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Abstract. Approximate Message Authentication Code (AMAC) is a
recently introduced cryptographic primitive with several applications in
the areas of cryptography and coding theory. Briefly speaking, AMACs
represent a way to provide data authentication that is tolerant to ac-
ceptable modifications of the original message. Although constructs had
been proposed for this primitive, no security analysis or even modeling
had been done.
In this paper we propose a rigorous model for the design and security
analysis of AMACs and show how to transform any ordinary MAC into
an AMAC. Our constructions have short output, leading to efficient stor-
age or communication complexity.
AMACs is a useful primitive with several applications of different nature.
A major one, that we study in this paper, is that of entity authentication
via biometric techniques or passwords over noisy channels. We present a
formal model for the design and analysis of biometric entity authentica-
tion schemes and show simple and natural constructions of such schemes
using any AMAC.

1 Introduction

The rise of financial crimes such as identity theft (recent surveys show there
are currently 7-10 million victims per year) and check fraud (more than 500
million checks are forged annually with losses totaling more than 10 Billion
dollars in the United States alone) is challenging financial institutions to meeting
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high security levels of entity authentication and data integrity. Passwords are a
good start to secure access to their systems but, when used alone, don’t seem
enough to provide the security and convenience level for identification needed
by financial organizations. (Passwords can be compromised, stolen, shared, or
just forgotten.) Biometrics, on the other hand, are based on a user’s unique
biological characteristics, and can be an effective additional solution to the entity
authentication problem for financial systems. One challenge in implementing
biometric authentication is, however, the reliability of the system with respect to
errors in repeated measurements of the same biometric data, such as fingerprints,
voice messages, or iris scans.

In this paper we put forward a formal model for the study of approximate
data authentication schemes, that are tolerant with respect to errors in the data,
and therefore are suitable for the verification of biometric data in entity authen-
tication schemes. We also present an efficient construction of approximate data
authentication, leading to efficient constructions for various types of biometric
entity authentication schemes.

Data Authentication. A fundamental cryptographic primitive is that of Mes-
sage Authentication Codes (MAC), namely, methods for convincing a recipient
of a message that the received data is the same that originated from the sender.
MACs are extremely important in today’s design of secure systems since they
reveal to be useful both as atomic components of more complex cryptographic
systems and as themselves alone, to guarantee integrity of stored and transmit-
ted data. Traditional message authentication schemes create a hard authenti-
cator, where modifying a single message bit would result in a modification of
about half the authentication tag. These MACs fit those applications where the
security requirement asks to reject any message that has been altered to the
minimal extent. In many other applications, such as those concerning biometric
data, there may be certain modifications to the message that may be acceptable
to sender and receiver, such as errors in reading biometric data or in communi-
cating passwords through very noisy channels. This new scenario, not captured
by the traditional notion of MACs, motivated the introduction and study in [5]
of a new cryptographic primitive, a variant of MACs, which was called Approx-
imate Message Authentication Code (AMAC); namely, methods that propagate
“acceptable” modifications to the message to “recognizable” modifications in
the authentication tag, and still retain their security against other, unaccept-
able modifications. Examples of the applicability of AMACs include: message
authentication in highly-noisy or highly-adversarial communication channels, as
in mobile ad hoc networks; simultaneous authentication of sets of semantically
equivalent messages; and, of specific interest in this paper, entity authentica-
tion through inherently noisy data, such as biometrics or passwords over noisy
channels.

Our contributions. If, on one hand, after investigations in [5], the intended
notion of AMAC was precisely formulated, on the other hand, a rigorous model
for the security study of AMACs was not. Therefore, a problem implicitly left
open by [5] was that of establishing such a model. In this paper we propose a



rigorous model for analyzing approximation in message authentication. It turns
out that the issue of approximation has to be considered in both the correctness
property (if Alice and Bob share a key and follow the protocol, then Bob accepts
the message) and the security property (no efficient adversary not knowing the
shared key and mounting a chosen message attack can make Bob accept a new
message). Our notions of approximate correctness and approximate security use
as a starting point the previously proposed notions for conventional MACs and
address one difficulty encountered in both allowing acceptable modifications to
the message and achieving a meaningful security notion. In addition, we formu-
late a preimage-resistance and a public-verifiability requirement that make these
AMACs especially applicable to two variants of biometric entity authentication
problems.

Our main AMAC construction uses finite pseudo-random functions and uni-
versal one-way hash functions to transform any MAC into an AMAC that sat-
isfies all mentioned requirements. One step in this transformation solves the
technical problem of constructing a probabilistic universal one-way hash func-
tion with distance-preserving properties.

We then show how to apply this construction (and, in fact, any AMAC con-
struction) to obtain simple and efficient biometric entity authentication schemes
in both a closed-network and an open-network setting.

Formal proofs of our theorems are either sketched or omitted due to lack of
space.

Related work. References in conventional Message Authentication Codes are
discussed in Section 2. Universal one-way hash function were introduced in [14]
and are being often applied in cryptographic constructions. Related work to
AMACs includes work from a few different research literatures.

There is a large literature that investigates biometric techniques without
addressing security properties (see, e.g. [7] and references therein). Security and
privacy issues in biometrics have been independently recognized and advocated
by many researchers (see, e.g., [3, 15, 16]).

A second literature (related to information and coding theory) investigates
techniques for authentication of noisy multimedia messages (see, e.g., [12, 13]
and references therein). All these constructs either ignore security issues or treat
them according to information theoretic models. Typically, constructions of the
latter type have a natural adaptation to the symmetric MAC setting but all con-
structions we found, after this adaptation, fail to satisfy the MAC requirement
of security under chosen message attack (and therefore the analogue AMAC re-
quirement). Some work (e.g, [11]) uses digital signatures as atomic components
but they result in constructions that are not preimage-resistant, according to
our Definition 2, and therefore cannot be applied to give a satisfactory solution
to our biometric authentication problem.

A third literature investigates coding and combinatorial techniques for error
tolerance in biometrics (see, e.g., [9, 8]), as well as privacy amplification from rec-
onciliation. Recently, [4, 2] considered the problem of generating strongly random
keys from biometric data. These constructions can be used to define a solution



to the problem of biometric entity authentication. In particular, the solution in
[4] suffices for single-use biometric entity authentication, and the results in [2],
in addition to show that the solution in [4] can be broken if the same biometric
is used multiple times, imply a solution to a variant of (interactive) biomet-
ric entity authentication. These papers address primitives and notions (fuzzy
commitments, fuzzy extractors, etc.) unaddressed by ours and viceversa.

We stress that all this work did not even imply a formal definition of AMACs.

2 Definitions and Preliminaries

In this section we present our novel definition of Approximate MACs. In the rest
of the paper we will assume familiarity with definitions of pairwise-independent
hash functions and of cryptographic primitives used in the paper, such as univer-
sal one-way hash functions, (conventional) MACs, symmetric encryption schemes
and finite pseudo-random functions.
Approximation in MACs. We introduce formal definitions for approximate
MACs, using as a starting point the above definitions for ordinary MACs. Infor-
mally, one would like an approximate MAC to be tolerant to “acceptable” mod-
ifications to the original message. Less informally, we will define approximate
versions of the same properties as an ordinary MAC, where the approximation
is measured according to some polynomial-time computable distance function
on the message space. For the correctness property, the notion of a modifica-
tion being acceptable is formalized by requiring an authentication tag computed
for some message m, to be verified as correct even for messages having up to
a given distance from m. We note that this property might not be compatible
with the property of security against chosen message attack, for the following
reason. The latter property makes an adversary unable to produce a valid pair
of message and authentication tag, for a new message, for which he hasn’t seen
an authentication tag so far; the former property, instead, requires the receiver
himself to be able to do so for some messages, that is, for messages having a
certain distance from the original message obtained from the sender. In order to
avoid this apparent definitional contradiction, we define a chosen message attack
to be successful if the valid pair of message and authentication tag produced by
the adversary contains a message which has a larger distance from all messages
for which he has seen an authentication tag during his chosen message attack.
Therefore, we even define the security property for MACs in some approximate
sense.

We now proceed more formally.

Definition 1. Let M denote the message space and let dm be a polynomial-time
computable distance function over M . An approximately correct and approxi-
mately secure message authentication code for distance function dm (briefly, dm-
ac-as-MAC) is a triple (Kg,Tag,Verify), where the polynomial-time algorithms
Kg, Tag, Verify satisfy the same syntax as in the definition of MACs, except
that now these three algorithms are parameterized by function dm. Moreover,
we define the following two requirements.



1. (p, δ)-Approximate Correctness: after k is generated using Kg, if tag is gen-
erated using algorithm Tag on input message m and key k, then, with
probability at least p, algorithm Verify, on input k,m′, tag, outputs: yes,
if dm(m,m′) ≤ δ.

2. (dm, γ, t, q, ε)-Approximate Security: Let k be generated using Kg; for any
algorithm Adv running in time at most t, if Adv queries algorithm Tag(k, ·)
with adaptively chosen messages, thus obtaining pairs (m1, t1), . . . , (mq, tq),
and then returns a pair (m, t), the probability that Verify(k,m, t) = yes and
dm(m,mi) ≥ γ for i = 1, . . . , q, is at most ε.

Note that (t, q, ε)-secure MAC schemes are (p, δ)-approximately correct and
(dm, γ, t, q, ε)-approximately secure MAC schemes for p = 1, δ = 0, γ = 1,
and dm equal to the Hamming distance. In the sequel, we will omit dm in the
term dm-ac-as-MAC when clear from the context, or directly abbreviate the term
dm-ac-as-MAC as AMAC.

Two additional properties of AMACs. A first additional property that we
can require from AMACs is that of preimage-resistance. Informally, we require
that the tagging algorithm, if viewed as a function on the message space, is
hard to invert, no matter what is the distribution on the message space. (Later,
while showing the applications of AMACs to biometric entity authentication,
this property will be useful in proving that the entity authentication scheme
obtained is secure against adversaries that can gain access to the AMAC output
from the biometric storage file.)

Definition 2. The dm-ac-as-MAC (Kg,Tag,Verify) is (t, ε)-preimage-resistant if
the following holds. Let k be generated using Kg; for any algorithm Adv running
in time at most t, if Adv queries algorithm Tag(k, ·) with adaptively chosen
messages, thus obtaining pairs (m1, t1), . . . , (mq, tq), and then returns a message
m0, and is given a value tag =Tag(k, m), the probability that Adv(tag) returns
m′ such that Verify(k,m′, tag) = 1 and dm(m′,mi) ≥ γ for i = 0, 1, . . . , q, is at
most ε.

We note that essentially all conventional MAC constructions in the literature
would satisfy an analogue preimage-resistance requirement. However it is easy
to transform a MAC into one that is not preimage-resistant and for some appli-
cations like biometric identification, it can be desirable to require that the MAC
used is preimage-resistant (or otherwise an accidental loss of the MAC output
could reveal a password or some biometric data to an adversary).

A second additional property that we can require from AMACs is that of
tag public verifiability. Informally, we require that, given two tags obtained from
two different messages, it is possible to efficiently verify that the two messages
have small distance, without using any secret key. (Later, while showing the
applications of AMACs to biometric entity authentication, this property will be
useful in obtaining a network entity authentication scheme, where the server
does not need to run the AMAC to verify tag correctness.)



Definition 3. The dm-ac-as-MAC (Kg,Tag,Verify) has (dm, δ, γ)-publicly veri-
fiable tags if there exists an efficient algorithm PubVerify such that the following
holds. Let k be generated using Kg and let tagi =Tag(k,mi), for i = 1, 2. Then
PubVerify(tag1, tag2)=1 if d(m1,m2) ≤ δ and 0 if d(m1,m2) ≥ γ.

Previous work on AMACs. Previously to this work, variations of the same
approximate MAC contruction had been proposed and investigated in [5, 17].
Informally, the tagging algorithm in these constructions uses operations such as
xoring the message with a pseudo-random string of the same length, computing
a pseudo-random permutation of the message, and returning majority values of
subsets of message bits. The security of these constructions was not analyzed
in a cryptographic model.

Simple attempts towards AMAC constructions. First of all, we remark
that several simple constructions using arbitrary error correcting codes and or-
dinary MACs fail in satisfying even the approximate correctness and security
requirements of AMACs. These include techniques such as interpreting the in-
put message as a codeword, and using a conventional MAC to authenticate its
decoding (here, the property of approximate correctness fails). Other techniques
that also fail are similar uses of fuzzy commitments from [9], fuzzy sketches from
[4] and reusable fuzzy extractors from [2]. We note however that there are a few
simple constructions that meet the approximate correctness and security require-
ments of AMACs but don’t meet the preimage-resistance or the efficiency or the
tag public verifiability requirement. The simplest we found goes as follows. Let
us denote as (K,T,V) a conventional MAC scheme. The tagging algorithm, on
input key k and message m, returns tag = m |T(k,m). The verifying algorithm,
on input k,m′, tag, sets tag = t1 | t2 and returns 1 if and only if d(t1,m′) ≤ δ
and V (k, t1, t2) = 1, where d is the distance function. The scheme satisfies the
approximate correctness and security, and the tag public verifiability require-
ments; however, note that the tag of this scheme contains the message itself and
therefore the scheme is neither preimage-resistant nor efficient.

3 Our AMAC Constructions

In this section we present two constructions of approximately-correct and secure
MAC with respect to the Hamming distance. The first construction is based on
systematic error correcting codes and is preimage-resistant but does not have
publicly verifiable tags. The second construction, the main one in the paper,
transforms a MAC into an AMAC that is additionally both preimage-resistant
and tag publicly verifiable.

3.1 A Preimage-Resistant AMAC Construction

A basic construction of an ac-as-MAC for the Hamming distance function can
be obtained by using any conventional MAC scheme, any symmetric encryption



scheme, and any appropriate systematic error correcting code. The construc-
tion satisfies approximate correctness with p = 1, approximate security under
minimal assumptions, and preimage resistance.
Formal description. Let us denote by (Km,T,V) a conventional MAC scheme,
and by (Ke,E,D) a conventional symmetric encryption scheme. Also, by (SEnc,SDec)
we denote a systematic error-correcting code (that is, on input m, SEnc(m) = c,
where c = m|pc, and pc are parity check bits), such that the decoding algorithm
perfectly recovers the message if at most δ errors happened or returns failure
symbol ⊥ otherwise (note that this latter condition is without loss of generality
as any error correcting code can be simply transformed into one that satisfies
it).
Instructions for Kg: generate a uniformly distributed k-bit key K

Input to Tag: two k-bit keys Ka,Ke, an n-bit message M , parameters p, δ, γ.
Instructions for Tag:

1. Set c = Enc(M) and write c as c = M |pc
2. Set subtag = TKa

(M) and epc = E(Ke, pc)
3. Return: tag = epc|subtag and halt.

Input to Verify: parameters p, δ, γ, two k-bit keys Ka,Ke, an n-bit message
M ′ and a string tag

Instructions for Verify:

1. Write tag as tag = epc|subtag
2. Let pc = D(Ke, epc) and m′ = Dec(M ′|pc)
3. If m′ =⊥ then Return: 0
4. If V (Ka,m′, subtag) = 1 then Return: 1 else Return: 0.

We can prove the following

Theorem 1. Let dm denote the Hamming distance, let n be the length of
the input message for (Kg,Tag,Verify) and let (SEnc,SDec) a systematic error-
correcting code that corrects up to δ errors and returns ⊥ if more than δ errors
happened. If (Km,T,V) is a (t, q, ε)-secure MAC then (Kg,Tag,Verify) is a (p, δ)-
approximately correct and (dm, γ, t′, q′, ε′)-approximately secure MAC for p = 1,
γ = δ + 1, t′ = t−O(q · |c|), q′ = q, ε′ = ε, where |c| is the length of the output
returned by Enc on inputs of size n. Moreover, if (Km,T,V) is preimage-resistant
and (Ke,E,D) is a secure symmetric encryption scheme then (Kg,Tag,Verify) is
preimage-resistant.

The above theorem already provides ac-as-MACs with some useful properties,
such as approximate correctness, approximate security and preimage-resistance.
However, we note two facts that make this scheme not a definitely satisfactory
solution: first, its tag length depends on the performance of the systematic code
used, and can thus be significantly longer than regular MACs even for moderately



large values of the parameter δ; second, this scheme does not satisfy the tag
public verifiability property. As we will see in Section 4, the latter is essential
in order to construct a main application of AMACs: a network biometric entity
authentication scheme. The scheme in Section 3.2 satisfies both efficiency of tag
length (for any value of δ) and the tag public verifiability property.

3.2 Our Main AMAC Construction

Informal description. We explain the ideas behind this scheme in two steps.
First, we explain how to use a probabilistic TCR hash function to guarantee that
outputs from this hash function will have some additional distance-preserving
properties. Second, we show how we can use such probabilistic TCR hash func-
tion to construct an approximately correct and secure MAC.

We achieve a combination of distance-preserving properties and target col-
lision resistance by making a TCR hash function probabilistic, and using the
following technique. First, the message bits are randomly permuted and then
the resulting message is written as the concatenation of several equal-size blocks.
Here, the size of each block could be the fixed constant size (e.g., 512 bits) of
the input to compression functions (e.g., SHA) that are used as atomic com-
ponents of practical constructions of TCR hash functions. Now multiple hashes
are computed, each being obtained using the TCR hash function, using as input
the concatenation of a different and small enough subset of the input blocks.
Here, the choice of each subset is done at random, and specifically, using the
output of a random pairwise-independent hash function on input the message.
Furthermore, each subset has the same size, depending on the length of the input
and on the desired distance-preserving properties. The basic idea so far is that
by changing the content of some blocks of the message, we only change a small
fraction of the inputs of the atomic hashes and therefore only a small fraction
of the outputs of those hashes will change.

Given this ‘probabilistic TCR hash function’, the tagging and verifying al-
gorithm can be described as follows.

The tagging algorithm, on input a random key and a message, uses another
value, which can be implemented as a counter incremented after each applica-
tion (or a random value chosen independently at each application). Then the
algorithm computes the output of the finite pseudo-random function on input
such value and divides this output in two parts: the first part is a random key for
the TCR hash function and the second part is a sequence of pseudo-random bits
that can be used as randomness for the above described probabilistic TCR hash
function. Now, the tagging algorithm can run the latter function to compute
multiple hashes of the message. The tag returned is then the input to the finite
pseudo-random function and the hashes.

The construction of the verifying algorithm is necessarily differently from
the usual approach for exactly correct and secure MACs (where the verifying
algorithm runs the tagging algorithm on input the received message and checks
that its output is equal to the received tag), as this algorithm needs to accept



the same tag for multiple messages. Specifically, on input the tag returned by the
tagging algorithm, the verifying algorithm generates a key and pseudo-random
bits for the probabilistic TCR hash function exactly as the tagging algorithm
does and computes the hashes of the received message. Finally, the verifying
algorithm checks that the received and the computed sequences of hashes only
differ in a small enough number of positions.

Formal description. Let k be a security parameter, t be an approximation
parameter, and c be a block size constant. We denote by PIH = {pih | pih :
{0, 1}n → {0, 1}n} a set of pairwise independent hash functions over {0, 1}m, by
TCRH = {tcrhK : K ∈ {0, 1}k} a finite TCR hash function, and by F = {fK :
K ∈ {0, 1}k} a finite pseudo-random function. We now present our construction
of an approximately-secure and approximately-correct MAC, which we denote
as (Kg,Tag,Verify).

Instructions for Kg: generate a uniformly distributed k-bit key K

Input to Tag: a k-bit key K, an n-bit message M , parameters p, δ, γ, a block
size 1c and a counter ct.

Instructions for Tag:

– Set x1 = n/2δ and x2 = 10 log(1/(1− p))
– Set (u|π|pih) = fK(ct), where u ∈ {0, 1}k, π is a permutation of {0, 1}n and

pih ∈ PIH
– Write π(M) as M1| · · · |Mdn/ce, where |Mi| = c for i = 1, . . . , dn/ce
– Use pih(M) as randomness to randomly choose x1-size subsets S1, . . . , Sx2

of {1, . . . , dn/ce}
– For i = 1, . . . , x2,

let Ni = Mi1 | · · · |Mix1
, where Si = {i1, . . . , ix1}

let shi = tcrhu(Ni)
– Let subtag = sh1| · · · |shx2

– Return: tag = ct|subtag.
– Set ct = ct + 1 and halt.

Input to Verify: parameters δ, γ, a block size 1c, a k-bit key K, an n-bit
message M ′ and a string tag

Instructions for Verify:

– Write tag as ct|u|sh1| · · · |shx2

– Set x1 = n/2δ and x2 = 10 log(1/(1− p))
– Set (u|π|pih) = fK(ct), where u ∈ {0, 1}k, π is a permutation of {0, 1}n and

pih ∈ PIH
– Write π(M ′) as M ′

1| · · · |M ′
dn/ce, where |M ′

i | = c for i = 1, . . . , dn/ce
– Use pih(M ′) to randomly select x1-size subsets S′

1, . . . , S
′
x2

of {1, . . . , dn/ce}
– For i = 1, . . . , x2,

let N ′
i = M ′

i1
| · · · |M ′

ix1
, where S′

i = {i1, . . . , ix1}
let sh′i = tcrhu(N ′

i)



– Check that sh′i = shi, for at least αx2 of the values of i ∈ {1, . . . , x2}, for
α = 1− 1/2

√
e− 1/2e.

– Return: 1 if all verifications were successful and 0 otherwise.

The above construction satisfies the following

Theorem 2. Assume that F is a (tF , qF , εF )-secure pseudo-random function
and H is a (tH , qH , εH)-target collision resistant hash function. Then (Kg,Tag,Verify)
is a (p, δ)-approximately correct and (dm, γ, tA, qA, εA)-approximately secure MAC,
where
• dm is the Hamming distance
• γ = 2δ
• εA ≤ εF + εH · qA + 1− p
• qA = qF ≥ 1 and qH = 10 log(1/(1− p))
• tA = min(tA,1, tA,2)
• tA,1 = tF −O(qA(n(log n+log(1/(1−p)))+ log(1/(1−p))+ time(hu;nc/2δ))
• tA,2 = tH −O(n(log n + log(1/(1− p))) + time(fK ; |ct|))

and n is the length of the message, c is a block size constant, ct is the counter
input to algorithm Tag, and time(g;x) denotes the time required to compute
function g on inputs of size x.

Performance. We analyze the main performance parameter of interest; that
is, the communication complexity of our scheme (Kg,Tag,Verify). We see that
the length of the returned tag is x2 · c, where x2 = 10 log(1/(1 − p)), and c is
the length of the output of the TCR hash function. We note that c is constant
with respect to n, and acceptable settings of parameter p can lie anywhere in
the range [1− 1/2(log n)1+ε

, 1], for any constant ε > 0, and where n is the length
of the message input to the scheme. Therefore the length of the tag returned by
the scheme can be as small as 10c(log n)1+ε; most importantly, this holds for any
value of parameter δ. The tag length remains much shorter than the message
even for much larger settings of p; for instance, if p = 1− 2−

√
n, the tag length

becomes O(
√

n).

3.3 Properties of our Main Construction

We divide the proof of Theorem 2 in two parts: first we prove the property of
approximate correctness and then the property of approximate security.
Approximate correctness. Assume dm(M,M ′) ≤ δ. Moreover, assume that
fK is a random function. Then, for i = 1, . . . , x2, define random variable Xi

as equal to 1 if shi 6= sh′i or 0 otherwise. Furthermore, we denote by Ni and
Mi1, . . . ,Mix1

(resp., N ′
i and M ′

i1, . . . ,M
′
ix1

) the values used in the 5th step of
algorithm Tag on input M (resp., M ′). Then it holds that

a = Prob [ Xi = 1 ]
≤ 1− Prob [ Ni = N ′

i ]

≤ 1− Prob
[
Mi1 = M ′

i1

]n/2δ

≤ 1− ((n− δ)/n)n/2δ = 1− (1− δ/n)n/2δ ≤ 1− 1/
√

e,



where the first inequality follows from the definition of Xi, the second inequality
follows from the definition of Ni and N ′

i , and the third inequality follows from the
uniform and independent choice of subsets Si and S′

i and therefore of the blocks
Mi and M ′

i among all blocks in π(M) and π(M ′), respectively. We set α− a =
(e − 1)/4e2. Since X1, . . . , Xx2 are independent and identically distributed, we
can apply a Chernoff bound and obtain that

Prob

[
x2∑
i=1

Xi < αx2

]
≤ e−2(α−a)2x2 ≤ 1− p,

which implies that algorithm Verify returns 1 with probability at least p. Note
that the assumption that fK is a random function can be removed by only
subtracting a negligible factor to p, as otherwise the pseudorandomness fK can
be contradicted.
Approximate security. We assume that the requirement of (dm, γ, t, q, ε)-
approximate security is not satisfied and reach some contradiction. The proof for
this (only sketched here) requires the definition of four probability experiments
that slightly differ from each other.

Experiment 1 is precisely the experiment in the definition of approximate
security. We denote by p1 the probability that experiment 1 is successful; our
original assumption implies that p1 > ε.

Experiment 2 differs from experiment 1 only in that Adv queries a finite
random function r rather than a finite pseudo-random function Tag. Denoting as
p2 the probability that experiment 2 is successful, we can prove that p2−p1 ≤ εF ,
or otherwise Adv can be used to violate the assumption that F is a (tF , qF , εF )-
secure pseudo-random function.

Experiment 3 is a particular case of experiment 2; specifically, it is successful
when experiment 2 is and the following happens: the adversary returns a tag with
the same counter as in a tag previously returned by the oracle and, moreover, it
produces at least one hash equal to one hash previously seen during the chosen
message attack. Since the adversary returns a tag with the same counter as in
a tag previously returned by the oracle, it also uses the same key for the target
collision resistant hash function. Furthermore, since it produces at least one hash
equal to one hash previously seen under the same hash function, it violates the
security of the hash function. We denote as p3 the probability that experiment
3 is successful, and obtain that p3 ≤ εH · qA, or otherwise Adv can be used to
violate the assumption that H is a (tH , qH , εH)-target collision resistant hash
function,

Experiment 4 is a particular case of experiment 2, but it considers the case
complementary to the case in experiment 3. Specifically, the adversary produces
no hash equal to any hash previously seen during the chosen message attack
or does not copy any of the previously seen counters. Since this experiment is a
particular case of experiment 2 and considers the case complementary to the case
in experiment 3, we obtain that p2 ≤ p3 + p4. We denote as p4 the probability
that experiment 4 is successful, and observe that this experiment is successful
only if the adversary is lucky in obtaining a sufficiently large number of the



subsets S′
i that contain no block where Mi and M ′

i differ. We observe that such
subsets are generated according to a distribution uniform and independent in
both cases we consider in this experiment, as we now explain. In the first case,
a different counter ct is returned by Adv (that is, ct 6= cti, for i = 1, . . . , qA)
and therefore the subsets are generated using pih(m) as randomness, where
pih is part of the value r(ct), the latter being independently distributed from
r(cti), for i = 1, . . . , qA. In the second case, a counter is copied (that is, ct =
ctj , for exactly one j ∈ {1, . . . , qA}) but the subsets are generated using the
subsets are generated using pih(m) as randomness, where pih is part of the
value r(ct) = r(ctj), but pih(m) is uniformly and independently distributed from
pih(mj), as m 6= mj and pih is pairwise-independent. Given that the subsets are
uniformly and independently distributed, using a Chernoff bound and the same
analysis as in the proof of the approximate correctness property, we can show
that the probability that Adv can make algorithm Verify return 1 is at most
1− p. Therefore we obtain that p4 ≤ 1− p.

We conclude the analysis by using the obtained inequalities: p1 − p2 ≤ εF ,
p2 ≤ p3 + p4, p3 ≤ εH · qA, and p4 ≤ 1 − p; and therefore obtaining that
εA ≤ p1 ≤ εF + εH · qA + 1− p.

4 Biometric Entity Authentication

We present a model for the design and analysis of biometric entity authentication
(BEA) schemes, and show that two simple constructions based on AMACs can
be proved secure in our model under standard assumptions on cryptographic
tools and biometric distribution.

Our model. There is a server S and several users U1, . . . , Um, where the server
has a biometric storage file bsf and each user Ui is associated with a biometric
bi, a reader Ri and a computing unit CUi, for i = 1, . . . ,m. We define a (non-
interactive) BEA scheme between user Ui and S as the following two-phase
protocol. The first phase is an initialization phase during which user Ui and S
agree on various parameters and shared keys and S stores some information on
bsf . The second phase is the authentication phase, including the following steps.
First, user Ui inputs her biometric bi to the reader Ri, which extracts some
feature information fbi,t (this may be a sketched version of the original biometric
bi) and returns a measurement mbi,t, where t here represents the time when Ri

is executed. (Specifically, the reader may return a different value mbi,t for each
different time t, on input the same bi.) Then the computing unit CUi, on input
mbi,t sends an authenticating value abi,t to the server, that, using information
stored during the initialization phase, decides whether to accept abi,t as a valid
value for user Ui or not.

The correctness requirement for a BEA scheme states that the following
happens with high probability: after the initialization phase is executed between
Ui(bi) and S, if, for some t, mbi,t = Ri(bi), and abi,t = CUi(mbi,t) then S accepts
pair (Ui, abi,t).



An adversary Adv tries to attack a BEA scheme by entering a biometric bj

into a reader Ri, and, before doing that, can have access to several and different
resources, according to which parties it can corrupt (i.e., noone; users Uj , for
j 6= i; server S; etc.), and which communication lines or storage data he has
access to (i.e., none; the communication lines containing any among mbi,t, abi,t;
the biometric storage file bsf ; the server’s secret keys; user Ui’s secret keys, etc.).
The security requirement for a BEA scheme states that after the initialization
phase is executed between Ui(bi) and S, for i = 1, . . . ,m, the probability that
an efficient adversary Adv can input his biometric bj into a reader Ri, for i 6= j,
and make S accept the resulting pair (Ui, abj

i,t), is negligible.
We are now ready to show two simple BEA constructions given any AMAC

scheme with certain properties (in fact, to achieve security against certain re-
alistic adversaries, our constructions may even assume a AMAC secure against
a weaker adversary than the one in Definition 1). The first construction is for
local BEA; that is, the adversary has no access to the measurements mbi,t and
the user can send them in the clear to the server. Local BEA is comparable, in
terms of both functionality and security, to well-known password-based authen-
tication schemes in non-open networks. The second construction is for network
BEA; that is, the message sent from a user to a server during the authentication
phase can travel through an open network. Network BEA should be contrasted,
in terms of both functionality and security, to password-based authentication
schemes in open networks; in particular, we will show that our scheme does not
require a user to send over an open network (not even in encrypted form) a
reading of her biometric. Both constructions necessarily make an assumption on
the distribution of biometric that we now describe.

A basic assumptions on biometrics. Biometric entity authentication (in
any model) inherently relies on the assumption that there exist a distance func-
tion d, appropriate parameters δ < γ, and an efficiently computable measure-
ment M of biometrics such that: (1) for each individual with a biometric b
with feature information fb(t) at time t, and for any times t1, t2, it holds that
d(M(fb(t1)),M(fb(t2))) ≤ δ; (2) for any two individuals with biometrics b1, b2,
with feature information fb1(t), fb2(t) at time t, respectively, and for any times
t1, t2, it holds that d(M(fb(t1)),M(fb(t2))) ≥ γ. We refer to this as the Biometric
Distribution Assumption (BD Assumption).

A construction for local BEA. Informally, the first construction consists of
the user sending the reading of her biometric to the server, that checks it against
the previously stored AMAC tag of a reading done at initialization phase. More
formally, let (Kg,Tag,Verify) denote an AMAC scheme. Then the BEA scheme
lAmacBEA goes as follows. During the initialization phase, user Ui sends abi,t0 to
the server S, that stores tag0 =Tag(k, abi,t0) in the bsf file. During the authenti-
cation phase, at time t1, user Ui inputs bi into the reader Ri, that returns mbi,t1 ;
the latter is input to CUi that returns abi,t1 = mbi,t1 ; finally, pair (Ui, abi,t1) is
sent to S. On input pair (Ui, abi,t1), server S computes Verify(k, abi,t1 , tag0) and
accepts Ui if and only if it is equal to 1.

We can prove the following



Theorem 3. Under the BD assumption, if (Kg,Tag,Verify) is an AMAC scheme
then the construction lAmacBEA is a BEA scheme satisfying the above correct-
ness and security requirement against efficient adversaries that can corrupt up
to all users Uj but one. Furthermore, if scheme (Kg,Tag,Verify) is preimage-
resistant then the construction lAmacBEA satisfies security against efficient ad-
versaries that additionally have access to the biometric storage file bsf .

A construction for network BEA. Informally, the second construction mod-
ifies the first construction by having the user compute the AMAC tag over the
reading of her biometric; the AMAC tag is then sent to the server that can check
it (without need for the AMAC key) against the previously stored AMAC tag of
a reading done at initialization phase. More formally, let (Kg,Tag,Verify) denote
an AMAC scheme with publicly verifiable tags. Also, we assume for simplicity
that the channel between each user and the server is properly secured (using stan-
dard encryption and authentication techniques), and so is the biometric storage
file (using standard encryption techniques), Then the BEA scheme nAmacBEA
goes as follows. During the initialization phase, user Ui inputs her biometric bi

into reader Ri, that returns mbi,t0 ; the latter is input to CUi that returns and
sends abi,t0 =AMAC(k, mbi,t0) to S; finally, S stores abi,t0 into bsf . The au-
thentication phase is very similar to the identification phase; specifically, user Ui

computes abi,t1 in the same way, and pair (Ui, abi,t1) is sent to S, that computes
PubVerify(abi,t0 , abi,t1) and accepts Ui if and only if it is equal to 1.

We can prove the following

Theorem 4. Under the BD assumption, if (Kg,Tag,Verify) is an AMAC scheme
with publicly verifiable tags, then the construction nAmacBEA is a BEA scheme
satisfying the above correctness and security requirement against efficient adver-
saries that can corrupt up to all users Uj but one and have access to the commu-
nication lines containing mbi,t, abi,t and the server’s secret keys. Furthermore, if
scheme (Kg,Tag,Verify) is preimage-resistant then the construction nAmacBEA
satisfies security against efficient adversaries that additionally have access to the
biometric storage file bsf .

We note that the first AMAC construction in Section 3 is preimage-resistant and
therefore suffices for the AMAC scheme required by Theorem 3. Furthermore,
the second AMAC construction in Section 3 is both preimage-resistant (this
follows by using the definition of universal one-way functions) and has publicly
verifiable tags (this can be noted by inspection of the algorithm Verify), and
therefore can be used to construct the AMAC scheme required by Theorem 4.

Disclaimer. The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies, either ex-

pressed or implied, of the Army Research Laboratory or the U.S. Government.
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