Skip to main content

Perturbation Theory and the Renormalization Group in Genetic Dynamics

  • Conference paper
  • 964 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3469))

Abstract

Although much progress has been made in recent years in the theory of GAs and GP, there is still a conspicuous lack of tools with which to derive systematic, approximate solutions to their dynamics. In this article we propose and study perturbation theory as a potential tool to fill this gap. We concentrate mainly on selection-mutation systems, showing different implementations of the perturbative framework, developing, for example, perturbative expansions for the eigenvalues and eigenvectors of the transition matrix. The main focus however, is on diagrammatic methods, taken from physics, where we show how approximations can be built up using a pictorial representation generated by a simple set of rules, and how the renormalization group can be used to systematically improve the perturbation theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stephens, C.R., Waelbroeck, H.: Schemata evolution and building blocks. Evol. Comp. 7, 109–124 (1999)

    Article  Google Scholar 

  2. Poli, R.: Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover. Genetic Programming and Evolvable Machines 2(2), 123–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Stephens, C.R.: Some exact results from a coarse grained formulation of genetic dynamics. In: Proceedings of GECCO-2001, July 7-11, pp. 631–638. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  4. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  5. Stephens, C.R., Poli, R.: E C theory - in theory: Towards a unification of evolutionary computation theory. In: Menon, A. (ed.) Frontiers of Evolutionary Computation, pp. 129–156. Kluwer Academic Publishers, Dordrecht (2004)

    Chapter  Google Scholar 

  6. Prügel-Bennett, A., Shapiro, J.L.: An analysis of genetic algorithms using statistical mechanics. Physical Review Letters 72, 1305–1309 (1994)

    Article  Google Scholar 

  7. Shapiro, J.L.: Statistical mechanics theory of genetic algorithm. In: Naudts, B., Kallel, L., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 87–108. Springer, Heidelberg (2001)

    Google Scholar 

  8. McCaskill, J., Eigen, M., Schuster, P.: The molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989)

    Article  Google Scholar 

  9. Hofbauer, J., Nagylaki, T., Brunovsky, P.: Convergence of multilocus systems under weak epistasis or weak selection. J. Math. Biol. 38, 103–133 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rattray, M., Shapiro, J.L.: Cumulant dynamics of a population under multiplicative selection, mutation and drift. Theor. Pop. Biol. 60, 17–32 (2001)

    Article  MATH  Google Scholar 

  11. Reeves, C.R., Rowe, J.E.: Genetic Algorithms - Principles and Perspectives. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  12. Akivis, M.A., Goldberg, V.V.: An Introduction to Linear Algebra and Tensors. Dover Publications, Mineola (1977)

    Google Scholar 

  13. Chryssomalakos, C., Stephens, C.R.: What basis for genetic dynamics? In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1394–1402. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Poli, R.: Exact schema theorem and effective fitness for GP with one-point crossover. In: Proceedings of the Genetic and Evolutionary Computation Conference, Las Vegas, July 2000, pp. 469–476. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  15. Stephens, C.R.: The renormalization group and the dynamics of genetic systems. Acta Phys. Slov. 52, 515–524 (2003)

    Google Scholar 

  16. Wright, A.H., Rowe, J.E., Poli, R., Stephens, C.R.: A fixed point analysis of a gene pool GA with mutation. In: Proceedings of GECCO 2002, San Francisco, USA, Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  17. Lakin, W.D., Sanchez, D.A.: Topics in Ordinary Differential Equations. Dover, Publications Inc., New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stephens, C.R., Zamora, A., Wright, A.H. (2005). Perturbation Theory and the Renormalization Group in Genetic Dynamics. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_11

Download citation

  • DOI: https://doi.org/10.1007/11513575_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27237-3

  • Online ISBN: 978-3-540-32035-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics