Skip to main content

Circular SOM for Temporal Characterisation of Modelled Gene Expressions

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2005 (IDEAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3578))

Abstract

A circular Self-Organising Map (SOM) based on a temporal metric has been proposed for clustering and characterising gene expressions. Expression profiles are first modelled with Radial Basis Functions. The co-expression coefficient, defined as the uncentred correlation of the differentiation of the models, is combined in a circular SOM for grouping and ordering the modelled expressions based on their temporal properties. In the proposed method the topology has been extended to temporal and cyclic ordering of the expressions. An example and a test on a microarray dataset are presented to demonstrate the advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duggan, D., Bittner, M., Chen, Y., Meltzer, P., Trent, J.: Expresssion profiling using cDNA microarrays. Nature 21, 10–14 (1999)

    Google Scholar 

  2. Möller-Levet, C.S., Yin, H., Cho, K.-H., Wolkenhauer, O.: Modelling gene expression time-series with radial basis function neural networks. In: Proc. of the International Joint Conference on Neural Networks, Budapest, Hungary, vol. II, pp. 1191–1196 (2004)

    Google Scholar 

  3. Möller-Levet, C.S., Yin, H.: Modelling and clustering of gene expressions using RBFs and a shape similarity metric. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 1–10. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Möller-Levet, C.S., Yin, H.: Modeling and analysis of gene expressions based on coexpressions. International Journal of Neural Systems (2005) (submitted)

    Google Scholar 

  5. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  6. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  7. Guimaraes, G., Moura-Pires, F.: An essay in classifying Self-Organizing Maps for temporal sequence processing. In: Allison, N., Yin, H., Allison, L., Slack, J. (eds.) Advances in Self-Organising Maps, pp. 259–260 (2001)

    Google Scholar 

  8. Kohonen, T.: The hypermap architecture. In: Kohonen, T., Mkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, vol. 2. Elsevier Science Publishers, The Netherlands (1991)

    Google Scholar 

  9. Chappel, G.J., Taylor, J.G.: The temporal Kohonen map. Neural Networks 6, 441–445 (1993)

    Article  Google Scholar 

  10. Varsta, M., Millan, J.D.R., Heinkkonen, J.: A recurrent Self-Organizing Map for temporal sequence processing. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 421–426. Springer, Heidelberg (1997)

    Google Scholar 

  11. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Temporal sequence processing using recurrent SOM. In: Second Int. Conf. on Knowldege-Based Intelligent Engineering Systems, April 1998, vol. 1, pp. 290–297 (1998)

    Google Scholar 

  12. Kemke, C., Wichert, A.: Hierarchical Self-Organizing Feature Map for speech recognition. In: Proc. of the World Congress on Neural Networks, Hillsdale, NY, USA, vol. 3, pp. 45–47 (1993)

    Google Scholar 

  13. Zhang, B.-T., Yang, J., Chi, S.W.: Self-Organizing latent lattice models for temporal gene expression profiling. Machine Learning 52, 67–89 (2003)

    Article  Google Scholar 

  14. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2(2), 302–309 (1991)

    Article  Google Scholar 

  15. Schwarz, G.: Estimating the dimension of a model. The Annuals of Statistics 6(2), 461–464 (1978)

    Article  MATH  Google Scholar 

  16. Yin, H., Allison, N.M.: A Bayesian self-oganising map for Gaussian mixture. IEE Proc.- Vision, Image and Signal Processing 148(4), 234–240 (2001)

    Article  Google Scholar 

  17. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycleregulated genes of yeast Saccharamyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möller-Levet, C.S., Yin, H. (2005). Circular SOM for Temporal Characterisation of Modelled Gene Expressions. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_42

Download citation

  • DOI: https://doi.org/10.1007/11508069_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics