Query Answering in Normal Logic Programs
Under Uncertainty

Umberto Straccia

ISTI - CNR, Via G. Moruzzi, 1 1-56124 Pisa (PI), Italy

Abstract. We present a simple, yet general top-down query answering prceed
for normal logic programs over lattices and bilattices, where functionsapa
pear in the rule bodies. Its interest relies on the fact that many apmeéxpara-
consistency and uncertainty in logic programs with or without non-momoton
negation are based on bilattices or lattices, respectively.

1 Introduction

The management of uncertainty in logic programming hasctd the attention of
many researchers and numerous frameworks have been propssentially, they dif-
fer in the underlying notion of uncertair@(e.g. probability theory [15, 18], fuzzy set
theory [22], multi-valued logic [4, 12,13, 14], possibiieslogic [8]) and how uncer-
tainty values, associated to rules and facts, are managedjh®, these frameworks
can be classified intannotation basedAB) and implication basedB). In the AB
approach (e.gl. [12, 18]), a rule is of the fouta f (51, ...,53,) < B1: 51, .-, Bn: Bn,
which asserts “the certainty of atoris at least (or is in) (31, . . ., 8,), whenever the
certainty of atomB; is at least (oris inp;, 1 < i < n". Here f is ann-ary computable
function andg; is either a constant or a variable ranging over an appr@pcettainty
domain. In the 1B approach (see|[4, 13] for a more detailedpaneon between the two
approaches), a rule is of the for< By, ..., B,,, which says that the certainty associ-
ated with the implicatiorB; A... A B,, — A is «. Computationally, given an assignment
v Of certainties to the&3;, the certainty ofA is computed by taking the “conjunction”
of the certainties (B;) and then somehow “propagating” it to the rule head. The {ruth
values are taken from a certainty lattice. More recentlyl 84 22] show that most of the
frameworks can be embedded into the IB framework (some ¢xcepdeal with prob-
ability theory). However, most of the approaches stressrguoitant limitation, as they
do not address any mode nbn-monotonic negatioriException to this limitation are
e.g. [16,17] in which the stable semantics has been corsidbut limited to the case
where the underlying uncertainty formalism is probabilftgory; in [7] the underlying
truth-space are lattices, but its formulations goes diattices[11] (a slightly more
general structure than lattices); while [14] uses normgiclgrograms over bilattices
under the 1B framework.

! See e.g/[19] for an extensive list of references.

L. Godo (Ed.): ECSQARU 2005, LNAI 3571, dp. 687—700, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

688 U. Straccia

In many frameworks, in order to answer to a query, we have topee the whole
intended model by a bottom-up fixed-point computation aed tmswer with the eval-
uation of the query in this model. This always requires to pota a whole model, even
if not all the atom’s truth is required to determine the answe the best of our knowl-
edge the only work presenting top-down procedures| are [3,3,22], but in none of
them non-monotonic negation is considered.

In this paper we present a general top-down query answergaggure for normal
logic programs over lattices and bilattices [9, 11] in thdri@mework. Its interest relies
on the fact that many approaches to paraconsistency andaintgin logic programs
with or without non-monotonic negation are based on bdattior lattices, respectively.

We proceed as follows. In the next section, we will brieflyalkcefinitions and
properties of lattices, bilattices and normal logic progseover bilattices. Section 3 is
the main part of this work, where we present our top-down yjpeocedure and the
computational complexity analysis, while Section 4 codek!

2 Preliminaries

Lattice. In a complete lattic& = (L, <), with L a countable set, bottorh and top el-
ementT, a functionf: L — L is monotoneif Vz,y € L, x < y implies f(x) =< f(y),
while f is antitoneif x < y implies f(y) < f(x). A fixed-pointof f is an element
x € L such thatf(z) = z. The basic tool for studying fixed-points of functions on
lattices is the well-known Knaster-Tarski theorem [20]t Ifebe a monotone function
on a complete latticéL, <). Then f has a fixed-point, the set of fixed-points pfs

a complete lattice and, thug,has a=<-leastfixed-point. The=<-leastfixed-point can
be obtained by iterating over L, i.e. is the limit of the non-decreasing sequepgge
ey Yir Yitls -2 Yns - - -, Where for a successor ordinab 0, yo = L, yi+1 = f(v:),
while for a limit ordinal \, y» = lub<{y;:¢ < A}. We denote thez-least fixed-point
by Ifp- (f). For ease, we will specify the initial conditigiy and the next iteration step
yi+1 only, while the condition for a limit ordinal is consideres implicit.

Bilattice. A bilattice [11] is a structuré B, <;, <) whereB is a non-empty, countable
set and=; (thetruth order) and <, (the knowledge ordérare both partial orderings
giving B the structure of @&omplete latticewith a top and bottom elemeni¥leet (or
greatest lower boundindjoin (or least upper boundjnder=;, denotedr andV, cor-
respond to extensions of classical conjunction and disjomcOn the other hananeet
and join under=;, are denoted and®. x®y corresponds to the maximal information
andy can agree on, while &y simply combines the information representeddyith
that represented hy. Top and bottom undex; are denoted andf, andtop and bottom
under=y, are denoted and_L, respectively. We will assume that bilattices enfinitary
distributive bilatticesn which all distributive laws connecting, vV, ® and® hold. We
also assume that every bilattice satisfieditifiaitary interlacing conditionsi.e. each of
the lattice operations, v, ® and® is monotone w.r.t. both orderings. An example of in-
terlacing condition isx <, y andz’ <; ¢/ impliesz® 2’ <; y®4v/'. Finally, we assume
that each bilattice hasreegationi.e. an operatorn that reverses the; ordering, leaves
unchanged the<; ordering, and verifiess-—z = z. For instance, the simplest non-

Query Answering in Normal Logic Programs Under Uncertainty 689

trivial bilattice, calledFOUR, is due to Belnap [1], who introduced a logic intended
to deal with incomplete and/or inconsistent informatioree also [6] FOUR already
illustrates many of the basic properties concerning lidkast EssentiallyFOUR ex-
tends the classical truth s¢f, t} to {f,t, L, T}, where L standsunknown and T
stands folinconsistentin FOUR, L < £ <, T, L <t X, T,f X, L <, tand

f <; T =<; t. Furthermore, we have thatf = t, -1 = 1, =T = T. In addition to
the usual bilattice approach, we provide a fansiyof <; and <;-continuous binary
and unary functiong: 5 x B — B and f: B — B to manipulate truth values. That is,
for any <;-monotone chaimg, z1, ... of values in3, f(®;z;) = &, f(x;) and for any
=<;-monotone chairy, x1, ...of values inB, f(V;x;) = V;f(z;). The binary case is
similar. Notably,A, vV, ® andV are both=;-continuous andk;-continuous, while- is
=<g-continuous but nok;-continuous (it is<;-antitone). Interestingly, bilattices come
up in two natural ways and are widely used. We just sketch thera in order to give
a feeling of their application. The first bilattice constion method comes from [11].
Suppose we have two complete distributive latticBs, <1) and (Lo, <5). Think of
L, as a lattice of values we use when we measure the degree eff ol statement,
while think of L, as the lattice we use when we measure the degree of doubNafnt.
we define the structurB; ® L as follows. The structure i, x Lo, <, <x), where
(Z) <l‘1,$2> =t <y1,y2> if 1 21U andyg =<9 9, while (Zl) <1‘1,x2> =k <y1,y2> if

x1 =1 y1 andzs =<5 yo. In L1 ® Ly the idea is: knowledge goes up if both degree of
belief and degree of doubt go up; truth goes up if the degréelwf goes up, while the
degree of doubt goes down. It is easily verified that> L is a bilattice. Furthermore,
if Ly = Ly = L, i.e. we are measuring belief and doubt in the same way, tbga-n
tion can be defined as(z,y) = (y,). That is, negation switches the roles of belief
and doubt. Notably, under this approach fall work on paraistent logic programming
(see, e.g! [6]) and anti-tonic logic programming (see, E1- In the second construc-
tion method, suppose we have a complete distributive édti¢ruth values L, <) (like
e.g. in Many-valued Logics). Think of these values as theu@tvalues we are inter-
ested in, but due to lack of knowledge we are able just to @iprate’ the exact values.
That s, rather than considering a pait y) € Lx L as indicator for degree of belief and
doubt,(x, y) is interpreted as the set of elements L such that: < z < y. Therefore,

a pair(z,y) is interpreted as aimterval. An interval (z, y) may be seen as an approx-
imation of an exact value. Formally, given a distributiviite (L, <), thebilattice of
intervals denotedC(L), is (L x L, <¢, <i), where:(i) (z1, z2) =¢ (y1,y2) if 21 <1
andzs =< yo, While (i7) {(x1,x2) =<k (y1,y2) if 1 < y1 andys < z5. The intuition

of those orders is that truth increases if the interval dastgreater values, whereas the
knowledge increases when the interval becomes m@eise Negation can be defined
as—(z,y) = (—y, ~x), where— is a negation operator oh. This approach has been
used, e.g. in [14], wherg is the unitinterval0, 1]g = [0, 1]NQ with standard ordering.

Logic Programs. Fix a bilattice. We start with the definitions given in [9] aextend it
to the casarbitrary computable functiong € F are allowed in rule bodies to manipu-
late the truth values. For the ease of presentation, we dinmiaittention to propositional
logic programs. The first order case can be handled by grogn&io, consider an al-
phabet of propositional letters. Artom denotedA is a propositional letter. A literal,

690 U. Straccia

is of the formA or — A, whereA is an atom. Aormula, ¢, is an expression built up from
the literals, the members of a bilattieusingA, vV, ® and® and the functiong € F.
Note that members of the bilattice may appear in a formulajedlsas functions: e.g. in
FOUR, f(p Ag,r @ f)@®wvis aformula. The intuition here is that the truth value of
the formulaf(p A ¢,r ® £) @ v is obtained by determining the truth valuepof ¢ and
r® £, then apply the functiorf to them and join the result to the truth valuevofA rule
is of the formA — ¢, whereA is an atom and is a formula. The atord is called the
head and the formulap is called theébody. A normal logic program(in the following,
simply logic progran), denoted withP, is a finite set of rules. Thieerbrand basef P
(denotedBp) is the set of atoms occurring . GivenP, the setP* is constructed as
follows; () if an atomA is not head of any rule i®*, then add the rulel < £ to P*;

2 and (i4) replace several rules iR* having same head} — 1, A — @9, ... with
A — 1 Vo V....Note that inP*, each atom appears in the headwéctly oneule.

Example 1 ([14]).ConsiderC([0,1]g), with A = min andV = max. Consider an in-
surance company, which has information about its custorusesl to determine the
risk coefficient of each customer. Suppose a value of thecnsfficient is already
known, but has to be re-evaluated (the client is a new client s risk coefficient is
given by his precedent insurance company). The company avey (i) data grouped
into a set of facts{(Experience(john) « [0.7,0.7]), (Risk(john) « [0.5,0.5]),
(Sport_car(john) < [0.8,0.8])}; and (i) a set of rules, which after grounding are:

Good_driver(john) < Experience(john) A —Risk(john)

Risk(john) — 0.8 - Young(john)
Risk(john) «— 0.8 - Sport_car(john)
Risk(john) «— Experience(john) A =Good_driver(john)

Interpretations. An interpretation of a logic progranon the bilattice(B, <;, <) is
a mapping from atoms to members 6f An interpretation/ is extended from atoms
to formulae as follows(i) for b € B, I(b) = b; (i3) for formulaey and¢’, I(p A
') = I(p) N I(¢'), and similarly forv,®,® and—; and (iiz) for formulae f(y),
I(f(v)) = f(I(p)), and similarly for binary functions. The truth and knowledyder-
ings are extended frof to the setZ(B) of all interpretations point-wisdi) I; =<; I
iff I;(A) <: I(A), for every ground atoral; and (ii) I1 =< I iff I;(A) < I2(A),
for every ground atord. We define(I; A I2)(A) = I1(A) A I(A), and similarly for
the other operations. With; andI, we denote the bottom interpretations undgr
and =<, respectively (they map any atom infoand L, respectively). It is easy to see
that(Z(B), <, <x) is an infinitary interlaced and distributive bilattice aslwe

Models. An interpretation/ is amodelof a logic programP, denoted byl = P, iff
for theuniquerule involving A, A — ¢ € P*, I(A) = I(y) holds. Note that usually
a model has to satisfy(p) <; I(A) only, i.e. A — ¢ € P* specifies the necessary
condition onA4, “ A is at least as true as'. But, asA — ¢ € P* is the unigue rule with
headA, the constraint becomes also sufficient (see le.g. [9]).

2 |tis a standard practice in logic programming to consider such atorfadsas

Query Answering in Normal Logic Programs Under Uncertainty 691

Query. A query, denotedy, is an expression of the forfA (query aton), intended as

a question about the truth of the atofnin the selected intended model Bf We also
allow a query to be aet{?A,...,7A,} of query atoms. In that latter case we ask
about the truth of all the atom4; in the intended model of a logic prograf

Semantics of Logic Programs.The semantics of a logic prograf is determined
by selecting a particular model, or a set of modelspPofin our context we will con-
sider two possible intended semantics over bilattices,atathe Kripke-Kleeng(KK)
and theWell-Founded semanti¢8VF) [9, 21], which are well-established semantics for
non-monotonic negation over bilattices. It is well-knovatithe WF semantics is more
informative (provides more knowledge) than the KK semamtic

Example 2. ConsiderFOUR andP = {(p < p), (g < —r),(r < —g A —p)}. Letus
identify an interpretatiorf as a triple for the truth-values dbp, ¢, 7). Then the models
of P arel; = <J_, J_, J_>, I, = <J_,t7f>, I3 = <f, J_, J_>, Iy = <f,f,t>, Is = <f7t,f>,
Is = (£, T,T), I = (t,t,f), Is = (T,t,f) and Iy = (T, T, T). The KK semantics
will be I, while the WF semantics will b&. Note thatl; <, I5.

Formally, theKripke-Kleene semantidsas a simple and intuitive characterization, as it
corresponds to the-least model of a logic program, i.e. tKgipke-Kleene modesf

a logic prograntP is KK (P) = min<, {I: I = P}. Theexistence and uniquenest
K K(P) is guaranteed by the fixed-point characterization, by meétise immediate
consequence operatdrp. For an interpretatior, for any ground atonal with (unique)
A — @ eP*, dp(I)(A) = I(p). We can show that (based on([9, 14]) the functign
is <i-continuous ovefZ(B), the set of fixed-points obp is a complete lattice under
=<k and, thus®p has a=xj-least fixed-point and is a model of a prograr® iff I is

a fixed-point ofd. Therefore, the Kripke-Kleene model Bf coincides with the least
fixed-point ofép under=y, which can be computed in the usual way by iterating
overI; and is attained after at mastiterations.

Example 3. Considerk’([0, 1]g), the functionf({z,1)) = (£f%,1) (0 < a < 1,a €
Q), andP = {4 «— f(A)}. Then the KK model is attained aftersteps of?» itera-
tionsoverI; = (0,1) and isKK(P)(A) = (a, 1).

The Well-Founded semantiasver bilattices is derived directly from Fitting’s formula
tion [9]. Informally, an interpretatiod is thewell-founded modedf a logic program
P if I it the <,-least interpretation satisfying= I’, wherel’ is computed according
to the so-calledelfond-Lifschitz transformatiorii) substitute (fix) inP* the negative
literals by their evaluation with respect fo Let P! be the resultingositiveprogram,
calledreductof P w.r.t. I; and (ii) compute the truth-minimal modd! of P{. For
instance, giverP and I3 in Example 2,P% is {(p < p),(q¢ «— L1),(r — L At)},
whose=;-least model id3. Also I3 is the <, -least model satisfying the above condi-
tion. Therefore/; is well-founded model. Note that the, -least model ot (= P13),
is I3, sol; does not satisfy the Gelfond-Lifschitz transformationtrally, Fitting [9]
relies on a binary immediate consequence oper&tgwhich accepts two input inter-
pretationd and.JJ over a bilattice, the first one is used to assign meaningsdiip®lit-
erals, while the second one is used to assignh meanings toveglgarals. Let/ and.J be
two interpretations in the bilatticg (B), <:, <x). The notion ofpseudo-interpretation

