
Neural Networks: a replacement for Gaussian

Processes?

Matthew Lilley and Marcus Frean

Victoria University of Wellington, P.O. Box 600,
Wellington, New Zealand
marcus@mcs.vuw.ac.nz

http://www.mcs.vuw.ac.nz/∼ marcus

Abstract. Gaussian processes have been favourably compared to back-
propagation neural networks as a tool for regression. We show that a
recurrent neural network can implement exact Gaussian process infer-
ence using only linear neurons that integrate their inputs over time,
inhibitory recurrent connections, and one-shot Hebbian learning. The
network amounts to a dynamical system which relaxes to the correct so-
lution. We prove conditions for convergence, show how the system can act
as its own teacher in order to produce rapid predictions, and comment
on the biological plausibility of such a network.

1 Introduction

Multi-layer Perceptron (MLP) neural networks are powerful models of broad ap-
plicability, able to capture non-linear surfaces of essentially arbitrary complexity.
However such networks have their drawbacks, two of which we highlight here.
Firstly, the learning algorithm is generally believed to be implausible from a bi-
ological point of view, for example in requiring synapses to act bi-directionally,
and being very slow to train. Secondly, there is no uncertainty model in a neural
network implemented in this way: given an input, the network produces an out-
put directly, and nothing else. This is undesirable – the real world is dominated
by uncertainty, and predictions without uncertainty are of limited value.

Gaussian process regression is not based on any biological model, but provides
an explicit uncertainty measure and does not require the lengthy ‘training’ that
a neural network does. While techniques for obtaining uncertainty from a neural
network exist [9], [6] they are additions to the architecture, whereas Gaussian
processes have uncertainty as a fundamental component arising naturally from
a Bayesian formulation. Indeed, predictions made by neural networks approach
those made by Gaussian processes as the number of hidden units tends to infinity.
There are good arguments for Gaussian processes being considered a replacement
for supervised neural networks [7].

Here we show that neural networks can themselves implement Gaussian pro-
cess regression, in a way that has interesting parallels with neural circuitry.

2 Gaussian Process regression

Suppose we are given training data D consisting of input patterns {x1,x2 . . .xn},
each of which is a vector, paired with their associated scalar output values t =
{t1, t2 . . . tn}. MLP networks can be thought of as imperfectly transforming this
data into a set of representative weights. The actual data is not directly involved
in making predictions for a new target t given a new input vector x. The process
of training the network (setting the weights) is slow, but the predictions are fast.

Gaussian processes make predictions in a way that is fundamentally different
to MLP networks. Rather than capturing regularities in the training data via a
set of representative weights, they apply Bayesian inference to explicitly compute
the posterior distribution over possible output values t given all the data D and
the new input x. This process involves C, a covariance matrix generated using
a covariance function Cov(x, x′; Θ) where Θ are hyper-parameters. Although a
variety of other alternatives are possible [13], a typical form for the covariance
function is

Cov (x,x′) = θ1 exp

(

−
(x − x′)2

2θ2
2

)

+ θ3 δx,x′ .

θ1 determines the relative scale of the noise in comparison with the data. θ2

characterises the distance in x over which t is expected to vary significantly. θ3

models white noise in measurements and δ is the delta function.
Essentially, the covariance matrix determines the scale and orientation of

a Gaussian distribution amongst the variables t. The task of regression is to
find the distribution P (t|D,x,C, Θ), conditioning on the n input-output pairs
corresponding to the training data, together with the new input. For a Gaussian
process this conditioning process can be done analytically, resulting in a 1-D
Gaussian distribution characterised by the following (see e.g. [2] for a derivation):

mean = kT C−1t, variance = κ − kT C−1k . (1)

Here Cij = Cov (xi,xj) and k is the vector of individual covariances kj =
Cov (xj ,x) between the new input x and each of those in the data set. κ is
Cov (x, x), a constant for stationary convariance functions. For the above it is
θ1 + θ3.

3 Gaussian processes as neural networks

In this section we show how relatively simple neural circuitry could carry out
the operations required for Gaussian process inference.

Firstly, notice that the vector k can be thought of as the output of a layer of
radial basis function (RBF) units, given input pattern x. Each RBF unit arises
from a previously observed input vector, and calculates its response to the new
input using a Gaussian receptive field centered on the original vector, just as so-
called “grandmother cells” [4] show peak activity for a particular input pattern,
and progressively less response the greater the difference between the current
stimulus and this pattern.

The primary task appears at first to be inversion of C, but this is not strictly
necessary - it is sufficient to find kT C−1. Thus the problem can be reformulated
as follows: given a matrix C and a vector k, we wish to find C−1k. Supposing
that C−1k = g, pre-multiplying by C gives k = Cg. The problem then reduces
to iteratively improving g until the difference between Cg and k is sufficiently
small. Gibbs [2] defines a measure Q = gT.(k − 1

2
Cg), the gradient of which is:

∇gQ = (k −Cg) . (2)

This gradient is zero at the solution to our problem. Gibbs uses a conjugate
gradient routine to locate the solution. However for our purposes note that since
∇2

gQ = −C < 0, g can be iteratively improved by simply taking a small step in
the direction of the gradient,

∆g = η(k −Cg) . (3)

In the Appendix we show that this algorithm converges on the exact solution,
and we derive an optimal value for η.

The change to each component of g is a linear function of itself at a previous
time-step, which suggests a network of linear neurons that integrate their inputs
over time. The input needs to be k −Cg, so we have direct input of k together
with inhibitory recurrent connections between all the g neurons, with weights
−Cij . The change to the neuron’s output activity is simply the sum of these,
times a constant η. Once this network converges we have only to take the dot
product with the vector of targets (equation 1), which is easily achieved via a
second layer of weights whose values are set to their respective target outputs
(Figure 1).

Fig. 1. A network architecture that implements Gaussian process regression. It con-
verges on the mean m of the predicted output distribution, given input x. Connections
from k to g have weights of 1, recurrent connections have weights −Cij , and those
from g to the output m have weights t. In this case the input is a 3-dimensional vector
and inference is carried out on the basis of 4 input-output pairs

The rate of convergence depends on the choices for hyperparameters, as
shown in Figure 2 for a representative range of outcomes. θ2 plays a crucial
role, as it effectively determines the expected number of datapoints involved in
each prediction. If θ2 is small then the new input is unlikely to be close to any
previous data and therefore k ≈ 0, or it may be close to just one previous input,
in which case only one element of k is significantly non-zero. Larger values of θ2

make both k and C less sparse, and intuitively one can see that this will require
more iterations to take account of the corresponding interrelationships.

0
0.1

0.20.5

1
0

0.05

0.1

θ
3

θ
2

rm
s

er
ro

r
af

te
r

10
 it

er
at

io
ns

Fig. 2. The rms error between g and kT C−1 after 10 iterations of the dynamics. We
used 100 data points chosen at random from within a 10-dimensional hypercube. θ1

was fixed at 2.0 and the convergence rate for various values of θ2 and θ3 explored. Each
vertex is an average over 100 independent runs. The rate parameter η was set to the
value derived in the Appendix

The various connections in the system need to be set to particular values
in order for this procedure to work. Firstly, the RBF units must each be cen-
tered on a unique input pattern. We don’t address exactly how this might be
implemented here, but one can imagine a constructive process in which a novel
input pattern xn+1 triggers the recruitment of a new cell whose output is, and
remains, maximal for that pattern. By thinking of the network in this construc-
tive manner it is also clear how the other connections might be set: another new
cell gn+1 is similarly recruited, and receives input from xn+1 with a synaptic
weight of one. Its weights both to and from any other g cell, say gi, need to
be −Cov(xi,xn+1), which is simply the value taken by ki for the current input.
Indeed this is locally available as the instantaneous1 value of gi, amounting to
a form of (anti) Hebbian learning. Finally the synaptic weight from gn+1 to the
“output” must be set to tn+1, which we may assume is the output cell’s cur-
rent value. In this way a network is both constructed and “learned” by local
mechanisms as input-output pairs are presented to it.

