
iShare - Open Internet Sharing Built on

Peer-to-Peer and Web

Xiaojuan Ren and Rudolf Eigenmann

Purdue University, School of ECE
West Lafayette, IN, 47907, USA
{xren,eigenman}@purdue.edu

Abstract. This paper presents design concepts and implementation
overview of an Internet-sharing system, iShare. iShare supports end users
as well as providers of Internet resources in disseminating, accessing and
using these resources, in a way that allows open participation. A fully
decentralized organization allows providers to simply post their resources
on any web page, imposing no restrictions on resources attributes, admin-
istrative rules, and access protocols. Underneath its user surface it em-
ploys peer-to-peer information dissemination, advanced resource match-
ing, open migration, and automatic service portal mechanisms. In ad-
dition to the qualitative comparison with related work, we evaluate the
system in terms its efficiency of resource discovery and job execution.

1 Introduction

Internet-sharing systems harness the rapidly growing, worldwide resources of
computer, network, and information systems. Advanced sharing technology bears
tremendous potential in creating synergy among the users – both providers and
end users – of machine platforms, networks, computer applications, software
services, and information. We envision that future end users will be able to
quickly learn about the availability of world-wide resources and to employ them
as if they were located nearby, without download, installation, or maintenance
effort. Providers of resources will be able to easily offer new software, hardware,
or data to the community. In doing so, they will be able to define their own rules
and create business or open source models, akin to today’s economic principles.

In this paper we present design concepts and implementation overview of
an Internet-sharing system, iShare1, which serves as a research platform in pur-
suit of this vision. iShare facilitates sharing of three types of resources: programs
(software tools, computational applications), machines (computers, devices), and
data (documents, data bases). While much technology exists today for the shar-
ing of data, the focus of iShare’s initial thrust is on technology for sharing ex-
ecutable programs (a.k.a. services – we will use the two terms interchangeably)
and their underlying compute platforms.

1 It is based upon work supported in part by the U. S. National Science Foundation
under Grants No. 9974976-EIA, 0103582-EIA, and 0429535-CCF.

iShare extends the concepts of the PUNCH [7, 6] network computing system,
which became operational in 1995 at Purdue University and has since served a
large user community (over 3000 users in 35 countries) in computational nan-
otechnology, computer architecture and parallel programming. Both iShare and
PUNCH have a strong end-user orientation. They 1) provide the means to dis-
seminate, access and use networked resources and 2) they populate the infras-
tructure with services for the community. This orientation distinguishes the sys-
tems from related work in areas such as Grid computing and Web services. While
these areas are pursuing goals similar to the original PUNCH project, their cur-
rent focus is on developing the underlying technology, programming support,
and standards for exploiting computational resources. iShare was motivated by
an observed limitation of PUNCH, which it shares with many related efforts:
populating the infrastructure with additional resources is limited by eligibility
requirements and administrative procedures. For example, machines may only be
added if they adopt certain administrative procedures; and programs may only
be added after they become “grid-enabled”. Furthermore, the new resources may
need to be registered in or approved by a central organization before they be-
come visible to the community. Removing these barriers would enable Internet
resources to be shared in a truly open and scalable manner.

iShare addresses these issues by taking an open publication approach, which
imposes no restrictions on participating resources. A web-posting mechanism
publishes new resources and a fully distributed peer-to-peer mechanism supports
resource discovery. Powerful resource matching mechanisms serve to map pro-
gram resources onto fitting platforms. While iShare builds on existing standards
and middleware technology, protocol plug-ins allow new protocols and standards
to be added, satisfying the needs of resources posted in the future.

The remainder of this paper is organized as follows. Section 2 presents the
design concepts and implementation of iShare. Section 3 provides evaluation
results. We discuss related work in Section 4, followed by conclusions in Section 5.