692 U. Straccia

I A J over the bilattice is defined as follows: for an atotn (I A J)(A) = I(A)
and (I A J)(=A) = —J(A). Pseudo-interpretations are extended to non-literals in
the obvious way. For instancé] A J)(f(mA A B)) = f((I A J)(-A A B)) =
F(IATNEA AT A TB)) = f(=J(A) AI(B)). We can now defingp as fol-
lows. Forl,J € Z(B), ¥p(I,J) is the interpretation, which for any atom with
A — ¢ € P*, satisfiedlp (1, J)(A) = (I A J)(¢). Note thatdp is a special case of
Up, as by constructiod» (1) = ¥p(I,1). Similarly to [9], we can show that the op-
eratordp is <i-continuous in both arguments,-continuous in its first argument and
=<¢-antitone in its second argument. To define the well-fourgkdantics, Fitting [9]
further introduces th&, operator, whosex,-least fixed-point will be the WF model
of a program. For any interpretatidn®s, (1) is the<,-least fixed-point of the operator
)\.’IT.WP(Z&]), i.e.

Up(I) = lfp, (Ae.¥p (2, 1)) . (1)

Due to the<;-continuity of & on its first argumenty;, is well defined ¥y, (I) can be
computed by iterating’» (z, I) overI; and the limit is attained in at mostiterations.
In particular, we can show that the operaigyis <;-continuous=;-antitone and every
fixed-point of ¥, is also a fixed-point ofp, i.e. a model ofP. Therefore, the set of
fixed-points of¥y, is a complete lattice undet;, and, thus¥;, has a=-least fixed-
point, which is denotedl’ F'(P). W F(P) is theWell-Founded modeif P. Of course,
the well-founded model can be computed by iteratitjgstarting fromI ; and the limit
is attained in at most iterations.

Example 4. ConsiderC([0,1]g) andP = { (A «— AV B), (B «— (-C AN A) V
(0.3,0.5)), (C — =BV (0.2,0.4)) }. Then the computation df K (P), as <-least
fixed-point of®p, converges tal K (P)(A, B,C) = ((0.3,1), (0.3,0.8), (0.2,0.7)).
The computation o’ F'(P), as =<-least fixed-point o#7,, converges taV F'(P)(A,
B,C) = ((0.3,0.5), (0.3,0.5), (0.5,0.7)). Notice thatK K (P) <, WF(P), as ex-
pected.

Example 5. Consider Example 1. It turns out that the KK semantic$; iswhile the
WF semantics id», where (for ease, we use first letter onfy)R(j)) = [0.64,0.8],
1,(8(3)) = 108,0.8], I(Y(3)) = [0,1], [1(G(3)) = [0-2,0.36], [(E(3)) = [0.7,0.7],
while I(R(3)) = [0.64,0.7], I>(S(3)) = [0.8,0.8], Lx(Y(3)) = [0,0], L2(6(3)) =
[0.3,0.36], I2(E(j)) = [0.7,0.7]. Note thatl; =< I. In fact, I, establish thatjohn's
degree oRisk is in betweeri0.64, 0.7], while I; is lessprecise Also note thaf>(Y(j))
= [0, 0] (= false), whileI;(Y(j)) = [0, 1] (= unknown).

3 Top-Down Query Answering

Given a logic progran? and either the KK or the WF model, one way to answer
to a query?A is to compute the intended modglof P by a bottom-up fixed-point
computation and then answer wiflf4). This always requires to compute a whole
model, even if in order to determiri¢ A), not all the atom’s truth is required. Our goal
is to present a simple, yet general top-down method, whilkbsren the computation
of just a part of an intended model. Essentially, we will toydetermine the value

Query Answering in Normal Logic Programs Under Uncertainty 693

of a single atom by investigating only a part of the progrBmOur method is based
on a transformation of a program into a system of equationaarfiotonic functions
over lattices and bilattices for which we compute the leasdfipoint in a top-down
style. The idea is the following. Le{3, <;, <x) be a bilattice and leP be a logic
program. Consider the Herbrand ba3ge = {4, ..., A,} of P and conside*. Let
us associate to each atofy € Bp a variabler;, which will take a value in the domain
B (sometimes, we will refer to that variable withy as well). An interpretatiod may
be seen as an assignment of bilattice values to the variables, z,,. For an immediate
consequence operatoy, e.g.9p, a fixed-point is such that= O(I), i.e. for all atoms
A; € Bp, I(A;) = O(I)(A;). Therefore, we may identify the fixed-points @fas the
solutions oveis of the system of equations of the following form:

L1 = f1($11>~--,331a1))
(2)
x’ﬂ = fn(xnl,- . axnu”) 9

where forl < i <n, 1 <k < a;, we havel < i, < n. Each variabler;, will take a
value in the domai8, each (monotone) functiof) determines the value of; (i.e. A;)
given an assignmeti 4,) to each of the:; variablesz;, . The functionf; implements
O(I)(A;). Of course, we are especially interested in the computatidine least fixed-
point of the above system. For instance, by consideringajie program in Examplel 2,
the fixed-points of th&, operator are the solutions over a bilattice of the system of
equationsyk — x1,q — xa, 7 — x3)

1 =21, T2 ="T3, T3 = "T2 N\ T . (3

It is easily verified that all nine interpretatiodsin Example 2 are bijectively related
to the solutions of the system|(3) ov&OUR and (x1,x2,23) = (L, L, 1) is the
=<-least solution and corresponds to the Kripke-Kleene motigl.