1 i.e. the value gi takes, prior to being perturbed by the recurrent neural dynamics

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

Fig. 3. A 1-dimensional example for illustrative purposes. There are 5 data points
(squares). Predictions were then made by running the dynamics for 100 iterations, for
a range of inputs. The dashed line is the mean and vertical bars indicate one standard
deviation of the uncertainty, calculated as described in the text

The variance of the prediction is given by the expression kT C−1k. Part of
this (kT C−1) has already been calculated by the network which determines the
mean, so we can reuse the previous calculation and essentially get the variance
for (almost) no added cost. All that remains is to find the dot product of the
g vector with k. Initially this seems like a trivial problem, but from a biolog-
ical perspective it poses some difficulty. A possible mechanism is suggested by
the process known as shunting inhibition, proposed as a possible mechanism for
neurons to divide numbers [1] in which the output of one neuron inhibits the
transmission of charge between two other neurons. As the elements of k are be-
tween 0 and 1, computing kT C−1k can be considered to be scaling the elements
of kT C−1 by the elements of k, a task to which shunting inhibition seems ideally
suited. Against this, some precise wiring is now required, as the ith k neuron
must gate the effect of the ith g neuron on the output.

3.1 Faster predictions over time

The inference mechanism described here is very fast to learn (one-shot Hebbian),
but is slow in making predictions due to the iterative process by which it arrives
at the solution. However, we can use the iterative algorithm to generate “targets”
with which to learn a second, single layer forward-feed network which runs in
parallel with the Gaussian process mechanism and attempts to learn weights
corresponding to C−1. Given k this secondary network can then directly compute
kTC−1 in a single pass (see Figure 4). One can think of the inversion network
as an oracle, which generates training data for the direct network given the
raw inputs. We have shown experimentally and analytically [5] that this process
converges exponentially quickly to the correct solution.

4 Discussion

A multi-layer perceptron neural network has Gaussian process behaviour when
the number of hidden neurons tends to infinity, provided weight decay is em-

Fig. 4. Schematic representation of a parallel network that produces fast predictions
and is trained on targets provided by the slower iterative process. The output of the
k neuron is used as an input to the neurons labeled a on the “direct” path. They use
the target of the g neurons (shown by the dotted line) to adjust their weights. Another
possibility (not investigated further here) would be to learn a direct linear mapping
from k to m′

ployed [9]. We have argued that the converse is also true in the sense that the
calculations required to calculate the expected output can be carried out by a
simple neural network. In effect an infinite number of hidden units in a feed-
forward architecture can be replaced by a merely finite number, together with
recurrent connections and the ability to accumulate activity over time.

Recovery from intermittent errors can be shown to be exponentially fast [5].
This leads to the appealing property that accuracy improves exponentially with
time: early results are rough, later results become exact.

However there are some difficulties with our proposal. Calculating the correct
variance is considerably more problematic than finding the mean. While shunt-
ing inhibition is a potential mechanism for achieving this, it does require some
rather precise neural wiring. Similarly, we have avoided dealing with the set-
ting of hyperparameters Θ. While there are several possible avenues that might
be pursued [5] they all appear to involve further additions to the architecture
described here.

There is an interesting relationship between the algorithm presented here
and a neural architecture suggested for faithful recoding of sensory input data
by the visual cortex[14], [15]. Essentially the Daugman algorithm minimizes the
difference between sensory input and internal template-based models by step-
wise gradient descent. The dynamics are similar to those we describe except that
there is feedback from the equivalent of the g layer (the internal model) back

to the k layer (the sensory input), rather than recurrent connections within g.
Perfoming this simplistic gradient descent on Q = − 1

2
(g − Ck)T (g − Ck) is

dimensionally inconsistent [6]. Fortunately, this is not a fatal problem and can
be remedied by premultiplying Q by its curvature, which is simply C−1 [5]. This
leads to the remarkable conclusion that our algorithm is actually a covariant
form of the biologically inspired algorithm proposed by Daugman.

References

1. Dayan, P., and Abbott, L. Theoretical Neuroscience. Massachusetts Institute of
Technology, 2001, p. 189.

2. Gibbs, M. N. Bayesian Gaussian Processes for Regression and Classification. PhD
thesis, University of Cambridge, 1997.

3. Hebb, D. O. The Organisation of Behaviour. Wiley, New York, 1949.
4. J.Y. Lettvin, H.R. Maturana, W. M., and Pitts, W. The Mind: Biological Ap-

proaches to its Functions. Interscience Publishers, 1968, ch. 7, pp. 233–258.
5. Lilley, M. Gaussian processes as neural networks. Honours

thesis, Victoria University of Wellington, 2004. Available from
http://www.mcs.vuw.ac.nz/people/Marcus-Frean

6. MacKay, D. Information Theory, Inference, and Learning Algorithms. University
Press, 2003, ch. 34.

7. MacKay, D. J. Gaussian processes - a replacement for supervised neural networks?
Lecture notes for a tutorial at NIPS 1997.
http://www.inference.phy.cam.ac.uk/mackay/gpB.pdf

8. McIntosh, H. V. Linear Cellular Automata. Universidad Autonoma de Puebla,
1987, ch. 9.4.

9. Neal, R. Priors for infinite networks. Tech. rep., University of Toronto, 1994.
10. Petersen, K. The matrix cookbook. Technical University of Denmark, 2004.

http://2302.dk/uni/matrixcookbook.html

11. Weisstein, E. W. Eigen decomposition theorem.
http://mathworld.wolfram.com/EigenDecompositionTheorem.html.

12. Weisstein, E. W. Positive definite matrix.
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html.

13. Williams, C. K. I., and Rasmussen, C. E. Gaussian processes for regression. Ad-

vances in Neural Information Processing Systems 8 (1996), 514–520.
14. Daugman, J. Complete Discrete 2-D Gabor Transforms by Neural Networks for

Image Analysis and Compression. IEEE Trans. ASSP, vol.36 no. 7 (1988), pp.
1169-1179

15. Pece, A.E.C. Redundancy reduction of a Gabor representation: a possible compu-
tational role for feedback from primary visual cortex to lateral geniculate nucleus,
Unpublished manuscript, 1993.

Appendix

Here we prove that our algorithm is correct using infinite series, which clarifies
the conditions under which the inversion converges, and leads to a technique to
force otherwise non-convergent matrices to converge. We start by assuming the
value of g at time zero is 0. Then, at time t, gt = gt−1 + kT − Cgt−1 which is
gt−1(I −C) + kT . The closed form for g at time t is then

g(t) = kT

t−1
∑

i=0

(I −C)
i

.

Multiplying both sides by (I − C), subtracting from g(t), and right-multipling
by C−1 yields

g(t) = kT
(

I − (I −C)t
)

C−1 (4)

Taking the limit as t → ∞ gives g(t) = kT C−1, as required. In order for g(t) to
converge, we must assume that limn→∞(I −C)n = 0. Making use of the eigen-
decomposition theorem [11] we can rewrite I −C in terms of the matrix D which
has the eigenvalues of I −C along its diagonal so that I −C = P−1DP , and
since (P−1DP)n = P−1DnP all that remains is to show that

lim
n→∞

P−1DnP (5)

is defined and finite. Because D is diagonal, [Dn]ij = [D]nij and so we conclude
that if for all eigenvalues λi of I −C, |λi| < 1 then this is simply the zero matrix,
which is defined, and finite. Otherwise, the limit is infinite, and therefore the
algorithm fails. In general, |λi| 6< 1, but we can force the condition by introducing
a new parameter, η, as follows. If gt = gt−1 + ηkT − ηCgt−1 then by a similar
process to which equation 4 was derived, we have

g(t) = ηkT
(

I − (I − ηC)t
)

(ηC)
−1

(6)

If we choose η such that the eigenvalues of I−ηC are of magnitude less than one,
then equation 5 will converge, and ultimately equation 6 will converge also. It is
an identity that the eigenvalues λ of I+αM are 1+αλ [10], and the eigenvalues
of a positive definite matrix are all positive or zero [12], therefore by letting α

be − 1

max λ
, we guarantee that all eigenvalues of I−C are of magnitude equal to

or less than one. Imposing the condition that θ3 is non-zero effectively prevents
the matrix from being ill-conditioned. The largest eigenvalue of C is strictly
less than the maximal row sum (for a symmetric matrix) [8], which in turn is
bounded by N(θ1 + θ3), for a matrix having N columns.

ηestimate = |N(θ1 + θ3) + 1|
−1

(7)

Equation 7 gives a tractable way to approximate an appropriate value of η. Em-
pirical evidence suggest that using the estimate described in equation 7 indeed
has similar performance to using the inverse of the largest eigenvalue of I −C,
which appears to be optimal.