2 The iShare Architecture

An Internet-sharing system can be characterized in terms of 1) its user model,
2) the semantics and type of the resources it can support, 3) the information dis-
seminated about resources and activities at remote sites, and 4) the mechanisms
that support the use of these resources at remote sites. This section elaborates
on iShare’s design concepts and implementations in these four areas.

The system architecture is shown in Figure 1(b). For space reasons, several
important iShare components were left out of this paper – most notably iShare’s
authentication and trust mechanism (building on state-of-the-art techniques)
as well as facilities for exchanging experience and bridging across diverse user
communities. An extended version of this paper describes these components [5].

2.1 User Model

Supporting a Resource Provider User Class Internet-sharing systems pro-
vide their user communities with facilities to discover and make use of resources

(a) The End User View in iShare (b) The iShare Architecture

User Layer

Resources Distributed in P2P

Overlay Networks

Globus

 Nodes

Desktop

 PCs

………

Resource Usage
Monitoring/Profiling

Resource Allocation

Service Portal

Information Dissemination

R
e
s
o
u
rc
e
 S
e
m
a
n
tic
s

Condor

 Pools

Remote
Resource
Use

Fig. 1. The End User View and the Structure of iShare.

created and maintained at remote sites. In addition to its end users, iShare con-
siders providers of resources as an important user class. Resource developers take
advantage of the ease with which resources can be made available to end users.

The basic iShare functionality for resource providers supports 1) creating re-
source descriptors, 2) publishing and removing resources, and 3) optionally start-
ing and configuring advanced iShare services. Publication of a new resource is
fully autonomous and does not require user interaction with any iShare “admin-
istrator”. To end users, the published resources appear organized into discipline-
specific Cyberlabs. Providers define (as a resource attribute) the Cyberlabs in
which they wish to “place” the new resource. The core functionality for end
users is to run the discovered, remote programs, using local files and displays as
input/output.

Providing iShare Functionality Within Common Work Environments

Web portals provide convenient user interfaces to many Internet-sharing systems.
However, advanced users often prefer to work within their common environment,
such as a Unix Shell or Windows desktop. The iShare user functionality is ac-
cessible via an API, which allows different user interfaces to be built. Our initial
design includes a Windows-based interface, as shown in Figure 1(a) and we are
exploring iShare Unix Shell functionality.

2.2 Resource Semantics and Types

Resource Description with RDF An important issue in Internet-sharing
systems is the clear description of resources. Resource providers must define the
semantics about what is shared, who is allowed to share, and how sharing occurs.
iShare adopts RDF as the resource description language for consistent encoding
of resource attributes. RDF aims to specify semantics for data in a standardized
interoperable manner [1] and provides a rich data model for describing objects.

iShare supports three types of resources at an equal level: software services
(programs), service platforms (machines), and data. An important program at-

tribute is that of a pinned or roaming service. Pinned services are applications
running only on a specific platform, whereas roaming applications can execute
on any matching platform. Machines are published as available hosts for roam-
ing services. They might be individual machines or locally managed sub-systems
(e.g., a network of workstations managed by Condor [9]).

Autonomy in Defining Resource Attributes An important design concept
is that resources can define their own rules of usage. Thus, a machine may offer
services under its own administrative procedures and access protocols. iShare will
find matching programs and platforms. Protocols that are not available initially
may be plugged in, making the system incrementally more powerful.

To support the autonomy in defining local access rules, the standardized
metadata definition must be extensible enough to support plug-in protocols. In
our initial design, we formalized the metadata to include the common attributes
of access protocols in widely used local management systems such as Condor [9]
and PBS [10]. The metadata includes recompiling/relinking operations, submis-
sion syntax and user-commands. For example, accessing and utilizing a Condor
pool involves relinking programs to utilize advanced features like checkpointing,
creating a “submission files” with predefined syntax, and starting job running
via specific commands: condor submit. All this information must be described
as resource access protocols. The information is then used for creating service
portals, which hide the details from end users.

2.3 Information Dissemination

Decentralized Organization Built on P2P and Web The information to
support network-accessible computing is incremental and distributed in the sense
that it is created from items at different locations and items available at differ-
ent points in time. The incremental and distributed nature of the information
makes it infeasible to collect and maintain it at a centralized location in a scal-
able manner. Thus, a decentralized scheme is essential for reliable and efficient
information management. A key idea of iShare’s decentralized structure is that a
provider of resources can post their availability on any web page. Resource meta-
data is derived from these postings and inserted into a P2P network. While the
World Wide Web affords unprecedented access to resource descriptors, metadata
distributed in the P2P network improves discovery of and access to resources.

To publish a new resource, the publisher specifies the publication URL via the
user layer configuration. Resource descriptors are posted on this URL manually
or automatically through iShare’s resource publishing tool. The involved web
servers serve as a repository to resource description documents and are managed
by the individual resource publishers. The P2P network in iShare consists of all
participant nodes. An iShare node could be a host serving a published software
service, a host published as an accessible machine resource, or the workstation
from which an end user accesses iShare.

Information Naming, Publication and Discovery Resources in iShare are
hierarchically categorized into Cyberlabs, as shown in Figure 2. The resources in
one lab are semantically related in their functionalities. Resources are described
by metadata, which form a tree representing the hierarchical name space. In-
stead of maintaining central directory service for the tree, iShare distributes
the hierarchical name space to the underlying P2P network, which supports the
publication and discovery process.

Electronics

 CyberLab

…
Computational
 Biology

 Biosequences Neurodynamics …

Data

 Machines

Software
Applications

 Computational Resources
With Hierarchical Semantics

 Semantically Related Resources
Co-located on a Structured P2P Overlay

 “Semantic Locality”

Cyber Lab
Computational Biology

Electronics …

Computational
Biology

Biosequences

Neurodynamics

Biosequences

Data
Machine

Software
 Applications

PPP222PPP OOOvvveeerrrlllaaayyy

A user interested

in Biosequences

 “Interests Locality”

1

2

3

Fig. 2. Resources are organized in a hierarchical tree, which is mapped to a P2P overlay.
The big circle represents a P2P overlay, with arrows indicating P2P routing messages
to discover resources.

Information disseminated in iShare includes resource descriptions, job ex-
ecution profiles, resource-usage information, and user profiles. Each piece of
information is linked to a specific resource. Thus it could be also mapped to
the hierarchical structure described above. An item in the hierarchical space
is mapped to a peer node by the hashing value of the item’s prefix path. The
current implementation of the P2P network is built on a structured overlay net-
work, Pastry [3]. A shared data item is distilled into standardized metadata and
inserted with Pastry’s (route (msg, key)) API. Requests for data are routed with-
out requiring any knowledge of where the corresponding data items are stored.

To achieve fault tolerance, each publication operation creates a few replicas.
The discussion of the replication and fault tolerance is beyond the scope of this
paper, and details could be found in [4]. A local resource cache is designed to keep
recently-used metadata. Successful end-user discovery operations will update
the cache. Mechanisms to maintain cache consistency are described in [4]. The
impact of caching on resource discovery latency is evaluated in Section 3. Load
balancing related to the size of data stored on each peer is currently exploited
and will be presented in a future paper.

2.4 Remote Resource Use

Mechanisms for the remote use of resources are at the core of most Internet-
sharing systems. They include the functionality for matching discovered software
services with execution platforms, employing suitable protocols for remote job
execution, and connecting user input/output. iShare builds on a large number
of contributions in this area. Two features distinguish iShare’s remote resource
use: support for roaming services and automatic creation of service portals.

Resource Allocation for Roaming Services Roaming services are programs
that pick the best combination of service replica and matching platform for ev-
ery invocation. Our concepts include advanced resource matching and open mi-
gration of the service to the matching platform. Advanced matching needs to
consider the option that services whose program source code was included in
the publication may be recompiled and assigned to a different platform. De-
cision making for such matching in heterogeneous environments involves repli-
cation and caching strategies for service binaries and performance prediction
techniques that consider possible recompilation. Open migration installs a ser-
vice on a potentially unreliable platform. This involves monitoring, safeguarding
mechanisms, and possibly relocating the service.

Automatic Creation of Service Portals A service portal establishes the user
interface to a remote program. It is mapped to the native job running environ-
ment at run-time. The challenges are to create this interface automatically from
the service description and generate it in the user’s preferred software environ-
ment. Service portals may be batch-oriented or fully interactive. They support
plug-in access protocols by automatically generating job submission files and
keeping track of site- and application-specific information.

3 Evaluation

Of the four areas of contributions, as described in Section 2, this section provides
quantitative evaluations of the information dissemination (in terms of the latency
of resource discovery) and the remote resource use techniques (in terms of the
efficiency of job execution). For qualitative evaluations of the user model, and
resource semantics components we refer to [5].

3.1 Efficiency of Resource Discovery

We simulated the P2P based resource discovery, iDiscover, on a GT-ITM router
network using the transit-stub model [2]. The size of the IP network is 1050
routers, 50 of which are used in transit domains and the remaining 1000 in
stub domains. To test the scalability of iDiscover, we simulated several iShare
testbeds with the number of nodes ranging from 500 to 10,000. We assume the
iShare nodes are uniformly attached to the routers.

Basic Pastry Routing

0

2

4

6

8

10

12

14

16

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

#Nodes

#
A
v
e
ra
g
e
 h
o
p
s
 p
e
r
d
is
c
o
v
e
ry

No Cache e=2
e=6 e=10
e=20 e=30
e=100 e=1000

Fig. 3. Average number of hops per discovery. e is the normalized cache expiration
time (cache expiration time/average request period).

In the experiment, we measured the effect of caching on discovery la-
tency with different normalized cache expiration time e (e = cache expiration
time/average request period). Each discovery operation starts from searching the
root “Cyberlab”. One out of five nodes in the P2P network was randomly chosen
to initiate the search request. Figure 3 plots the discovery response time with e

ranging from 2 to 1,000. The figure shows that the discovery latency increases
very slowly with the total number of nodes. We also see that with fair expiration
time (e = 6), the response time is reduced by 10.37% on average compared to a
discovery without local cache. The measurement results for cache hit rates are
analyzed in [4]. Compared with the basic Pastry message routing, the resource
discovery takes only a factor of 2-4 times longer, while supporting searches of
resources with specific functionalities.

3.2 Efficiency of Remote Job Execution

In this section, we compare the efficiency of remote job execution in iShare
with that in SSH-based remote access. The goal is to show that iShare provides
advanced network computing environment with acceptable costs in performance.

Remote access to computing services is commonly provided via explicit login
to remote platforms (via REXEC, RSH and SSH). These mechanisms have sev-
eral limitations [7], such as users having to manually identify and select remote
machines as well as being exposed to site- and platform-specific idiosyncrasies.
iShare addresses these limitations by decoupling the computing environment
perceived by users from the underlying physical environment. After getting the
required access (e.g., account/password, certificate or public/private keys), end
users can start an arbitrary job by interacting with the service portal. iShare
translates and maps the user inputs automatically to the native service interface.

In iShare, the job execution includes the steps to fetch resource descriptor
(from Web or local cache), parse the descriptor, create the service portal, au-
thenticate, transfer input files, execute the program (including input processing
and environment configuration) and process output. We chose a set of pinned
services on a machine accessed via SSH. After getting accesses to these services,
we ran them on iShare’s built-in SSH client and monitored the time spent at

each of the above steps. To test the efficiency of the standard SSH, we manually
coded Shell scripts to run each of these programs on the same remote machine
with standard ssh and scp commands. A ssh agent is started manually to provide
the authentication similar to iShare’s single sign-on mechanism (end users only
need to input a password once). The efficiency difference between the public key
authentication and password authentication is ignored in this experiment.

namomos

script

QTLCart

polaris

molctoy

cntiv

schred

tunprob

iShare

0 20 40 60 80 100 120 140

P
ro
g
ra
m
s

Time (s)

Fetch RDF

Parse RDF

Create Virtual Interface

Authentication

Process Input

Run Program

Process Output

Fig. 4. Remote job execution through iShare and standard SSH.

Figure 4 shows the results for running a set of programs in iShare and with
the manually-coded scripts. The time for parsing RDF descriptors and creating
service portals is less than one second. The SSH-based job submission in iShare
performs similar to the standard SSH protocol. The standard SCP protocol
outperforms the iShare’s built-in file transfer protocols. The reason is that file
I/O operations involved in SCP cause more overhead in iShare, because it is
implemented with high level programming language (Java). Optimization of data
transfer will be considered in future work.

4 Related Work

The research community is exploring a variety of approaches for constructing
software infrastructures for Internet-sharing. On-going research can be divided
into five categories with different foci and goals. The first category includes
global standardization efforts for grid computing, represented by GGF [19]
and NMI [18]. The focus of the second category is to provide application pro-
grammers a set of tools to harness “Grid” resources, e.g., to distribute mas-
sively parallel applications with message-passing. Examples of such work include
Globus [8] and GridLab [11]. Work in the third category aims to develop “Grid-
enabled” domain-specific applications. Active projects include EuroGrid [12],
CrossGrid [13]. Work in the fourth category is geared towards providing end
users (and resource providers) with the means to disseminate, access and use
networked resources. Related work in this category includes active software web
portals such as PUNCH [7] and NCSA-portals [14]; and web service techniques
such as IBM WebSphere Application Servers [15]. The work in the fifth category
is motivated by using P2P techniques to manage and share globally distributed

resources. Active research includes large-scale file sharing systems [16] and com-
pute cycle sharing [17].

iShare belongs to the forth category, which differs from the other four cate-
gories by its user-orientation, its network accessibility to executable programs,
its focus on “single-platform” rather than parallel applications and its support
for generic instead of domain-specific programs. Within this category, we intro-
duce the related work in end-user-oriented Internet-sharing systems and compare
iShare in terms of the design concepts in Section 2.

User Model: Software web portals provide end users direct access to unmodified
software tools via standard Web browser. However, they don’t provide any open
functionalities to resource providers. Most often, adding a new tool on a web
portal has to involve the portal developers’ administration. iShare solves this
problem by decentralized web-posting and P2P message routing. Web service
techniques enable users to build Web-based applications using preferred object
model, programming language and platform. Service developers publish service
descriptions to a central information location. This differs from iShare’s support
for unmodified applications with no programming requirement and decentralized
resource publication.

Resource Semantics: Both web portals and web services target software appli-
cation resources that are bound to fixed machine resources. iShare’s roaming
services combine program and machine resources provided by different commu-
nities, thus offering a more flexible and open environment for resource sharing.
Resource descriptions in web portals exist as static web pages containing docu-
mentations for specific programs. These web pages are manually maintained by
portal administrators. Web services use WSDL for service interface specification
and the specification is registered to a central UDDI registry. The RDF lan-
guage adopted in iShare focused on semantics specification rather than syntax
specification in WSDL. iShare’s resource description supports autonomy on the
definition of access protocols, while in web portals and web services, standard
access protocols are required.

Information Dissemination: Resource discovery is not a critical issue in web
portals, because all application resources are listed explicitly on web pages linked
through the portal’s main web page. In web services, users locate the services
from the UDDI registry via SOAP. In contrast to the centralized structures in
the two systems, iShare disseminates information via posting on individual web
pages and registering to a P2P network. There is no central registry server or
storage space in the whole iShare system.

Remote Resource Use: The remote job execution in web portals and web ser-
vices is supported by standardized protocols. They can be secured with HTTP
basic authentication, HTTPS and SSL encryption, and digital signature. iShare
supports plug-in protocols defined by individual providers via learning from the
resource descriptions. The initial design of iShare supports commonly used au-
thentication protocols such as SSH. Future work will extend iShare’s security
implementation to also support the Grid Security Infrastructure.

5 Conclusions

We have presented the design concepts and a implementation prototype of iShare
- an Internet-sharing system built on P2P technology and the Web. iShare differs
from related work in its user functionality for both providers and end users, its
autonomy in defining and controlling local resources, its P2P-based information
dissemination mechanisms and its support for roaming services and dynamic
service portal creation. The evaluation results on resource discovery and remote
execution confirm that iShare is able to deliver scalable and efficient Internet-
based computing.

References

1. K. Selcuk Candan, H. Liu, R. Suvarna: Resource Description Framework: Metadata
and Its Applications. ACM SIGKDD Exploration Newsletter, 3 (2001) 6–19

2. Ellen Zegura, Kenneth Calvert, Samrat Bhattacharjee: How to Model an Internet-
work. Proc. IEEE INFOCOM, (1996)

3. A. Rowstron, P. Druschel: Pastry: Scalable, Distributed Object Location and Rout-
ing for Large-scale Peer-to-peer Systems. Proc. IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), (2001) 329–350

4. Xiaojuan Ren, Zhelong Pan, Rudolf Eigenmann, Y. Charlie Hu: Decentralized and
Hierarchical Discovery of Software Applications in the iShare Internet Sharing Sys-
tem. Proc. PDCS, (2004)

5. Xiaojuan Ren, Rudolf Eigenmann: iShare – Internet Sharing of Programs, Machine
and Data. Technical Report ECE-HPCLab-04203, High-Performance Computing
Laboratory, Department of ECE, Purdue University, (2004)

6. Insung Park, Nirav H. Kapadia, Renato J. Figueiredo, Rudolf Eigenmann, et. al.:
Towards an Integrated, Web-executable Parallel Programming Tool Environment.
Proc. Supercomputing Conference, (2000)

7. Nirav H. Kapadia, Jose A. B. Fortes: PUNCH: An Architecture for Web-enabled
Wide-area Network-computing. Cluster Computing, 2 (1999) 153–164

8. I. Foster, C. Kessleman: Globus: A Metacomputing Infrastructure Toolkit. Interna-
tional Journal of Supercomputer Applications, 11(2) (1997)

9. Litzkow M. J, Livny M, Mutka M. W: Condor - A Hunter of Idle Workstations.
Proc. ICDCS, (1988) 104–111

10. R. Henderson, D. Tweten: Portable Batch System: External Reference Specifica-
tion. Technical Report, NASA Ames Research Center, (1996)

11. Gabrielle Allen, Kelly Davis, K. N. Dolkas, N. D. Doulamis, et. al.: Enabling Ap-
plications on the Grid - A GridLab Overview. International Journal of High Perfor-
mance Computing Applications, (2003)

12. Christian Hoppe, Pallas GmbH D. Mallmann, F. Julich: EUROGRID - European
Testbed for GRID Applications. GRIDSTART Technical Bulletin, (2002)

13. Marian Bubak, Maciej Malawski, Katarzyna Zajac: The CrossGrid Architecture:
Applications, Tools, and Grid Services. AxGrids, (2003)

14. http://www.ncsa.uiuc.edu/AboutUs/FocusAreas/ScientificPortalsExpedition.html
15. Supporting Open Standards for Web Services and the Java Platform.

ftp://ftp.software.ibm.com/software/webserver/appserv/v5/G325-1971-00.pdf
16. KazaA. http://www.kazaa.com/us/index.htm
17. D. Anderson, et. al.: Internet Computing for SETI. ASP Conference Series, 2000.
18. NFS MiddleWare Initiative. http://www.nsf-middleware.org/
19. Global Grid Forum. http://www.ggf.org/

