Vernam’s one-time p&@3][BAs will be seen
below, portions of this cipher scheme are stored in the tabke selected a one-time
pad because its provable security was attractive, and lpelpslly address problems
found in hash-storage schemes, such as dictionary attacksak passwords. The use
of the pad also avoids problems associated with storing agesderived hashes in the
metadata table, e.g., theft of hashes, and offline guestika against messages with
similar structures, such as credit cards. (We discuss ackathodel below.)

X, andX, are of equal length, on the order of 128 to 160 bits or more rtimbers
are XOR'd together to produce a third valdé,= X; & X,. The random numbek,
is then appended to the user’s entry in the identity file, ghoith user name and a set
of salts,{s1,..., sk, ..., Sk}, €ach a uniqgue random number.

Instead of storing the padded messagein the table, we first encrypt it with a
symmetric encryption operatiofiy., (X1 ). (Any symmetric encryption system can be
used.) In addition to improving security, the encryptioapstlso makes it easier to
generate convincing initial (random) values for unusedipos of the table.

Then, applying Shamir's secret sharing scheme [Sha70]rawdom polynomials
are constructed to secret shdfg., (X1) (the encrypted message) aid(the cipher
text):

fil@) = B(X1) + X8 aged (mod q), fo(2) = X + X8 bjad (mod g) (1)

We selecly, a large prime number (greater thanX; and X,), and store it in the
metadata file. The coefficients (and likewiseb;) j = 1,1,...,k" — 1, are random,
independent numbers in the rangd@fq — 1]. We usek’ < k to provide collision tol-
erance becausé shares are sufficient to reconstruct the secret. Thug; $tiares, the
threshold ofc’ shares must be present to recover the secret. Forieadh2, . .., k, we
store bothf; (i) and f2(i) in the same table entry &f (key||s;) mod m. These shares
look just like any other random numbers in the raf@e; — 1]. Therefore, at initial-
ization (theinit() operation in Section 3.1), the table is filled with random ivens in
the range of0, ¢ — 1]. After the shares are inserted in the table, the coefficigfise
two polynomials (Equations (1)) are discarded. Figure Jvioles an overview of the
process.
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Fig. 1. Overview of VAST System Information or a messageX, is @-combined with a random
numberX- to form X. The random numbeX, is stored in a metadata table under the appropriate
user’s entry, along with random salts, ss, . . ., si, unique for each user. The valuEg., (X1)
andX are Shamir-shared to derikesharesfi and fo. Eachfi (i) and f2(¢), which are stored in
the large table, based on a hash of the key and salt, at taife/é(key||s;)mod m.

To retrieve information for a user (the find() operation in Section 3.1), we in-
teract with the user to obtain the key, password or PIN, daile,’, and look up the
salts in the metadata file. Then, we retrieve the shr@s and f4(¢) in the table entry
H(key'||s;) mod m, foreachi = 1,2,... k. Givenk’ shares, say=1,2,...,k’, the
polynomialf; (and likewisefs) can be reconstructed using Lagrange interpolation:

K .
=> 56 [l 5= (modg) @)

i
1<kt LY

Thus, X (and likewiseX’) can be computed:

= f1(0) = XL eifi(i) (modq), wherec; =[l,c;cp n 7 ()

We then perform decryptiod; = key(Ekey(Xl)). If X] ® X' = X (the value
stored withu in the metadata file), then the key was valid, and the correxgsage
X1 was recovered. IX{ @& X' #£ X5, this may be due to collisions (i.e., some shares
overwritten by the shares of another user), and andthslrares can be used to compute
X1 and X’ as in Equation (3). In the worst case, one needs tqélj;r)/times before the
key is validated. However, since collisions are very rdre,frobability of success (in
validating a valid key) with the first’ shares is very high.

Suppose an incorrect kéyy’ is supplied. The’ incorrect shareg; (i) and f4(i),

i = 1,2,...,k" are read to construcX; and X'. The chance ofX] & X' = Xs,
and thus validating the incorreky’ , is very small 2~ 128 if X is a 128-bit random.
This is because for th&’ value computed from the shareX; must happen to be
exactlyX’ @ X5, which in turn requires that one share, saykftd share, forX;, must



beX & X; — Zf;‘ll ¢; fii (mod p), a27128 chance. Thus, VAST meets the security
property for storage tables stated in Section 3.1.

An attacker may attempt to search for the shadow keyE, isince every data el-
ement has at leadt shares in the table. But searching for the coriéatlements in
m is difficult, on the order of’}) > (2)*, wherem is enormous. (Recall, the table
is tera-scale, often witB*® or more entries, all initially random.) The attacker’s best
strategy is key guessing, since the search space is muclkesriaden if 8 character
keys are composed from 95 possible characters, it is easgress out 0958 < 256

combinations, compared, say,(t%io) > 2296 fork = 8, m = 240, So, the attacker can
only perform key guessing.

Now consider an attacker attempting to guess the key ofwkeretrieve the finan-
cial data,X;. If she can precompute the shares\af and X, then for the guessed key
key', she might just check the shares in one entry, Bd¥ey’||s1) mod m, (or up to
k — k' entries) to learn thatey’ is incorrect. However, we can show that this is not pos-
sible. First, although she can read the identification file laence the randor¥s, she
cannot figure out the values of messageand cipher texX because encryption using
one-time pad offers perfect secrecy. Furthermore, theficaafts of the polynomials
in Equations (1) are random and are discarded. Therefaes th no way the attacker
can precompute the shares. So, she has to read the sharahdrtable. If she reads
fewer thank’ shares, according to Equation (3), she will not be able topdeX; (and
likewise X’). And without X} and X', she cannot test iK; @ X, = X’ to know if
key' is correct. Based on the above analysis, and the strengthe bésic cryptographic
primitives of one-time pad and secret sharing, we have th@afimg claim:

Property 1. In order to retrieve a user’s information or just to learntttiee key is
incorrect, at least’ table entries must be read.

When collisions occur, and enough of the salts still pointettid shares, the system
has detected some corruption of the table. In other wordsesd the shares are invalid,
but enough are still present to recovér under the Shamir secret sharing scheme. This
could be due to collisions as other data is added to the tableecause of malicious
corruption of the file. In either case, ¥ has been retrieved using only < k salts,
new random salts are generated, and written to the metatiatatie data is then re-
hashed and written to the table. This way, the table “hetdslfiand corrects corruption
detected during reads. Thus, when data collides with otfiieiles, we eventually detect
this problem, and relocate the shares. This movement maseaather collisions, but
the chance is small. Eventually a steady state is obtaimetina user’s shares collide
with shares of any other. Section 4 discusses the relibilithis system, and the small
probability of collisions occuring.

In order to completely corrupt a secret stored in the tableastk — k' + 1 entries
must be overwritten. The chance of this occuring with randaites is extremely small,
on the order 01’%/“, wherem is enormous. Section 4 provides a complete analysis
of the reliability of the system. However, if any legitimatsad access occurs prior to
all k — k¥’ + 1 collisions, the corruption will be detected and repair@gdall that only
k' shares must be valid, 40— &’ corrupted shares can be detected and corrected in the
course of legitimate use.) This property allows us to agkerfollowing claim:



Property 2. Since reads from the table reveal any collisions, allownrgépair of the
data’s integrity, data is destroyed onlykif- &’ + 1 shares are corrupted between legit-
imate access attempts.

This is an important property for storage systems, sinezkéts unable to recover
data from the file may nonetheless maliciously write badrimfation, in order to corrupt
the file for normal use. (For example, they might randomiyteveeros to the table.)
With a large tera-scale file, however, successfully deletithinformation would take
an enormous number of writes, and may risk detection by aiitbagonal detection
systems.

The size of the financial datd/, stored asX; using the above scheme is of course
limited [CSGV81]. We've used credit card information as ativating example. How-
ever, there are many ways we can extend our scheme to starawsblarge files. One
simple scheme is to treat each encrypted block of the whaleypted message as an
M of useri. In other words, we could make as many users are there areshlaw that
a largeM is distributed or chained over many users.

No doubt other variations are possible. One can be creawataising pointers,
indices, or set orders to store even large amounts of dataefdre, while credit card
number storage provides a real-world motivation for ourkyour scheme can be ex-
tended to provide more general support for a wide range odficgtions. Tera-scale
drives are now affordable, and we encourage others to exahow fragmentation-
and-scattering schemes can be improved with large datasstor

Table Tiers We also briefly note a possible variation of VAST using taliest to
efficiently use limited resources. While tera-scale dricgage is inexpensive, greater
reliability may be obtained by dividing a quantity of stoesigto separate independent
VAST tables.

Recall the important design goal of providingiable storage for sensitive infor-
mation. As will be discussed in 4.2, there is a small chanagecbllisions may occur
when inserting new shares into a table. So, in addition toguailower threshold for
validiting retrieved informationk’ < k, one can simply make additional tables, each
holding the same user information, but distributed witheipendent sets of salts. Thus,
a 4-terabyte storage system can be broken into 4 1-teratoytege systems, each with
an independent chance of failure.

Using separatendependent sets of salts over many separate tables is analogous to
the practice of using drive backups from different manufeats and models, in order
to ensure that the hardware failure rates are truly indegrinéo, by adding tiers of
tables, one can reduce an already small chance of faillweminfinitesimal risk.

4 Security Analysis

By storing secret data in a large, structured file, attackezsorced to copy and ana-
lyze the entire terabyte-sized file as a whole. No singleigoxf the file yields useful
information in isolation. Below, we evaluate the improvedurity provided by VAST,
and the reliability of the system.



4.1 Cost of Brute-Force Attacks

Below, we analyze the solutions VAST provides, namely (&albée and efficient re-
trieval of stored secrets, and (b) greater defense agagstiacking attacks.

Attacks In General Broadly, attacks on storage files fall into two categoriesline
attacks and off-line analysis [PM99,Bis03]. The on-linalgsis of keys is difficult
in VAST for several reasons. First, scanning the hash filelinear fashion does not
provide the attacker with any information about which esgtiare valid hash stores. (Re-
call that unused entries are initialized with random bitg] data is stored in encrypted
shares, which also appear random.) Interestingly, all efktishamir secret keys are
present in the same file; however, the attacker(lia)spossible combinations. Recall
thatm is enormous, say in the range2f, andk is not negligible, say in the range of
8-10. So("}) > (%)8 > 2296 and the presence of all the shares on the tZbiiwes
not help the attacker more than guessing.

Since sequential or adjacent shares on disk may be read mimtdygthan shares
distributed on random parts of the drive, an attacker magmgit to precompute nu-
merous hashes for key guesses, and upload the sorted preteahipdices. That is, an
attacker might compute, using a dictionaby with P permutations per word, some
{|D| - P - nk} hashes offline, and sort them by index value to improve drocess
times, since many shares for many guesses will be adjaaeat]east within the same
logical block on disk. (Recall, for example, that drive redibm adjacent locations on
disk may be faster that reads from non-adjacent tracks astdrsgHP03].) However,
if the VAST system is properly bandwidth limited, the attackill find this slow going
as well. The minimal space needed to request a single sh@igyies. Assuming a dic-
tionary of just ten thousand words is used, with only a hudgermutations per word,
the attacker would have to upload approximately 8 megs foh @serand each salt.
Because VAST systems are deployed on low-bandwidth lifkis, dould potentially
take a long time, and could easily be detected. Even if ttaelkdt somehow uploaded
the precomputed indices, they still have to obtainitehares and find if any’ subset
solves a polynomial to recovef; and Xs.

Without sufficient resources on-line, an attacker’s preférstrategy would be to
transfer the hash file for off-line for analysis. Assumingadtacker somehow transfers
a tera-scale file offsite for analysis, the size of the filespras a second hurdle: repeated
I/O operations.

Disk access takes on the order of 5 to 20 milliseconds, coadptr 50 to 100
nanoseconds for DRAM. While drives are getting faster, teyon average 100,000
times slower than DRAM by most estimates [HP03], and are eegeto remain rela-
tively slow [Pat94].

Given this, Anderson’s formula [Bis03] can be used to esdtinthe time it would
take to checkV possible keys, withP probability of success (of one key guess) and
G guesses performed in one time uAit= P—J\g. To perform an exhaustive key space
search, an attacker might load some of the hash file into mgmdywhile the bulk of
it, m —m’, must remain on disk. For those key guesses that hash to ametorce, the
attacker would enjoy a fast lookup rate on par with existiracking tools. But most
of the time, the attacker would have to read from disk. Sink&Vs indexing schema



uses hash operations that provide uniform dispersion,atie of memory to disk is
applied to the rates for drive and memory access. We assuah¢hih time required
for a disk-bound validation operation is a factor bfof the time for memory-bound
operation, and let = % We can then modify the guess ratan Anderson’s formula
to reflect the rate for disk access, so it becodés+ (1 — r)L). Sincek’ shares must
be read to validate a guessed key, the guess rate is furthezee tow. We
thus have the following claim:

Property 3. In the VAST system, the time taken to successfully guess Wity prob-
ability P) is:

N
/
r=F PG(r+(1—-r)L)

In this light, existing encrypted file schemes are just a spease of the VAST
system withr = 1 andk’ = 1, and a much smaller:. Our objective is to maké& as
high as possible. If we make the table very langis close to zero, then Equation (4) is
close toT = k’PLGL. This means then the deciding factofisor the time required for
disk access.

Our implementation of a single-CPU cracker resulted in a fat memory-bound
operations of just over 108,000 hash operations per seednilé, the disk-bound guess-
ing yielded approximately 238 hash operations per secondddbt, different hard-
ware will produce different results. But on the whole, sgsdedesigners note that
disk access is at least 100,000 times slower than accessnmpng [HP03], i.e.L =
m, so one might expect the ratio &fto improve only slightly [Pat94].

Using the modified Anderson’s formula, we can estimate @egon a single ma-
chine, making the conservative assumption of a key alpta® printable characters,
merely 6 character keys, and only five salts per data itenur€ig(a) plots the time it
takes to guess a key, as a function of the ratio of memory togi®. If one has a 1:1
memory disk ratio (i.e., a terabyte of memory, approxime$dl.6 million [FM03]), the
cracking time still requires over 9,500 hours—about 13 enéVe presume that most
attackers will have less than a terabyte of memory availdblsuch a case, their rate
of progress is significantly worse—on the order of hundrédisamisands of hours.

Administrators worried about distributed cracking tocdsé a simple and effective
defense: just grow the hash file. Space does not permit a edpengliscussion of table
growth, but an intuitive approach is to place the old tablthimithe larger table, and
rehash each user into the larger space when they accessttret message.

Note that there are several orders of magnitude in pricerdiffice between drives
and memory. This means that if adversaries attempt to matlsize of the storage
table with more memory, an administrator merely needs torbase disk space. For a
few thousand dollars, administrators force the attackespéend millions to match the
size of the table. This is an arms race attackers cannoy et d.

(4)

4.2 Reliability Analysis

When shares are written to the table, there exists a chaatedhd entries may be
overwritten by shares for another data item. The probghifiho collisionwhatsoever
when inserting a total of items, each witlk shares, is computed as:
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Fig. 2. Figure (a) shows how the ratio of memory to table size affgotss rates for key cracking.
The graph assumes 6 character keys selected from 95 pemtadnacters, and 5 salts per user, and
m = 2%° entries. Reasonable progress is only possible when merizerisgarge enough to hold
the entire table. Figure (b) shows the guess rate when lomaneclients are used, effectively
zooming in on a portion of figure (a). With less memory, thessugte is consistently slow.
Administrators can force attackers into a low-performapogion of the curve just by adding
inexpensive additional drives.

n=T (- 1) ®

=0

For practical purposes, we assume hash values are indepdada good-enough
secure hash function. We can use the Equation (5) to compugedesired probability,
say99.9999%, how many data elements (each with sokrigashes) can be stored in a
table with sizen.

We can relax the matching requirement a bit, as long as tteetdak’ < k shares
in the table, the data can be retrieved. That is, for eachezienwve allow at most =
k — k' of its shares to be overwritten by other write operationuitively, we can then
accommodate more data using the same table while achidwinggime desired (low)
probability of rejecting a valid key. The exact calculatafP;, the probability that each
data item has at leakt valid shares (i.e., no more thashares are overwritten), is very
complicated. For simplicity’s sake, we can compute the kdwaind of P,. We use the
following:

n—1k—1

r=I11 (-5 ©)

i=0 j=0

This can be interpreted as: when inserting dhghares for théth data item, avoid
the firstk’ valid shares for each of tHe-1)th items already in the table, and thehares



of theith item themselves do not overwrite each other, (i.e., tieen® self-collision.)
It is easy to see that this calculation does not include gibssible ways that can lead
to the condition where each item has at lgdstalid shares. Thereford) is a lower
bound ofP, i.e., P, > P). Itis obviousthat?/ > P,. Therefore, we hav& > P,. For
largem and small, P, is very close taP,. We thus use this simple estimation.
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Fig. 3.a) The number of user data entries in a table versus the cltiaatogo collisions occur, for

a table withm = 2° entries, and ten salts per data item. By tolerating a fevisiolis, k' < k,
higher reliability is achieved. b) The relationship betwéable size, item count, and successful
operation. For small tables, variationskihmay be necessary to improve reliability. More tables
can also be added cheaply to improve performance. Alteigtione can restructure the table
into tiers.

Figure 3(a) shows the benefit of allowing some collisionstfup = %’ to occur).
As more data is added, there’s an increasing chance thatemaeniill suffer more than
k — k' collisions. At some point, the risk of such failure becomaaaceptable, and
larger tables or table tiers must be used. One may be temptedérk’ even further.
However, recall that it’ is too low, an adversary has a greater probability of stgadin
portion of the file and obtaining all of the required shargeically, if only z bytes
are stolen, there is@%)k' chance of all an item’s shares are exposed.

Conceptually, it is best to fix an error rate, estimate theimar number of data
items, and design the file size accordingly. Figure 3(b) shthw flexibility of each pa-
rameter. To obtain a fixed error rate, one can increase the§ihe table. One can also
adjustk and (to a lesser exten) to achieve the desired error rate. If one is constrained
by a drive budget, and cannot find a configuration with an aetdp reliability, then
table tiers provide a solution.

The VAST system also addresses the problem of maliciousatataption. If an
attacker does not attempt to read the secret data, but nteiedyto delete it, VAST
provides two defenses. First, the attacker does not knowemte secret shares are
stored, so the attack must corrupt nearly a terabyte to hekarece of success. Second,
if the attacker merely corrupts a fraction of the storagdetabubsequent reads can



detect the errors, and create new salts, thereby “healirggtable with each read. In a
normal secret storage system (e.g., a password-protelgfedtie attacker merely has
to change as little as one byte to damage the file.

