Skip to main content

Diagnosis of Lung Nodule Using Reinforcement Learning and Geometric Measures

  • Conference paper
  • 2074 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3587))

Abstract

This paper uses a set of 3D geometric measures with the purpose of characterizing lung nodules as malignant or benign. Based on a sample of 36 nodules, 29 benign and 7 malignant, these measures are analyzed with a technique for classification and analysis called reforcement learning. We have concluded that this techinique allows good discrimination from benign to malignant nodules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tarantino, A.B.: 38. In: Nódulo Solitário Do Pulmão, 4th edn., Guanabara Koogan, Rio de Janeiro, pp. 733–753 (1997)

    Google Scholar 

  2. Henschke, C.I., et al.: Early lung cancer action project: A summary of the findings on baseline screening. The Oncologist 6, 147–152 (2001)

    Article  Google Scholar 

  3. Reeves, A.P., Kostis, W.J.: Computer-aided diagnosis for lung cancer. Radiologic Clinics of North America 38, 497–509 (2000)

    Article  Google Scholar 

  4. Silva, A.C., Carvalho, P.C.P., Gattass, M.: Analysis of spatial variability using geostatistical functions for diagnosis of lung nodule in computerized tomography images. Pattern Analysis and Applications 7, 227–234 (2005)

    MathSciNet  Google Scholar 

  5. Silva, A.C., Carvalho, P.C.P., Gattass, M.: Diagnosis of solitary lung nodule using semivariogram and skeletonization in computerized tomography images. In: 21st Meeting of the Society for Computer Applications in Radiology, SCAR 2004 (2004)

    Google Scholar 

  6. Silva, A.C., Carvalho, P.C.P., Peixoto, A., Gattass, M.: Diagnosis of lung nodule using gini coefficient and skeletonization in computerized tomography images. In: 19th ACM Symposium on Applied Computing (SAC 2004), pp. 243–248. ACM Press, New York (2004)

    Chapter  Google Scholar 

  7. Clunie, D.A.: DICOM Structered Reporting. PixelMed Publishing, Pennsylvania (2000)

    Google Scholar 

  8. Nikolaidis, N., Pitas, I.: 3-D Image Processing Algorithms. John Wiley, New York (2001)

    Google Scholar 

  9. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21, 163–169 (1987)

    Article  Google Scholar 

  10. Ohtake, Y., Belyaev, A., Pasko, A.: Dynamic meshes for accurate polygonization of implicit surfaces with shape features. In: IEEE Computer Society Press (ed.) SMI 2001 International Conference on Shape Modeling and Applications, pp. 74–81 (2001)

    Google Scholar 

  11. Smith, A.C.: The Folding of the Human Brain, from Shape to Function. PhD thesis, University of London (1999), Available at http://carmen.umds.ac.uk/a.d.smith/phd.html

  12. Essen, D.C.V., Drury, H.A.: Structural and functional analyses of human cerebral cortex using a surface-based atlas. The Journal of Neuroscience 17, 7079–7102 (1997)

    Google Scholar 

  13. Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  14. Henderson, D.W.: Differental Geometry: A Geometric Introduction. Prentice-Hall, Upper Saddle River (1998)

    Google Scholar 

  15. Kawata, Y., Niki, N., Ohmatsu, H., Kakinuma, R., Eguchi, K., Kaneko, M., Moriyama, N.: Classification of pulmonary nodules in thin-section CT images based on shape characterization. In: International Conference on Image Processing, vol. 3, pp. 528–530. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  16. Barto, A., Sutton, R., Anderson, C.: Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics 13, 834–846 (1983)

    Google Scholar 

  17. Almeida, A., Heimann, B., Góes, L., Nascimento, C.: Obstacle avoidance in dynamic environment: A hierarchical solution, São Paulo, Congresso Brasileiro de Redes Neurais, vol. 6, pp. 289–294 (2003)

    Google Scholar 

  18. Almeida, A., Heimann, B., Góes, L., Nascimento, C.: Avoidance of multiple dynamic obstacles. In: International Congress of Mechanical Engineering, São Paulo, vol. 17 (2003)

    Google Scholar 

  19. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley-Interscience Publication, New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, A.C., da Silva, V.R., de Almeida Neto, A., de Paiva, A.C. (2005). Diagnosis of Lung Nodule Using Reinforcement Learning and Geometric Measures. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_29

Download citation

  • DOI: https://doi.org/10.1007/11510888_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26923-6

  • Online ISBN: 978-3-540-31891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics