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Abstract. We demonstrate how to make voting protocols resistant
against manipulation by computationally bounded malicious voters, by
extending the previous results of Conitzer and Sandholm in several im-
portant directions: we use one-way functions to close a security loophole
that allowed voting officials to exert disproportionate influence on the
outcome and show that our hardness results hold against a large fraction
of manipulating voters (rather than a single voter). These improvements
address important concerns in the field of secure voting systems. We also
discuss the limitations of the current approach, showing that it cannot
be used to achieve certain very desirable hardness criteria.
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1 Introduction

In a democratic society, many important decisions are made based on the results
of popular voting. Probably, the most frequently used voting scheme is Plurality:
each voter submits a ballot with a candidate’s name on it, and the candidate
with the largest number of votes wins. While this is the most natural approach
for the case of two candidates, when the number of candidates is larger, it does
not work so well, as it is notoriously insensitive to the voters’ preferences other
than their top choice. Consequently, the problem of designing a more expressive
voting procedure that is also fair and efficient has been a subject of extensive
research.

The notions of expressiveness and efficiency are relatively easy to formalise:
we assume that each voter submits a total ordering of the alternatives, best to
worst (a more general definition would allow the voter to express the intensity
of his preferences, but in many situations an ordering is sufficient), and, as is
common in computer science, we restrict ourselves to voting schemes that given
the set of votes, compute a winner in polynomial time (one should note, however,
that there are interesting voting schemes that do not have this property unless
P=NP).

On the other hand, a good definition of fairness proved to be much more elu-
sive: in fact, the celebrated theorem of Arrow demonstrates that certain very



desirable fairness criteria for a voting scheme are mutually incompatible. A
system that is perceived as unfair can provoke a desire to game it (a much
publicised example is provided by http://voteswap.com). Indeed, it has been
shown (see [Gib73,Sat73]) that any non-dictatorial voting scheme of the above-
described type is susceptible to manipulation by voters, i.e., there are situations
when a voter can misrepresent his preferences and achieve an outcome that he
likes better than the truthful outcome. If many voters engage in these activities,
the outcome of the election may be seriously distorted, and the results will not
be representative of the true distribution of preferences. Thus, vulnerability to
manipulation is a serious problem that has to be addressed.

While from information-theoretic perspective no solution is possible, com-
putational considerations come to rescue: one can try to discourage potential
manipulators by making manipulation infeasible. Indeed, it is known [BO91]
that certain voting schemes (e.g., Single Transferable Vote) are NP-hard to ma-
nipulate. Furthermore, in a recent sequence of papers [CS02,CS03], Conitzer and
Sandholm showed that several other voting schemes can be uniformly modified
so that manipulating them becomes computationally hard. This is achieved by
adding a pre-round in which candidates are divided into pairs and the voters’
preferences are used to determine the winner of each pair; the winners of this
stage participate in elections conducted according to the original protocol. Dif-
ferent methods for pairing up the candidates and eliciting the votes give rise to
different levels of complexity, such as NP-hardness, #P-hardness, or PSPACE-
hardness.

Conitzer and Sandholm leave it as an open question whether this approach
can make manipulation as hard as inverting one-way functions, with the main
motivation of achieving some kind of an average-case hardness. This question
is particularly interesting because the setting of voting manipulation is reminis-
cent of that of common cryptographic tasks, where the goal is to construct a
protocol that can withstand an attack by malicious adversary with overwhelm-
ing probability, i.e., on average, assuming that the adversary computationally
bounded.

Motivated by this question of Conitzer and Sandholm, we modify their con-
struction so that the pre-round schedule is computed from the votes of all voters
using a one-way function. Since the size of the argument to this function is de-
termined by the number of candidates m, our results are interesting only if m is
large (this is also the case in [CS02,CS03]): for all voting schemes considered in
this paper, manipulation is easy when the number of candidates m is very small,
and in Section 4, we show that in some sense, this is inevitable. However, in some
real-life scenarios (most notably, recent California gubernatorial elections), the
number of candidates is sufficient to make our results applicable.

Unfortunately, we do not achieve average-case hardness (some reasons why
this is unlikely to be possible are outlined in Section 4). The good news is that
by using a deterministic one-way function to fix the scheduling we achieve some
other attractive properties.



First, we show that our method can be used to make voting protocols hard to
manipulate even by a large minority fraction (1/6 in the case of Plurality, STV
and Maximin, 1/m in the case of Borda) of voters, while the previous literature
concentrated on the case of a single manipulator. Arguably, the voters who want
to manipulate the election may and do collude, so constructing voting schemes
that are secure against a significant fraction of cheaters is an important goal.

Second, the paper [CS03] assumes that the election officials can be trusted
with constructing the pre-round schedule, which is supposed to be generated at
random for NP-hardness and #P-hardness results (before and after vote elici-
tation, respectively). Forcing the election authorities to prove that they, indeed,
used a secure random number generator rather than paired up the candidates
at their will is hard to achieve in practice. On the other hand, it is clear that in
many cases malicious pre-round scheduling can be used to eliminate an “undesir-
able” candidate or affect the election results in some other way, so if the entities
responsible for scheduling are corrupted, there is a huge incentive for them to
deviate from the protocol. Our approach addresses this issue by extracting the
necessary randomness from the votes themselves (for a more rigorous descrip-
tion, see Section 3); this limits the potential for cheating by (possibly corrupt)
officials. Moreover, the voters do not need to rely on any external randomness
for their own actions either, since the voting scheme is completely deterministic.

The rest of the paper is organised as follows. In Section 2 we introduce our
notation, give a precise definition of what it means to manipulate an election,
and describe some well-known voting schemes that can be made secure using our
approach. For completeness, we also provide the definition of one-way functions,
and state some related facts. In Section 3, we describe our constructions for
specific protocols. In Section 4, we discuss the limitations of this approach
to making manipulation hard. Section 5 presents our conclusions and future
research directions.

2 Preliminaries and Notation

We assume that there are n voters and m candidates and denote the set of all
voters by V' = {v1,...,v,} and the set of all candidates by C = {c1,...,cm}.
Our complexity results are in terms of m and n, i.e., unless specified otherwise,
‘polynomial’ always means ‘polynomial in m and n’.

The set of all permutations of C' is denoted by IT(C); a voter j’s preferences
are expressed by a list m; € IT(C): the first element is the voter’s most preferred
candidate, etc. In particular, this means that within one voter’s preference list,
ties are not allowed. A woting scheme is a mapping P : (II(C),...,II(C)) — C
that selects a winner ¢ € C based on all voters’ preference lists.

To state our results formally, we need to define more precisely what we mean
by beneficial manipulation. We distinguish between constructive manipulation,
which is a misrepresentation of a voter’s preferences that makes his top candidate
an overall winner, and destructive manipulation, i.e., an untruthful vote that
replaces the actual winner (according to the true preferences) with a candidate



that the manipulator prefers over the actual winner; clearly, the second notion
is strictly weaker than the first one.

We say that a voter v; can manipulate a protocol P if he can find a per-
mutation 7 € II(C) such that for some values of m; € II(C), i =1,...,n, we
have

1. P(my,...,m) = ¢

/ — .
2. P(T‘—lu-"77?j—1777j77fj+17-"77rn)—C 7507
3. v; ranks ¢’ above c.

We say that v; manipulates P constructively if v; ranks ¢’ first and destructively
otherwise; v; manipulates P efficiently if there is a probabilistic polynomial
time algorithm that given preference lists 7y, ..., m, for which such w} exists,
constructs 7, with non-negligible probability (over the coin tosses of the algo-

j
rithm).

We say that a set of voters M with 7 = |M| can (r,n = n(71))-
manipulate a protocol P if there is a pair of all voters’ preference profiles
(r = (m,....7n), 7 = (7},...,7,)), such that m; = =} for i ¢ M, and ev-

eryone in M strictly prefers the outcome of P on 7’ to the outcome of P on .
The manipulation is constructive if everyone in M ranks P(n’) first, and efficient
if whenever such 7’ exists, it can be constructed by a probabilistic polynomial
time algorithm with non-negligible probability.

Common voting protocols. In this paper, we consider the following common
voting protocols (in all these definitions, the candidate with the most points
wins):

— Plurality. A candidate receives 1 point for every voter that ranks it first.

— Borda. For each voter, a candidate receives m — 1 points if it is the voter’s
top choice, m — 2 if it is the second choice, ..., 0 if it is the last.

— Single Transferable Vote (STV). The winner determination process proceeds
in rounds. In each round, a candidate’s score is the number of voters that
rank it highest among the remaining candidates, and the candidate with the
lowest score drops out. The last remaining candidate wins. (A vote transfers
from its top remaining candidate to the next highest remaining candidate
when the former drops out.)

— Maximin. A candidate’s score in a pairwise election is the number of voters
that prefer it over the opponent. A candidate’s number of points is the lowest
score it gets in any pairwise election.

Pre-round. We reproduce the definition of pre-round [CS03] for reader’s con-
venience:

1. The candidates are paired. If there is an odd number of candidates, one
candidate gets a bye.

2. In each pairing of two candidates, the candidate losing the pairwise election
between the two is eliminated. A candidate with a bye is never eliminated.



3. On the remaining candidates, the original protocol is executed to produce
the winner. For this, the implicit votes over the remaining candidates are
used.

The schedule of the pre-round is an ordering S, of m candidates (it is as-
sumed that in the pre-round, candidate S,,(2¢ — 1) is matched with S,,(27),
i=1,...,|m/2], and if m is odd, S, (m) gets a bye). We denote the protocol
that consists of a base protocol P (such as Plurality or Borda) preceded by a
pre-round that is scheduled according to S, by S,, — P.

One-way functions. A function f:{0,1}* — {0,1}* is one-way if

— There exists a probabilistic polynomial-time algorithm (PPT) that on input
x outputs f(z);

— For every PPT A and every polynomial p(k), for sufficiently large & it holds
that
1

p(k)

Note that to prove that a function f is not one-way it suffices to exhibit an
infinite sequence k1, ko2, ... and an efficient algorithm A that inverts f on inputs
of length k;. It is well-known that any one-way function can be transformed into
a length-preserving one-way function, i.e., one that maps inputs of length &k to
outputs of length k. Hence, assuming that one-way functions exist is equivalent
to assuming that length-preserving one-way functions exist.

Plf(z) = f(@) s 40,1}z — AQK, f(2)] <

3 Reduction Based on One-Way Functions

Here we show that if one-way functions exist, then for several protocols adding
a pre-round with a carefully constructed schedule makes constructive manip-
ulation hard. We consider a family of pre-round schedules parameterised by
a pair of functions (k, f), where k& : N — N is any function that satisfies
kE(m) < logy(|m/2]!) and f : {0,1}* — {0,1}* is a length-preserving function;
an element of this family is denoted by S%/.

We demonstrate that if f is a length-preserving one-way function and k(m)
is chosen in a certain way (which might be different for different base protocols),
then manipulating S¥/ — P is as hard as inverting f. In what follows, we describe
the S¥/ used in our construction in full detail.

Definition of $%7. As in [CS03], we define a match-up slot to be a space in
the pre-round in which two candidates can face each other. Fix m and set k =
k(m). Let t be the smallest integer that satisfies ¢! > 2¥. Choose 2t candidates
arbitrarily; assign ¢ of them to the first ¢ match-up slots. Pair up the remaining
m — 2t candidates; if there is an odd number of them, one candidate gets a
bye. Assign them to the remaining slots. Now all that has to be chosen is the



match-up slots for the ¢ unscheduled candidates. Renumber them from 1 to ¢.
Elicit the votes.

For each voter v;, i = 1,...,n, compute a string s; € {0,1}* as follows.
Suppose that v; orders the unscheduled candidates as (¢}, ..., ct). Find the lexi-
cographic number of (¢}, ..., c}) in the set of all permutations over {1,...,¢} and

let s; be the last k digits in the binary representation of this number. Note that
since t! > 2% every string of length k can be obtained in this way. Let s = @I, s;.
Compute f(s), and denote the permutation whose lexicographic number is f(s)
by (¢iy,-..,¢;,) (again, the existence of such permutation is guaranteed since
t! > 2F). Assign the ¢;, th candidate to the first slot, ¢;,nd candidate to the
second slot, etc. This method of pairing up the candidates implicitly describes
Skt

Our reduction is based on the following idea: we choose the preferences of non-
manipulating voters so that the actual vote of the manipulators does not affect
the election results apart from its use for pre-round scheduling. Furthermore,
given the votes of others, there is only one way to schedule the candidates in the
pre-round so that the preferred candidate will win. Hence, to achieve their goal,
the manipulators must guess the pre-image of the desired permutation under the
chosen one-way function.

Note that for some protocols (namely, Plurality and STV) it is possible to
set t = [m/2]. In this case, our pre-round scheduling method has a very natural
interpretation: we separate the candidate pool into two approximately equal
components, and stipulate that two candidates from the same component should
not compete with each other in the pre-round. Furthermore, candidates from
different components are matched randomly, where randomness is derived from
the input itself (i.e., the votes), rather than from an external source.

Results and Proofs for Specific Protocols. In this subsection, we give three
rather similar proofs for pre-round versions of Plurality, STV, and Maximin
voting protocols. All of them are proven to be secure against approximately 1/6
of manipulators.

Theorem 1. Assume that m is even, and let t = m/2 and k = |logy(t!)| (for
k > 80 it must be that t > 25 and thus m > 52). Then there is a polynomial-
time algorithm that can invert f on inputs of length k using an oracle that can
constructively (7,67 + 5)-manipulate S/ — Plurality.

Corollary 1. If one-way functions exist, there is a pair of functions [ :
{0,1}* — {0,1}* and k : N — N such that no polynomial-time adversary can
constructively (7,67 + 5)-manipulate S/ — Plurality for infinitely many values
of m. a

Similar corollaries can be derived from other theorems in this section in a
straightforward manner; we will not state them explicitly.

Proof (of Thm. 1). We show how to invert f on a random input using an algo-
rithm that allows 7 voters to find a constructive manipulation of the protocol for



m candidates and 67 + 5 voters whenever one exists, and carefully constructed
preference lists for the 57 + 5 non-manipulators. That is, we describe an algo-
rithm that when given Y = f(X), where X is chosen uniformly at random from
{0,1}*, finds a Z such that f(Z) =Y with non-negligible probability.

First, find a permutation (ay,...,a;) whose lexicographic number is Y. Let
the m candidates be

T1,Y1,22,Y2y -+ -, Tt—1,Yt—1,P5 %,

and let each of the 7 manipulators prefer p to any other candidate. Assign
Zays---yTay_q,P to the first ¢ match-up slots. Set the non-manipulator votes as
follows:

Tay > Ya; = Tay > Yag = " > Tay_q > Yay_1 D> 2

— 2(7 4+ 1) votes
Yai > Yag > > Yap_1 P> Tgy >0 > Tgqy 1 > X

— 2(T 4+ 1) votes
P> Tay > Yay > Tay > Yay > " > Tay_y > Yar_y > 2

— 7+ 1 votes.

We observe the following:

(1) In the pairwise election, y,, can only be eliminated by x,,, ¥4, can only be
eliminated by T4, , Ya,, and x,,, etc., so to eliminate all y;s, T,, has to be
scheduled with y,, for j =1,...,¢ — 1, and p has to be scheduled with z.

(2) If all y; are eliminated in the pre-round, p gets at least 27 + 2+ 7 + 1 votes,
i.e., a majority, and wins.

(3) Suppose that some of the y; survive the pre-round. Then y,, with the smallest
1 among them gets at least 2742 votes, while p gets at most 74+1+7 = 2741
votes. Hence, in this case p does not win.

Now, the rest of the reduction is straightforward. We have seen that the ma-
nipulators’ vote only affects the outcome by being used for pre-round scheduling,
and furthermore, p only wins if all y;’s are eliminated in the pre-round. Hence,
to get p to win, the manipulators need to order yi,...,y:—1, 2 in their votes so
that the resulting s;’s (and, consequently, s) are such that when f(s) is used for
pre-round scheduling, y,, gets assigned to the 1st slot, y,, gets assigned to the
2nd slot, etc. By observing their votes, we can compute s;; since all other votes
are publicly known, we can also compute s;, j # 4, and, consequently, s. This s
satisfies f(s) =Y, so we have found a pre-image of Y under f. a

Theorem 2. Assume that m is even and let t = m/2 and k = |logy(t!)]. Then
there is a polynomial-time algorithm that can invert f on inputs of length k using
an oracle that can constructively (7,67 + 5)-manipulate S&/ — STV.

Proof. Again, we are given Y = f(X), where X is chosen uniformly at random
from {0,1}*, and want to find a Z such that f(Z) = Y with non-negligible



probability. We start by finding a permutation (aq,...,a;) whose lexicographic
number is Y. Let the set of candidates be

T1,Y1,22,Y25 -+ -5 Tt—1,Yt—1,P5 %,

and let each of the 7 manipulators prefer p to any other candidate.

Assign xg,,...,%q, , and p to the first ¢ match-up slots. Set the non-
manipulator votes as follows:

2> Tay > Yag > Tag > Yas > " > Tay_q > Yay_1 > D
— 2(7 4+ 1) votes
Yoy > Yag > > Yay  SD> 2> Tgy > Ty > ... > Ta,
— 2(7 + 1) votes
D> Tay > Yay > Tas > Yag > " > Tay_q > Yay_q > 2

— 7+ 1 votes.
We observe the following:

(1) In the pairwise election, p is preferred over z, but not over any of the y;, so,
to survive the pre-round, p has to be scheduled with z.

(2) In the pairwise election, y,, can only be eliminated by z,,, ¥, can only
be eliminated by x4,, Ya,, and z,,, etc., so to eliminate all y;, we have to
schedule x,; with y,; for j =1,...,¢ - 1.

(3) If all y; are eliminated in the pre-round, in the beginning of the main round
p has more than a half of the votes, so he wins.

(4) Suppose that some of the y; survive the pre-round. Then after 7 rounds of
STV the first 27 + 2 votes go to either z or x1, the highest ranking of the
surviving y; gets 274 2 votes as well, and p gets at most 27+ 1 votes. Hence,
at this point p will be eliminated, so he does not win the election.

The rest of the argument is as in the previous case. The total number of voters
isn==671405. O

Theorem 3. Suppose that m is even and let t = |m /2| — 4 and k = [log,(t!)].
Then there is a polynomial-time algorithm that can invert f on inputs of length
k using an oracle that can constructively (7,67 + 5)-manipulate S¥/ — Maximin.

Proof. Again, we are given Y = f(X), where X is chosen uniformly at random
from {0,1}*, and want to find a Z such that f(Z) = Y with non-negligible
probability. We start by finding a permutation (aq,...,a;) whose lexicographic
number is Y. Let the set of candidates be

T1,Y1,22,Y25 -+ Tty Yty Py 21, 22, 23,

and let each of the 7 manipulators prefer p to any other candidate.



Assign x4,,...,%q, to the first ¢ match-up slots. Pair up p, 21, 22, and zs,
and assign them to the last two slots. Set the non-manipulator votes as follows:

Loy > Yar = Tag > Yag = > Tay > Ya, > P> 21 > 22> 23
— 2(7 4+ 1) votes

21> 29> 23> Yay > Yay > 0 > Ya, > P> Tay > Tay > . > Tg,
— 2(7 4+ 1) votes

P>21> 22> 232> gy > Yag > Tag > Yag = 0 > Tay > Yay

— 7+ 1 votes.

We observe the following:

(1) Both p and exactly one of the z;, which we denote by z, survive the pre-
round.

(2) In the pairwise election, y,, can only be eliminated by z4,, ¥, can only
be eliminated by x4,, Ya,, and z,,, etc., so to eliminate all y;, we have to
schedule x,; with y,; for j =1,... %

(3) Suppose that any of the y; survives the pre-round. Then p’s score is at most
27 + 1 (there are only 7 + 1 honest voters that prefer it over any of the
remaining y; ), and z’s score is at least 27+ 2 (there are 27 4 2 honest voters
that rank it first), so p cannot win the elections.

(4) Suppose that none of the y; survives the pre-round. Then p’s score is at least
37 + 3 (there are 37 4+ 3 honest voters that prefer it over any of the x; and
37 + 3 honest voters that prefer it over z), z’s score is at most 37 + 2 (there
are only 27 + 2 honest voters that prefer it over p), and the score of any of
the x; is at most 374 2, since there are only 27 4+ 2 honest voters that prefer
it over z. Hence, in this case p wins.

The rest of the argument is as in the previous case. The total number of voters
isn =67 +5. O

While the previous results guaranteed security against a constant fraction
of manipulators, in the case of the Borda protocol the allowable fraction of
manipulators depends on the total number of candidates.

Theorem 4. Let m > 4 be the number of candidates and n be the number
of voters. Suppose that f is a one-way function, m —4t> —8t+1 >0, m =
poly(t),and k = [logy(t)] (for k > 80 it must be that t > 25 and thus m > 1300).
Then there is a polynomial-time algorithm that can invert f using an oracle that
can find a constructive (T, (m+ 4t +8)7)-manipulation of S¥:/ —Borda whenever
one exists.

Proof. For Borda protocol, set d = m — 2t — 1, and let the set of candidates be

LT1,Y1ly -5 Tty Yty Py 215 - - -5 2d,



and there are 7 manipulators who rank p first.
Assign x4, , . . ., T4, to the first match-up slots. Pair up p, 21, . . ., zq and assign
them to the remaining slots. Set the non-manipulator votes as follows:

Tay > Yay > oo > Lgy > Ya, > D> 21> ... > 2Zq — « votes,
D>Yay > oo > Yo, > F1 > > 20> Ty > ... > Xg, — [ Votes,

where v and 3 are to be determined later. Assume for convenience that m is
even. Discarding the votes of 7 manipulators, we observe the following:

(1) The preferred candidate p survives the pre-round, and in the main round, p
gets more points than any of the surviving z;.

2) If all y; are eliminated in the pre-round (and hence all z; survive), x,

1

gets (% — 1) a+ (t —1)8 points and other z; get fewer points, while p gets
(% —t— 1) a+ (% — 1) [ points. Thus p wins as soon as (% — t) B—ta > 0.

(3) If any of the y; is not eliminated in the pre-round, then in the main round
the highest-ranking of the surviving y;, which we denote by y;,, gets at least
a — 8 more points than p (the first o votes rank y;, higher than p, and in
the last 3 votes, after we delete all y; that were eliminated in the pre-round,
¥i, immediately follows p). Hence, if & — 8 > 0, p cannot win.
n the pairwise election, as long as a — 8 > 0, y,, can only be eliminated by

4) In the pairwise electi 1 0, Ya, ly be eliminated b
Zays Ya, can only be eliminated by z4,, ys, and z,,, etc, so to eliminate all
y; we have to schedule z,, with y,, fori =1,... 1.

Moreover, if we replace 0 with (m — 1)7 in the right-hand side of the inequal-
ities in (2)—(4), then these properties hold even if we add 7 additional votes.

Hence, we would like to choose o and 3 so that (m/2—1t)8 —ta > (m—1)7,
a—pF > (m—1)7, and a+ [ is as small as possible. From the second condition, it
is clear that o+ 8 = £2(m7); choosing & = (m+ 2t +4)7, 5 = (2t + 4)7 matches
this lower bound and satisfies both conditions provided that m > 4t24+-8t—1. O

4 Limitations

The examples constructed in the previous section (as well as the ones in [CS03])
show that it is possible to construct a voting scheme that does not allow for a
universal polynomial-time algorithm for finding a beneficial manipulation (under
standard assumptions, such as P # N P).

However, this does not exclude the possibility that in many contexts the
manipulator can figure out what to do. It would be desirable to have a voting
scheme with the following property: for any voter and any vector of other voters’
preference profiles finding an action that is always no worse and sometimes better
than truthfully reporting your preferences is hard. The appropriate notion of
hardness would be some flavour of hardness on average, such as inverting one-
way functions. Moreover, we can relax this criterion by requiring it to hold with
an overwhelming probability over the honest voters’ preference profiles rather



than all preference profiles (note, however, that to formalise this, we need to
know the distribution of the voters’ preferences).

Unfortunately, it turns out that this goal is impossible to achieve by simply
adding a pre-round. To formally show this, we construct an example in which
a (destructive) manipulation is always easy to find. Namely, we demonstrate a
family of preferences profiles such that

— if everyone votes honestly, then under any pre-round schedule candidate p
survives the pre-round and goes on to win the elections;

— there is a manipulation by a single voter such that for any pre-round schedule
the result of the elections is a draw between p and some other candidate (and
the manipulator prefers this candidate to p).

Our example is constructed for Plurality protocol, but it is possible to con-
struct similar examples for other protocols as well.

Suppose that m > 8 is even, and set t = m/2 — 2. Let the set of candidates
be p,a,b,c1,ca,. .., cot11. Choose an arbitrary k so that n/34+1 < k < n/2.
Suppose that the honest voters can be divided into three groups

— k + 1 honest voters whose votes are of the form
P>a>b>cii > > Clins

where j = 1,...,k + 1, and each (¢ji,,...,Cjiny,) IS a permutation of
Cly. -y C2t+1;
— k honest voters whose votes are of the form

a>b>p>cj1il > > Chliggys

where j = 1,...,k, and each (¢j;,...,Cjis,,) IS a permutation of
Cly... 702t+1;
— n — 2k — 2 honest voters whose votes are of the form

Cjiy >t > Cjigy >P>a>Db,

where j =1,...,n — 2k — 2, and each (¢j;,,-.-,¢j,
Cly.-,C2t41-

inesr) s @ permutation of

Suppose also that the manipulator’s (honest) preference list is
Ciy > > Cigyy > a>b>p,

where (¢;,, ..., Ciyy, ) is a permutation of c1,...,capq1.
Observe the following:

1. No matter how the manipulator votes, p always survives the pre-round.

2. If either of a or b is not matched with p in the pre-round, he survives the
pre-round, so at least one of them participates in the main round.

3. At least one of ¢; survives the pre-round.



Hence, if everyone votes honestly, after the pre-round there will be k41 votes
for p, k votes for a or k votes for b, and at most n — 2k — 1 < k votes for any of
the ¢;. However, if the manipulator puts a and b on the top of his list, i.e., votes

a>b>01>"'>02m+1 > p,

he can achieve a draw between a/b and p. Unless the draws are always resolved
so that p wins, this strictly improves the outcome of the elections from the
manipulator’s point of view, and in the latter case we can modify the example
by increasing the number of honest voters who rank a first and b second to k+1,
in which case the manipulator can change the situation from a draw between p
and another candidate to a win by another candidate.

While under uniform distribution of preferences, the likelihood of this type
of profile is not very high, the uniformity assumption itself is hardly applicable
to real-life scenarios. In a more polarised society, this preference profile has a
natural interpretation: suppose that there are three established parties, two of
which have similar positions on many issues, and a multitude of independent
candidates, and the voters can be divided into two groups: traditionalists, who
do not trust any of the independent candidates, and protesters, who rank the
established candidates after the independent candidates. Under some additional
assumptions, the situation described above becomes quite likely.

Manipulation for small number of candidates. Clearly, when the number
of candidates m is constant, and there is only one manipulator, he can easily
figure out what to do simply by checking the outcome for all m! possible votes
and submitting the one that produces the best possible result. When the number
of manipulators is large, as is the case in our scenario, enumerating the space
of all possible votes by the manipulating coalition becomes infeasible (even if
we assume that all voters are treated symmetrically, the size of this space is
still exponential in the coalition size), so it might still be the case that choosing
the best possible action is hard. However, if the manipulators’ goal is simply
to submit a set of votes that results in a specific pre-round schedule, and the
scheduling algorithm treats all candidates symmetrically, then, since the number
of possible pre-round schedules is constant, this goal is likely to be attained by
random guessing. Therefore, making manipulation infeasible when the number
of candidates is small cannot be achieved by this method.

5 Conclusions and Future Research

Our work extends the results of [CS02,CS03] in several important directions.
All our improvements address important concerns in the field of secure voting
systems. First, we show that our hardness results hold against a large fraction of
manipulating voters (rather than a single voter). Also, while the original protocol
of [CS03] makes it possible for dishonest election authorities to affect the results
by constructing the pre-round schedule in a way that suits their goals (rather



than randomly), we eliminate this loophole by making the schedule dependent
on the contents of the voters’ ballots. Finally, voters do not need to trust any
external randomness since their voting procedure is completely deterministic; in
a certain sense, our pre-round construction extracts randomness from the votes.

It is important to note that our methodology, as well as the one of [CS03]
works for a wide range of protocols: while some voting procedures are inherently
hard to manipulate, they may not reflect the decision-making procedures that
are acceptable in a given culture, and may thus be deemed inappropriate. On
the other hand, a pre-round followed by an execution of the original protocol
retains many of the desirable properties of the latter. All of the voting protocols
described in Section 2, as well as many others, are used in different contexts;
it is unreasonable to expect that all of them will be replaced, say, by STV just
because it is harder to manipulate.

Note also that while our results have been worded in the terms of polynomial
time, it is relatively simple to estimate the tightness of the reductions. This is
since in all four cases, the attacker that inverts f invites the S¥:f — Mechanism-
breaking oracle only once.

In Section 4, we discuss the limitations of the current approach, showing
that it cannot be used to achieve certain very desirable hardness criteria. We
leave it as an open problem whether there are other methods that satisfy these
criteria, or whether there is a less ambitious set of desiderata that is acceptable
in practice. Another question relates to the fraction of manipulators against
which our system is secure: it would be interesting to raise this threshold from
1/6th fraction of the voters for Plurality, STV, and Maximin, and 1/mth for
Borda, or to show that this is impossible.
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