4.3 Efficient Legitimate Use

To fully evaluate a security enhancement, the increasetdafosn attack should be
balanced against the costs imposed on legitimate use. Aleingmtation and testing
of VAST shows that it can efficiently handle many data retxl@perations per second.
Each operation involves a hash computation, a seek and droeadlisk. Even though
retrieving information may require up fodisk reads, in practice the number of salts is
small enough to make this efficient. In our tests, when aletaperations require drive
access, the number of operations is limited to around 25@¢@ynd per drive, using
a slow (5400 rpm) IDE drive. Thus, when using low-end equipttiere is an upper
limit to how many records can be retrieved at a time. If onécgates more tha50/k
simultaneous reads, then the hash store may use fastes,dsiveould be distributed
over a RAID system.
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Fig. 4. Performance of a VAST system deployed on FreeBSD, retierdandom records. Due to

the unpredictable location of shares on disk, and coint¢a@moximity of some hashes in single
(8K) blocks, performance varied. Plots show the mean numidesish-seek-read operations, with
standard error, compared to table size. In practice, onddume a terabyte-sized file. But the
output for smaller-sized files is included to show how memgnsatly speeds up performance.
Significantly, even though performance degrades for lafitgs, it reaches a minimum of no

less than 250 operations per second. Thus, one may add mabgtes to an 1/0-bound VAST

system, and expect no further performance degradation.

An important observation is that, once completely 1/0 bquhéd performance of
VAST does not decrease with larger tables. Figure 4 shovisatia small tables (un-
acceptable from a security point of view), a good portiorheffile can be cached by an
operating system’s I/O buffers. As a result, reads are qaicl hundreds of thousands



of hash validations can be performed per second. As tabtes igr size, particularly
at around2?® entries an above, the majority of the hash file then residgsamdisk,
and performance degrades. With large files, /O comes to maithefind() oper-
ation time (which includes both 1/0 and memory operationsdecryption and share
recovery). Thus, the performance does not degrade fuhentually, a steady rate is
reached as the OS block cache becomes dominated by the elelvéime. So, one may
add more terabytes to a hash store without lowering perfocaéurther. In fact, in our
testing we observed a very slight increase in performantetive addition of each new
drive since each spindle provides its own independentcerate.

One might be concerned about the efficiency of readingkarsybset oft shares.
That is, if the authentication phase must find the righof %, it could potentially take
(,f,) operations. In practice, however, the fikstof the k& shares will almost always
provide a correct match. Even under considerable load ytersi may be designed to
perform with 99.9999% success. And siricandk’ do not differ much and are small,
around 10-15, the rare worst case scenarios will not takenasasonable amount of
work to complete.

5 Conclusion

Despite the best efforts of systems administrators, stosggtems will become vulner-
able, and attackers will sometimes succeed. The VAST sygtemides a way to store
information that resists successful penetrations. Inesking this problem, this paper
contributed the following points.

First, we studied the problem of protecting secret dataag®against insider at-
tacks, and formally defined it as the problem: How to stora dat table such that no
fraction of the table yields useful information? Reasorabgut this problem suggested
the use of large storage systems to minimize the attackiegaae of success, and to
increase the cost of attack.

We then proposed the VAST system as one possible solutitre teetcure data stor-
age problem. Each secret has its multiple shares randostlytdited in an extremely
large file. Random decoy shares and the lack of usable idetiifn information pre-
vent selective copying or analysis of the file. No single mdirthe file yields useful
information in isolation from the rest. The file's size andisture therefore present an
enormous additional hurdle to attackers attempting tesfeansteal or analyze the data.

Finally, we implemented the VAST system, and demonstratatiit performs rea-
sonably well for normal use. Experiments show that break#v§T requires an enor-
mous amount of time and resources. Under our security magd&T greatly improves
the security of data storage as well, since attacks areyliketrigger an alert and re-
sponse. Unlike previous work, e.g., [FDP91,FDR92,0B8], VAST requires only a
single host, and presumes an attacker may access the prbfiéet

Using large files to safely store data is a counter-intuiipproach to security.
VAST demonstrates how algorithms that maximize the numbk©mperations can be
used to improve security, similar to traditional fragmeiota-and-scattering schemes.
With affordable tera-scale storage devices, we believetisols to the table storage
problem now have many practical applications.
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