A Cluster-Based Dynamic Load Balancing
Middleware Protocol for Grids

Kayhan Erciyes’? and Resat Umit Payli®

! Izmir Institute of Technology, Computer Eng. Dept.,
Urla, Izmir 35430, Turkey
2 California State University San Marcos,
Computer Science Dept. San Marcos CA 92096, U.S.A
kerciyes@csusm.edu
3 Computational Fluid Dynamics Laboratory,
Purdue School of Engineering and Technology,
Indiana University-Purdue University,
Indianapolis, Indiana 46202, U.S.A
rpayli@iupui.edu

Abstract. We describe a hierarchical dynamic load balancing protocol
for Grids. The Grid consists of clusters and each cluster is represented
by a coordinator. Each coordinator first attempts to balance the load
in its cluster and if this fails, communicates with the other coordinators
to perform transfer or reception of load. This process is repetaed peri-
odically. We show the implementation and analyze the performance and
scalability of the proposed protocol.

1 Introduction

Computational Grids consist of heterogenous computational resources, possibly
with different users, and provide them with remote access to these resources [1I,
[2], [B]. The Grid has attracted reserachers as an alternative to supercomputers
for high performance computing. One important advantage of Grid computing is
the provision of resources to the users that are locally unavailable. Since there are
multitude of resources in a Grid environment, convenient utilization of resources
in a Grid provides improved overall system performance and decreased turn-
around times for user jobs []. Users of the Grid submit jobs at random times.
In such a system, some computers are heavily loaded while others have available
processing capacity. The goal of a load balancing protocol is to transfer the
load from heavily loaded machines to idle computers, hence balance the load at
the computers and increase the overall system performance. Contemporary load
balancing algorithms across multiple/distributed processor environments target
the efficient utilization of a single resource and even for algorithms targetted
towards multiple resource usage, achieving scalability may turn out to be difficult
to overcome.

A major drawback in the search for load balancing algorithms across a Grid
is the lack of scalability and the need to acquire system-wide knowledge by

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 805-812 2005.
(© Springer-Verlag Berlin Heidelberg 2005



806 K. Erciyes and R.U. Payli

the nodes of such a system to perform load balancing decisions. Scalability is an
important requirement for Grids like NASA‘s Information Power Grid (IPG) [5].
Some algorithms have a central approach [6], yet others require acquisition of
global system knowledge. Scheduling over a wide area network requires transfer
and location policies. Transfer policies decide when to do the transfer [7] and this
is typically based on some threshold value for the load. The location policy [8]
decides where to send the load based on the system wide information. Location
policies can be sender initiated [9] where heavily loaded nodes search for lightly
loaded nodes, receiver initiated [10] in which case, lightly-loaded nodes search
for senders or symmetrical where both senders and receivers search for partners
[II]. Load balancing across a Grid usually involves sharing of data as in an
MPI (Message Passing Interface) scatter operation as in [12], [13]. MPICH-G2,
is the a Grid-enabled implementation of MPI that allows a user to run MPI
programs across multiple computers, at the same or different sites, using the
same commands that would be used on a parallel computer [14].

We propose a protocol to perform load balancing in Grids dynamically where
an ordinary node does not need to have a global system wide knowledge about
the states of other nodes in the Grid. The protocol is semi-distributed due to the
existence of local cluster center nodes called the coordinators. We show that the
protocol designed is scalable and distributed as the coordinators communicate
and synchronize asynchronously.

The paper is organized as follows: In Section 2, the proposed protocol includ-
ing the coordinator and the node algorithms is described with the analysis. In
Section 3, the implementation of the protocol using an example is explained and
Section 4 contains the concluding remarks along with discussions.

2 The Protocol

For load balancing in grids, we propose the architecture shown in Fig. [Il where
nodes form clusters and each cluster is represented by a coordinator similar to
[15]. Coordinators are the interface points for the nodes to the ring and perform
load transfer decisions on behalf of the nodes in their clusters they represent.
They check whether load can be balanced locally and if this is not possible, they
search for potential receivers across the Grid. Load can be specified in many
different ways. One common approach is the count of the processes waiting in
the ready queue of the processor. The only resource required by a ready process
to execute is the processor. When the count value is detected to be higher than
the upper threshold, we say that the node is HIGH, otherwise when the number
of processes in the ready queue is below a lower threshold, the node is LOW
meaning it can accept load from the other nodes. A ready queue at a node
can have a value in between these two thresholds in which case the node is
considered MEDIUM. We also assume that only non-preemptive transfers are
possible which would indicate that only processes that have not started execution
in the host node can be transferred along with their data. For the protocol, we
will concentrate on the mechanism to decide when and where the transfer of load



A Cluster-Based Dynamic Load Balancing Middleware Protocol for Grids 807

Fig. 1. The Load Balancing Model for a Grid

should be performed rather than how. It should also be noted that the protocol
will work equally for sharing of data across the Grid for parallel applications as
in scattering operations.

2.1 Coordinator Algorithm

The coordinator is responsible to monitor local loads, initiate transfer from
HIGH to LOW nodes if there are local matches and search for LOW nodes
across the Grid if there are no local matches. Its state diagram is depicted in
Fig.

In_ACK X_ACK
/ X _ACK / In_ACK

Coord_Poll

In_Load
/ X_Load

Xfer NAK
/ Coord_Xfer

X_Load
/ In_Load

Xfer_OK /
Coord Xfer

Xfer_Req /
Xfer OK

Fig. 2. Coordinator Algorithm State Machine



808 K. Erciyes and R.U. Payli

Process Coordinator;

1. Begin

2. While TRUE

3. Wait for Time_Out;

4. Send Coord_Poll messages to nodes,

5. Receive Loads from nodes;

6. If there are local matches

7. Send Coord_Xfer to HIGH nodes;

8. Else

9. Send Xfer_Request message to next Coordinator;

10. If Xfer_OK received Send Coord_Xfer to HIGH node;
11. If Load is received Xfer Load to next Coordinator;
12. If Xfer_ACK Send Xfer_ACK to HIGH node;

13. Else Send Coord_Xfer to HIGH Node;

14. End.

Fig. 3. Coordinator Algorithm Pesudocode

It is awaken by a timer interrupt and sends a Coord_Poll message to every
node in its cluster. When it receives the loads, it checks whether there are any
local matching nodes. If there is a match, it sends Coord_X fer message to
HIGH node to initiate transfer. Otherwise, it sends a X fer_Request message to
the next coordinator in the ring and waits for a reply. If it receives the original
message back, there are no matches and the next period is waited. If there is
a remote match (X fer_.OK), the coordinator initiates transfer from the local
node by sending Coord_X fer. When it receives the load from the local node, it
transfers this to the target coordinator which then passes the load to the target
node. If transfer is error free, the target node responds by X fer_ ACK which
is passed along the coordinators to the source node. The pseudocode for the
coordinator algorithm is depicted in Fig[3l

2.2 Node Algorithm

The node process sends its load to the coordinator when it receives the C'oord_Poll
message from the coordinator. If its load is HIGH, it waits for initiation of trans-
fer from the coordinator. When it receives this initiation (Coord_X fer), it sends
the excessive load to the specified receiver and then waits for acknowledgement.
If there is an error in transfer, the process is repeated as shown in FigHl If its
load is LOW, it will wait until a transfer from the HIGH node or a timeout.

2.3  Analysis

Let us assume k, m, n and d are upperbounds on the number of clusters, nodes
in a cluster in the network, nodes in the ring of coordinators and the diameter
of a cluster respectively.



A Cluster-Based Dynamic Load Balancing Middleware Protocol for Grids 809

Coord_Poll,
MED

Load_OK/

Coord_Poll,
Xfer ACK

Coord_Poll, HIGH

LOW
’ Xfer ACK

Load_ERR Time_Out
Load_ERR Coord_Xfer

/ Xfer NAK
' WAIT
LOAD / Xfer_Load / Xfer_Load

Fig. 4. Node Algorithm State Machine

Theorem 1. The total time for a load transfer is between 4dT + L and (4 +
k)dT + L where T is the average message transfer time between adjacent nodes
and L is the actual average load transfer time.

Proof. A node transfers its state to the coordinator in d steps in parallel with
the other nodes and assuming there is a match of LOW-HIGH nodes in the local
cluster, the coordinator will send Coord_X fer message to the HIGH node in d
steps. Then there will be L time for the actual load transfer. The HIGH and
LOW nodes also perform a final handshake to confirm delivery of load in 2d
steps. The total minimum time for load transfer is then the sum of all of these
steps which is 4dT + L. In the case of a remote receiver, the messages for load
transfer have to pass through k hops resulting in (4 + k)dT + L time.

Corollary 1. The total number of messages exchanged for load transfer is O(k).

Proof. As shown by Theorem 1, the maximum total number of messages required
for a remote receiver will be (4 4+ k)d. Assuming d is approximately unity, the
message complexity of the algorithm is O(k).

Corollary 2. The protocol described achieves an order of magnitude reduction
in the number of messages exchanged for load transfer with respect to a similar
protocol that does not use clusters.

Proof. Assuming k=m, that is, the maximum number of clusters in the Grid
equals the maximum number of nodes in a cluster, the total number of messages



810 K. Erciyes and R.U. Payli

exchanged would be in the order of O(k?) for a similar protocol that does not
use any hierarchical cluster structure. Therefore, the number of messages using
our approach provides an order of magniude decrease in the number of messages
transferred.

3 An Example Operation

An example operation of the model is depicted in Figll The following are the
sequence of events :

1. All of the nodes in clusters 1, 2 and 3 inform their load states to their cluster
coordinators C1, Cy and C5. There are no LOW nodes in Cluster 1, there is
one HIGH and one LOW node in Cluster 2 and 1 LOW and two MED nodes
in Cluster 3. This is shown in Fighl(a).

2. The coordinator for Cluster 1, C4, forms a request message X fer_Req and
sends it to the next coordinator on the ring, Co.

3. (5 has a local match between its two nodes (ns3 and ns;) and has no other
receivers. It therefore passes the message immediately to its successor Cs. It
also sends Coord_X fer message to no; to initiate local load transfer.

4. (3 has a potential receiver (nsz) which has reported LOW load. It therefore
replies by changing the message X fer_Req to X fer OK and sends this to
(. Steps 2,3 and 4 are shown in Fig[B(b).

Xfer_OK ¢ 3

13
Xfer_Req
13
Xfer_Req
13
) gL

© oy \ "y /Load

Fig. 5. An Example Operation of the Protocol



A Cluster-Based Dynamic Load Balancing Middleware Protocol for Grids 811

5. C1 receives the reply message for R13 and sends the Coord_Xfer message to
n13 which then sends its load to Cf.

6. C1 now transfers the load to C's which transfers the load to n3s. Steps 5 and
6 are shown in Fighlc).

7. n3o sends X fer AC K message to its coordinator C3 which passes this to Cy
which then forwards it to ny3. This step is shown in Fig[5(d).

4 Discussions and Conclusions

We proposed a framework and a protocol to perform dynamic load balancing
in Grids. The Grid is partitioned into a number of clusters and each cluster
first tries to balance the load locally and if this is not possible, a search for
potential receivers is performed across the Grid using a sender-initiated method.
We showed that the proposed protocol is scalable and has significant gains in the
number of messages and the time perform load transfer. We have not addressed
the problem of how the load should be transferred but we have tried to propose
a protocol that is primarily concerned on when and where the load should be
transferred. In fact, it may be possible just to transfer data part of the load by
employing copies of a subset of processes across the nodes in the Grid. Load
balancing across a Grid, in a general sense, would involve transferring of data
for parallel applications.

The coordinators have an important role and they may fail. New coordinators
may be elected and any failed node member can be excluded from the cluster.
The recovery procedures can be implemented using algorithms as in [I6] which
is not discussed here. Our work is ongoing and we are looking into implement-
ing the proposed structure in a Grid with various load simulations. Another
research direction would be the investigation of the proposed model for real-
time load balancing across the Grid where load balancing decisions on where
and when to do the transfer and the actual load transfer should be performed
before a pre-determined soft or hard deadlines. Yet another area of concern is
keeping the copies of a subset of processes at nodes (shadow processes) to ease
load transfer.

References

1. Foster, 1., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Int. Journal of High Performance Computing Applications,
15(3), (2001), 200-222.

2. Foster, I.: What is the Grid ? A Three Point Checklist, Grid Today, 1(6), (2002).

3. Foster, 1., Kesselman, C., eds.: The Grid: Blueprint for a New Computing Infras-
tructure, Morgan Kaufmann, San Fransisco, CA 1999.

4. Arora, M., Das, S., K., Biswas, R.: A De-centralized Scheduling and Load Balanc-
ing Algorithm for Heterogeneous Grid Environments, Proc. of Int. Conf. Parallel
Processing Workshops, (2002), 499-505.



812

5.

10.

11.

12.

13.

14.

15.

16.

K. Erciyes and R.U. Payli

Johnston, W. E., Gannon, D., Nitzberg, B.: Grids as Production Computing En-
vironments : The Engineering Aspects of NASA‘s Information Power Grid. Proc.
8th Int. Sym. High Performance Distributed Computing, (1999), 197-204.

Akay, O., Erciyes, K.: A Dynamic Load Balancing Model For a Distributed System.
Journal of Mathematical and Computational Applications ,Vol.8, 2003, No:1-3.
Eager, D. L., Lazowska, E. D., Zahorjan, J.: A Comparison of Receiver-initiated
and Sender-initiated Adaptive Load Sharing, Performance Evaluation, 6(1), (1986),
53-68.

Kumar, V., Garma, A., Rao, V.: Scalable Load Balancing Techniques for Parallel
Computers, Journal of Parallel and Distributed Computing, 22(1), (1994), 60-79.
Liu, J., Saletore, V. A.: Self-scheduling on Distributed Memory Machines, Proc. of
Supercomputing, (1993), 814-823.

Lin, H., Raghavendra: A Dynamic Load-balancing Policy with a Central Job Dis-
patcher, IEEE Trans. on Software Engineering, 18(2), (1992), 148-158.

Feng, Y., Li, D., Wu, H., Zhang, Y.: A Dynamic Load Balancing Algorithm based
on Distributed Database System, Proc. 8th Int. Conf. High Performance Comput-
ing in the Asia-Pasific Region, (2000), 949-952.

Genaud, S. et al.: Load-balancing Scatter Operations for Grid Computing, Parallel
Computing, 30(8), (2004), 923-946.

David, R. et al.: Source Code Transformations Strategies to Load-Balance Grid
Applications, LNCS, Springer Verlag, 2536, (2002), 82-87.

MPICH-G2: A Grid-enabled Implementation of the Message Passing Interface,
Journal of Parallel and Distributed Computing, 63(5), (2003), 551 - 563.

Erciyes, K, Marshall, G.: A Cluster Based Hierarchical Routing Protocol for Mobile
Networks, LNCS, Springer Verlag, 3045(3), (2004), 518-527.

Tunali, T, Erciyes,K., Soysert, Z.: A Hierarchical Fault-Tolerant Ring Protocol
For A Distributed Real-Time System, Special issue of Parallel and Distributed
Computing Practices on Parallel and Distributed Real-Time Systems, 2(1), (2000),
33-44.



	Introduction
	The Protocol
	Coordinator Algorithm
	Node Algorithm
	Analysis

	An Example Operation
	Discussions and Conclusions