Now, at first present the general procedure for the top-dommpaitation of the
value of variable in the<-least solution of the system|(2), given a lattite= (L, <).
Then, we will customize it to the particular case of the Kagkleene semantics and
the well-founded semantics. We use some auxiliary funstisfx) denotes the set of
sonsof z, i.e.s(x;) = {zi,,...,z;, } (the set of variables appearing in the right hand
side of the definition ofc;). p(z) denotes the set gfarentsof z, i.e. the seb(z) =
{z;:x € s(x;)} (the set of variables depending on the value:fin the general case,
we assume that each functign L — L in Equation[(2) is<-monotone. We also use
f= in place off;, for x = x;. We refer to the monotone system as in Equation (2) as
the tupleS = (L,V, f), whereL is a lattice,V = {zy,...,x,} are the variables and
f = {f1,..., f) is the tuple of functions. As it is well known, a monotonic atjan
system ag2) has a=-least solution, Ifp (f), the <-least fixed-point off is given as
the least upper bound of the¢-monotone sequencgy, . . . , s, . . ., wherey, = L and

Yit1 = f(Yi)

Example 6. Consider Example 4. The equational systefuis = =4 V zp, zp =
(mzc A xa) V(0.3,0.5), zc = —xpV (0.2,0.4)}. The=<,-least fixed-point com-
putation isy, = L = ([0,1]g, [0, 1]g, [0, 1]g) (the triples representx 4,z g, xc)),

694 U. Straccia

Y1 = <[O7 1]@, [0.3, 1]@7 [0.2, 1]Q>, Yo = <[03, 1]@7 [0.37 0.8}(@, [0.2, O7]Q> and Y3z =
y2, Which corresponds to the KK model of the program, as exgdecte

Informally our algorithm works as follows. Assume we arehested in the value afy

in the least fixed-point of the system. We associate to eagablax; a markingv(z;)
denoting the current value of; (the mappingv contains the current value associated
to the variables). Initiallyyv(x;) is L. We start with puttingz, in the active list of
variablesA, for which we evaluate whether the current value of the éeigs identical

to whatever its right-hand side evaluates to. When evalgatiright-hand side it might
of course turn out that we do indeed need a better value of smmeg, which will
assumed to have the valueand put them on the list of active nodes to be examined.
In doing so we keep track of the dependencies between vesiadohd whenever it turns
out that a variable changes its value (actually, it can etiyncrease) all variables that
might depend on this variable are put in the active set to bensed. At some point
(even if cyclic definitions are present) the active list viliicome empty and we have
actually found part of the fixed-point, sufficient to detemmthe value of the query.
The algorithm is given below.

Procedure Solve(S, Q)
Input: <-monotonic systens = (£, V, f), whereQ C V is the set of query variables;
Output: AsetB C V, with @ C B such that the mappingequals Ifp, (f) on B.

1. A:=Q,dg:=Q,in: =, forall z € V dov(z) = L, exp(z) = false

2. while A # () do

3. selectr; € A, A:= A\ {z;},dg: = dg U s(z:)

4. r= fi(v(zi), . v(Ti,,)

5. ifr > v(x;) thenv(z;):=r, A:= AU (p(z;) Ndg) fi

6. ifnot exp(x;) then exp(z;) = true, A:= AU (s(z;) \ in), in: = in U s(z;) fi
od

The variabledg collects the variables that may influence the value of theyqueri-
ables, the array variablexp traces the equations that has been “expanded” (the body
variables are put into the active list), while the variabtekeeps track of the variables
that have been put into the active list so far due to an expar(sd avoid, to put the
same variable multiple times in the active list due to fumettbody expansion). The
attentive reader will notice that thiénlve procedure has much in common with the so-
calledtabulationprocedures, like [3,5]. Indeed, it is a generalization dbitarbitrary
monotone equational systems over lattices.

Example 7. Consider Example]6 and query variahtg. Below is a sequence of
Solve(S,{x4}) computation w.r.t=;. Each line is a sequence of steps in the ‘while
loop’. What is left unchanged is not reported.

1.Ai={za},zi:=2a,A:=0,dg:= {za,zB},m:= L, exp(za): = true,A:= {za, 2B},
ini={za,zB}

2. xz;:=xp,Ai={za},dg:= {za,xB,2c}, 7= (0.3,1),v(zp): = (0.3,1),A: = {za,zc},
exp(zp): = true,in: = {za,zB,zc}

3. zii==xc,A:={za},m:=(0.2,0.7),v(zc): = (0.2,0.7),A: = {za,xB}, exp(zc): = true

4. zi:=xp,A:={xa},r:=(0.3,0.8),v(xp):= (0.3,0.8),A: = {za,zc}

Query Answering in Normal Logic Programs Under Uncertainty 695

zo, A= {xa}, = (0.2,0.7)
zii=x4,Ai=0,r:=(0.3,1),v(za):=(0.3,1),A: = {za,zB}
zii=xp,Ai={za},r:=(0.3,0.8),
xii=x4,A:=0,r:=(0.3,1)

. stop. returnv(za,zB,zc) = ((0.3,1),(0.3,0.8), (0.2,0.7))

Zi:

© XN o

The fact that only a part of the model is computed becomesmiyids the computation
does not change if we add any progrdthto P in which A, B andC do not occur.

Given a systens = (L£,V, f), wherel = (L, <), let h(£) be theheightof the truth-
value setL, i.e. the length of the longest stricthg-increasing chain i minus 1,
where the length of a chain, ..., v,, ... is the cardinal{vy, ..., v, ...}|. Thecardinal

of a countable seX is the least ordinak such thath and X areequipollenti.e. there

is a bijection fromn to X . For instanceh(FOUR) = 2 w.r.t. <, as well as w.r.t=;,
while h(K([0,1]g)) = w. It can be shown that the above algorithm behaves correctly.

Proposition 8. Given a monotone system of equatighs= (£, V, f), then there is a
limit ordinal A such that after)\| stepsSolve(S, Q) determines a seB C V, with
@ C B such that the mappingequals Ifp, (f) on B, i.e.v|p = Ifp< (f)5-

From a computational point of view, by means of appropria& dtructures, the op-
erations on, v, dg, in, exp, p ands can be performed in constant time. Therefore,
Stepl. is O(]V]), all other steps, except St@pand Stept. areO(1). Let ¢(f,) be
the maximal cost of evaluating functiof), on its arguments, so Step is O(c(fz)).

It remains to determine the number of loops of Stefn case the height(L) of the
bilattice £ is finite, observe that any variable is increasing in-therder as it enters in
the A list (Step5.), except it enters due to St&p, which may happen one time only.
Therefore, each variable will appear inA at mosta; - h(L£) + 1 times, wherey; is the
arity of f;, as a variable is only re-entered intdf one of its son gets an increased value
(which for each son only can happgfi£) times), plus the additional entry due to Step
6. As a consequence, the worst-case complexity(is_, oy (c(fi) - (a; - h(L) + 1)).
Therefore:

Proposition 9. Given a monotone system of equatishs: (£, V, f). If the computing
cost of each function irf is bounded by, the arity bounded by, and the height is
bounded by, then the worst-case complexity of the algoritSmive is O(|V'|cah).

In case the height of a bilattice is not finite, the computatitay not terminate after a
finite number of steps (see Example 3). Fortunately, undesorable assumptions on
the functions, we may guarantee the terminatio§ @fve. We exploit two of such con-
ditions. Consider a monotonic equational systg8m= (L, V, f). Consider a function
f:L — L, where(L, <) is a lattice. Lef L | be thef-closure of{_L}, i.e. the small-
est set that contain§L } and is closed undef. We say thatf has a finite generation
(see also [2] for more on this issue) |ff]; is finite. For instance, it can be verified
that the functionsg\, v, ®, @, — have a finite generation anyfinite setX C 5. More
concretely, over the interval bilattice d6, 1], min, max,1 — = and Lukasiewicz t-
norm and t-conormmax(x + y — 1,0), min(z + y, 1) have a finite generation, while
e.g. the product t-norm - y and its t-conorme + y — x - y have not. Note also that

696 U. Straccia

if f,g have a finite generation ove¥ then so has o g. Therefore, given an equa-
tional systemS = (L, V, f). If f has a finite generation, thén | is finite. That is,
{L, f(L), £2(L),...} isfinite. In particular, on induction on the computationtod &-
least fixed-point ofS it can be shown that at each step of the bottom-up computation
the <-least fixed-point, the values of the variables arélify. Therefore, théieightof
[L]£, h([L]£), is finite. On the other hand, it can easily be seen $faéte terminates if
the sequencel, f(L), f2(L), ... converges after a finite number of steps. Therefore:

Proposition 10. Given a monotone system of equatighs= (£, V, f). ThenSolve
terminates ifff has a finite generation. If the cost of computing each of thetfans

in f is bounded by and the arity bounded by then the worst-case complexity of the
algorithm Solve is O(|V'|cah), whereh is the height of L] ¢.

The second condition, which guarantees the terminatiofiodie, is inspired directly
by [4] and is a special case of above. On bilattices, we sayetlfianctionf: 5 — B

is boundedff f(z1,...,z,) =i ®;z;. Now, consider a monotone system of equations
S = (L,V, f). We say thatf is boundediff each f; is a composition of functions,
each of which is either bounded, or a constanBinr one ofVv, A, ®, ® and—. For
instance, the function in Example 3 is not bounded, wiijlgz,y)) = (max(0,z +

y —1),1) A (0.3,0.4) over £([0, 1]g) is. The idea is to prevent the existence of an
infinite ascending chain of the form < f(L) <g ... <x f™(L) < Infact,
roughly, consider &-monotone functiorf = g o h, whereg is a bounded function,
while h is the composition of constants il or functions among/, A, ®, ® and —.
Thenl = f(L) = goh(Ll) = g(h(L)) = h(L). Buth has a finite generation
and, thus, so hag. The argument foif = h o g is similar. Therefore:

Proposition 11. Given a monotone system of equatighs= (L, V, f), where f is
bounded. The®olve terminates.

Note that for bounded functiong = g o h, the height ofl L] ¢ is given by the height
of [L]5. We believe that this latter height is bounded by the numbet |V| as we
conjecture thak™(L) = h"*1(L) (this is compatible with [4]). This would imply
that the worst-case complexity of the algoritisfolve is O(|V|?ca) in that case.

3.1 Top-Down Query Answering Under the Kripke-Kleene Sematics

We start with the Kripke-Kleene semantics, for which we halveost anticipated how
we will proceed. LetP be a logic program and consider*. As already pointed out,
each atom appears exactly once in the head of a rul“inThe system of equations
that we build fromP* is straightforward. Assign to each ataorha variablex 4 and
substitute inP* each occurrence aofl with z 4. Finally, substitute each occurrence
of — with = and letSxx (P) = (L,V, fp) be the resulting equational system (see
Equation 3). Of coursd)y'| = |Bp|, [Skx (P)| can be computed in tim@(|P|) and
all functions inSk k (P) are <,-continuous. Asfp is one to one related tép, it
follows that the<-least fixed-point ofSk x (P) corresponds to the Kripke-Kleene
semantics ofP. The algorithmSolvek i (P, 7 A), first computesSk i (P) and then
calls Solve(Skk (P),{xz4}) and returns the outpwton the query variable, whereis
the output of the call t&olve. Solvey - behaves correctly (see Example 7).

Query Answering in Normal Logic Programs Under Uncertainty 697

Proposition 12. Let? and? A be a logic program and a query, respectively. Then
KK(P)(A) = Solve (P, {?A}) 3,

From a computational point of view, we can avoid the costaristatingP into Sx k (P)

as we can directly operate @h So the cosO(|P|) can be avoided. In case the height
of the bilattice is finite, from Propositidn 9 it follows imrdiately that the worst-case
complexity for top-down query answering under the Kripkied¢he semantics of a logic
programP is O(| Bp|cah). Furthermore, often the cost of computing each of the func-
tions of fr is in O(1). By observing thatBp|a is in O(|P|) we immediately have
that in this case the complexity @(|P|h). It follows that over the bilattic6F OUR

(h = 2) the top-down algorithm works in linear time. Moreover, lifet height is a
fixed parameter, i.e. a constant, we can conclude that thicadd expressive power
of Kripke-Kleene semantics of logic programs over bilasi¢with functions with con-
stant cost) does not increase the computational complexityassical propositional
logic programs, which is linear. The computational comityerf the case where the
height of the bilattice is not finite is determined by Progiosi10 and Proposition 11.
In general, the continuity of the functions &k x (P) guarantees the termination after
at mostw steps.

3.2 Top-Down Query Answering Under the Well-Founded Semaiits

We address now the issue of a top-down computation of theevafila query under
the well-founded semantics. As we have seen, accordingttiod® formulation, the
well-founded semantics of a logic progrénis the=<-least fixed-point of the operator
Up(I) = IfpL, (\z.¥p(z,I)). Before we are going to present our top-down procedure
for the well-founded semantics, we roughly explain the apph. To this purpose, let
us consider Example 2. Assume that our quefy-iand consider the related equational
system(3). So, our query variable is3. Following theSolve algorithm,z; becomes
the active variable. We have to introduce a major changeap4tit is not hard to see
that, due to Equatioftl), in order to compute: = -z, A 21, we have to compute the
values ofz; andxzs w.r.t. the=<;-least fixed-point of another equational system, where
the current partial evaluationacts as the interpretatian That is, we have to make a
call to another instance of th&olve algorithm, which computes the valuesof and

xo W.I.L. to the current evaluation(z1, 22, x3). In our case, we consider the equational
system(3) in which negated variables have been replaced with theirevalr.t. to the
current evaluation and, thus, we replaee;, ~a» and—z3 with v(x;) andv(xs), and
v(x3) respectively. Once the sub-routine call gives us back theegeof the arguments
x1, T2 We compute: = —xo A —x; and continue with Step.

Let us formalize the above illustrated concept. Given adggbgramP, given a
truth value assignment, let us denoteS(P!) the equational system obtained from
Sk (P) in which all occurrences of have been replaced withl (x), butS(P7) is
based on thex; order rather than or;,. Then it can be verified thaolve(S(P7), Q)
outputs aseB C V, with @ C B, s.t. the mapping equals to the<,-least fixed-point
on B of the functions inS(P?) andv|z = ¥},(I),5. Moreover, from a computational

% The extension to a set of query atoms is straightforward.

698 U. Straccia

complexity point of view, the same properties $five hold for Solve(S(P!), Q) as
well. Finally, Solvew r(P,?A) is asSolvek i (P, ?A), except that Step. is replaced
with the statementf: = s(x;); I:= v; v':= Solve(S(P1),Q); r:= f;(v'(xi,), ...,

v'(zi,,)). It can be shown that the following holds:

Proposition 13. Let’? and? A be a logic program and a query, respectively. Then
WF(P)(A) = Solvewr(P,?A).

Example 14. Consider Example 6 and query variahtg. Below is a sequence of
Solveww (P,7A) computation. It resembles the one we have seen in Exampkefi. E
line is a sequence of steps in the ‘while loop’. What is lefthamged is not reported.

1.A={zal,zii=za,A:=0,dg: = {za, 25}, = {za,z5},v:= ((0.3,0.5), (0.3,0.5),
(0,1)),7:=(0.3,0.5), v(za): = (0.3,0.5), A: = {za,xB}, exp(za): = true,
ini={za,zB}

2. zi:=xp, A= {za},dg: = {za,zB,2c},Q = {za,2c},v:= ((0.3,0.5), (0.3,0.5),
(0.5,0.7)),7: = (0.3,0.5), v(zp): = (0.3,0.5), A: = {za,zc}, exp(zp): = true,
A={za,zc},in:={xa,xB,2c}

3. zii=xzc,Ai={za},Q = {xp},v:= ((0.3,0.5),(0.3,0.5),(0.5,0.7)),
r:=(0.5,0.7),v(zc): = (0.5,0.7),A:= {x4,zB}, exp(zc): = true

4. zii=zp, A= {za},Q@: = {za,2c},v:= ((0.3,0.5),(0.3,0.5), (0.5,0.7)), r: = (0.3,0.5)

5. zi=xa,b:=0,Q={za,z5},v:= ({(0.3,0.5),(0.3,0.5), (0.5,0.7)), r: = (0.3,0.5)

6. stop. return v(z4, B, Tc)s, = ((0.3,0.5),(0.3,0.5),(0.5,0.7))|,, = (0.3,0.5)

The computational complexity analysis 8blvey, parallels the one we have made
for Solvek k. If the height of a bilattice is finite then, likEolve k -, €ach variable:;

will appear inA at mosta; - (h(£) + 1) times and, thus, the worst-case complexity is
O, ev(e(f;) - (a;- (h(£)+1)). But now, the cost of(f;) is the cost of a recursive
call to Solve, which isO(| Bp|cah). Therefore Solvey, i runs in timeO (| Bp|2a?h?c).
That is, Solvew ¢ runs in timeO(|P|2h%c). If the bilattice is fixed, then the height
parameter is a constant. Furthermore, often we can asswhe ithO(1) and, thus,
the worst-case complexity reduces@g|P|?). In the case the height of a bilattice is
not finite, the continuity of the functiong € F guarantees that each recursive call to
Solve requires at mosb steps. Thus, we have at mast steps forSolvey . In case
the functions have a finite generation or are bounded, Pitipo&0d and Propositidn 11
can be applied.

4 Conclusions

We have presented a general top-down algorithm to answetegufer normal logic
programs over lattices as well as over bilattices (for whichtop-down algorithm
was known yet). We believe that its interest relies on thetfaat many approaches to
paraconsistency and uncertainty of logic programming wittvithout non-monotonic
negation are based on bilattices or lattices, respectiVélgrefore, the presented algo-
rithms give us general query-solving procedures for marthern.

Query Answering in Normal Logic Programs Under Uncertainty 699

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

N. D. Belnap. A useful four-valued logic. In G. Epstein and J. MnBueditors Modern
uses of multiple-valued logipages 5-37. Reidel, Dordrecht, NL, 1977.

E. Bdhler, C. Glaer, B. Schwarz, and K. Wagner. Generation problem28th Int. Symp. on
Mathematical Foundations of Computer Science (MFCS-DMICS 3153, pages 392—-403.
Springer Verlag, 2004.

. W. Chen and D. S. Warren. Tabled evaluation with delaying for géfegi programs.

Journal of the ACMA43(1):20-74, 1996.

. C. V. Danasio, J. Medina, and M. O. Aciego. Sorted multi-adjoint logic prograraemina-

tion results and applications. Proc. of the 9th Europ. Conf. on Logics in Art. Intelligence
(JELIA-04) LNCS 3229, pages 252-265. Springer Verlag, 2004.

. C. V. Danasio, J. Medina, and M. O. Aciego. A tabulation proof procedure feidtated

logic programming. IrProc. of the 6th Europ. Conf. on Art. Intelligence (ECAI-02004.

. C. V. Danasio and L. M. Pereira. A survey of paraconsistent semantics for fwggrams.

In D. Gabbay and P. Smets, editokandbook of Defeasible Reasoning and Uncertainty
Management Systenmages 241-320. Kluwer, 1998.

. C. Viegas Darasio and L. M. Pereira. Antitonic logic programs. Mroc. of the 6th

Int. Conf. on logic programming and Nonmonotonic Reasoning (LPNIMRENCS 2173.
Springer-Verlag, 2001.

. D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic progriag. InProc. of the

8th Int. Conf. on Logic Programming (ICLP-3lpages 581-595. The MIT Press, 1991.

. M. C. Fitting. Fixpoint semantics for logic programming - a survékieoretical Computer

Science21(3):25-51, 2002.

M. Gelfond and V. Lifschitz. The stable model semantics for logigmming. InProc. of

the 5th Int. Conf. on Logic Programmingages 1070-1080, Cambridge, Massachusetts,
1988. The MIT Press.

M. L. Ginsberg. Multi-valued logics: a uniform approach to reagpinartificial intelli-
gence.Computational Intelligencet:265-316, 1988.

M. Kifer and V.S. Subrahmanian. Theory of generalized anrmtatgc programming and
its applications.Journal of Logic Programmingl2:335-367, 1992.

Laks V.S. Lakshmanan and N. Shiri. A parametric approach taatied databases with
uncertainty| EEE Transactions on Knowledge and Data Engineeriti®(4):554-570, 2001.

Y. Loyer and U. Straccia. The approximate well-founded semdiatidsgic programs with
uncertainty. In28th Int. Symp. on Mathematical Foundations of Computer Science (MFCS
2003) LNCS 2747, pages 541-550, 2003. Springer-Verlag.

T. Lukasiewicz. Probabilistic logic programming. Pmoc. of the 13th European Conf. on
Artificial Intelligence (ECAI-98)pages 388—392, 1998.

T. Lukasiewicz. Fixpoint characterizations for many-valued digjua logic programs with
probabilistic semantics. IRroc. of the 6th Int. Conf. on Logic Programming and Nonmono-
tonic Reasoning (LPNMR-01)NAI 2173, pages 336—350. Springer-Verlag, 2001.

R. Ng and V.S. Subrahmanian. Stable model semantics for plisbaleductive databases.
In Proc. of the 6th Int. Sym. on Methodologies for Intelligent Systems (S| &£ NAI 542,
pages 163-171. Springer-Verlag, 1991.

R. Ng and V.S. Subrahmanian. Probabilistic logic programminfprmation and Compu-
tation, 101(2):150-201, 1993.

U. Straccia. Top-down query answering for logic programs biattices. Technical Report,
ISTI-CNR, Pisa, Italy, 2004.

700 U. Straccia

20. A. Tarski. A lattice-theoretical fixpoint theorem and its applicatioRacific Journal of
Mathematics(5):285—-309, 1955.

21. A.van Gelder, K. A. Ross, and J. S. Schlimpf. The well-foundsdastics for general logic
programs.Journal of the ACM38(3):620-650, January 1991.

22. P.Voj&S. Fuzzy logic programmindzuzzy Sets and Syster4:361-370, 2004.

	Introduction
	Preliminaries
	Top-Down Query Answering
	Top-Down Query Answering Under the Kripke-Kleene Semantics
	Top-Down Query Answering Under the Well-Founded Semantics

	Conclusions

