
Query Answering in Normal Logic Programs
Under Uncertainty

Umberto Straccia

ISTI - CNR, Via G. Moruzzi, 1 I-56124 Pisa (PI), Italy

Abstract. We present a simple, yet general top-down query answering procedure
for normal logic programs over lattices and bilattices, where functions may ap-
pear in the rule bodies. Its interest relies on the fact that many approaches to para-
consistency and uncertainty in logic programs with or without non-monotonic
negation are based on bilattices or lattices, respectively.

1 Introduction

The management of uncertainty in logic programming has attracted the attention of
many researchers and numerous frameworks have been proposed. Essentially, they dif-
fer in the underlying notion of uncertainty1 (e.g. probability theory [15, 18], fuzzy set
theory [22], multi-valued logic [4, 12, 13, 14], possibilistic logic [8]) and how uncer-
tainty values, associated to rules and facts, are managed. Roughly, these frameworks
can be classified intoannotation based(AB) and implication based(IB). In the AB
approach (e.g. [12, 18]), a rule is of the formA: f(β1, . . . , βn) ← B1:β1, . . . , Bn:βn,
which asserts “the certainty of atomA is at least (or is in)f(β1, . . . , βn), whenever the
certainty of atomBi is at least (or is in)βi, 1 ≤ i ≤ n”. Heref is ann-ary computable
function andβi is either a constant or a variable ranging over an appropriate certainty
domain. In the IB approach (see [4, 13] for a more detailed comparison between the two
approaches), a rule is of the formA

α
← B1, ..., Bn, which says that the certainty associ-

ated with the implicationB1∧...∧Bn → A is α. Computationally, given an assignment
v of certainties to theBi, the certainty ofA is computed by taking the “conjunction”
of the certaintiesv(Bi) and then somehow “propagating” it to the rule head. The truth-
values are taken from a certainty lattice. More recently, [4, 13, 22] show that most of the
frameworks can be embedded into the IB framework (some exceptions deal with prob-
ability theory). However, most of the approaches stress an important limitation, as they
do not address any mode ofnon-monotonic negation. Exception to this limitation are
e.g. [16, 17] in which the stable semantics has been considered, but limited to the case
where the underlying uncertainty formalism is probabilitytheory; in [7] the underlying
truth-space are lattices, but its formulations goes overbilattices [11] (a slightly more
general structure than lattices); while [14] uses normal logic programs over bilattices
under the IB framework.

1 See e.g. [19] for an extensive list of references.
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In many frameworks, in order to answer to a query, we have to compute the whole
intended model by a bottom-up fixed-point computation and then answer with the eval-
uation of the query in this model. This always requires to compute a whole model, even
if not all the atom’s truth is required to determine the answer. To the best of our knowl-
edge the only work presenting top-down procedures are [5, 12, 13, 22], but in none of
them non-monotonic negation is considered.

In this paper we present a general top-down query answering procedure for normal
logic programs over lattices and bilattices [9, 11] in the IBframework. Its interest relies
on the fact that many approaches to paraconsistency and uncertainty in logic programs
with or without non-monotonic negation are based on bilattices or lattices, respectively.

We proceed as follows. In the next section, we will briefly recall definitions and
properties of lattices, bilattices and normal logic programs over bilattices. Section 3 is
the main part of this work, where we present our top-down query procedure and the
computational complexity analysis, while Section 4 concludes.

2 Preliminaries

Lattice. In a complete latticeL = 〈L,¹〉, with L a countable set, bottom⊥ and top el-
ement⊤, a functionf :L → L is monotone, if ∀x, y ∈ L, x ¹ y impliesf(x) ¹ f(y),
while f is antitoneif x ¹ y implies f(y) ¹ f(x). A fixed-pointof f is an element
x ∈ L such thatf(x) = x. The basic tool for studying fixed-points of functions on
lattices is the well-known Knaster-Tarski theorem [20]. Let f be a monotone function
on a complete lattice〈L,¹〉. Thenf has a fixed-point, the set of fixed-points off is
a complete lattice and, thus,f has a¹-leastfixed-point. The¹-leastfixed-point can
be obtained by iteratingf over⊥, i.e. is the limit of the non-decreasing sequencey0,
. . . , yi, yi+1, . . . ,yλ, . . . , where for a successor ordinali ≥ 0, y0 = ⊥, yi+1 = f(yi),
while for a limit ordinalλ, yλ = lub¹{yi: i < λ}. We denote the¹-least fixed-point
by lfp¹(f). For ease, we will specify the initial conditiony0 and the next iteration step
yi+1 only, while the condition for a limit ordinal is considered as implicit.

Bilattice. A bilattice [11] is a structure〈B,¹t,¹k〉 whereB is a non-empty, countable
set and¹t (the truth order) and¹k (the knowledge order) are both partial orderings
giving B the structure of acomplete latticewith a top and bottom element.Meet (or
greatest lower bound)andjoin (or least upper bound)under¹t, denoted∧ and∨, cor-
respond to extensions of classical conjunction and disjunction. On the other hand,meet
and join under¹k are denoted⊗ and⊕. x⊗y corresponds to the maximal informationx

andy can agree on, whilex⊕y simply combines the information represented byx with
that represented byy. Top and bottom under¹t are denotedt andf, andtop and bottom
under¹k are denoted⊤ and⊥, respectively. We will assume that bilattices areinfinitary
distributive bilatticesin which all distributive laws connecting∧,∨,⊗ and⊕ hold. We
also assume that every bilattice satisfies theinfinitary interlacing conditions, i.e. each of
the lattice operations∧,∨,⊗ and⊕ is monotone w.r.t. both orderings. An example of in-
terlacing condition is:x ¹t y andx′ ¹t y′ impliesx⊗x′ ¹t y⊗y′. Finally, we assume
that each bilattice has anegation, i.e. an operator¬ that reverses the¹t ordering, leaves
unchanged the¹k ordering, and verifies¬¬x = x. For instance, the simplest non-
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trivial bilattice, calledFOUR, is due to Belnap [1], who introduced a logic intended
to deal with incomplete and/or inconsistent information – see also [6].FOUR already
illustrates many of the basic properties concerning bilattices. Essentially,FOUR ex-
tends the classical truth set{f, t} to {f, t,⊥,⊤}, where⊥ standsunknown, and⊤
stands forinconsistent. In FOUR, ⊥ ¹k f ¹k ⊤, ⊥ ¹k t ¹k ⊤, f ¹t ⊥ ¹t t and
f ¹t ⊤ ¹t t. Furthermore, we have that¬f = t, ¬⊥ = ⊥, ¬⊤ = ⊤. In addition to
the usual bilattice approach, we provide a familyF of ¹k and¹t-continuous binary
and unary functionsf :B × B → B andf :B → B to manipulate truth values. That is,
for any¹k-monotone chainx0, x1, . . . of values inB, f(⊕ixi) = ⊕if(xi) and for any
¹t-monotone chainx0, x1, . . . of values inB, f(∨ixi) = ∨if(xi). The binary case is
similar. Notably,∧,∨,⊗ and∨ are both¹k-continuous and¹t-continuous, while¬ is
¹k-continuous but not¹t-continuous (it is¹t-antitone). Interestingly, bilattices come
up in two natural ways and are widely used. We just sketch themhere in order to give
a feeling of their application. The first bilattice construction method comes from [11].
Suppose we have two complete distributive lattices〈L1,¹1〉 and 〈L2,¹2〉. Think of
L1 as a lattice of values we use when we measure the degree of belief of a statement,
while think ofL2 as the lattice we use when we measure the degree of doubt of it.Now,
we define the structureL1 ⊙ L2 as follows. The structure is〈L1 × L2,¹t,¹k〉, where
(i) 〈x1, x2〉 ¹t 〈y1, y2〉 if x1 ¹1 y1 andy2 ¹2 x2, while (ii) 〈x1, x2〉 ¹k 〈y1, y2〉 if
x1 ¹1 y1 andx2 ¹2 y2. In L1 ⊙ L2 the idea is: knowledge goes up if both degree of
belief and degree of doubt go up; truth goes up if the degree ofbelief goes up, while the
degree of doubt goes down. It is easily verified thatL1 ⊙L2 is a bilattice. Furthermore,
if L1 = L2 = L, i.e. we are measuring belief and doubt in the same way, then nega-
tion can be defined as¬〈x, y〉 = 〈y, x〉. That is, negation switches the roles of belief
and doubt. Notably, under this approach fall work on paraconsistent logic programming
(see, e.g. [6]) and anti-tonic logic programming (see, e.g.[7]). In the second construc-
tion method, suppose we have a complete distributive lattice of truth values〈L,¹〉 (like
e.g. in Many-valued Logics). Think of these values as the ‘actual’ values we are inter-
ested in, but due to lack of knowledge we are able just to ‘approximate’ the exact values.
That is, rather than considering a pair〈x, y〉 ∈ L×L as indicator for degree of belief and
doubt,〈x, y〉 is interpreted as the set of elementsz ∈ L such thatx ¹ z ¹ y. Therefore,
a pair〈x, y〉 is interpreted as aninterval. An interval〈x, y〉 may be seen as an approx-
imation of an exact value. Formally, given a distributive lattice 〈L,¹〉, thebilattice of
intervals, denotedK(L), is 〈L×L,¹t,¹k〉, where:(i) 〈x1, x2〉 ¹t 〈y1, y2〉 if x1 ¹ y1

andx2 ¹ y2, while (ii) 〈x1, x2〉 ¹k 〈y1, y2〉 if x1 ¹ y1 andy2 ¹ x2. The intuition
of those orders is that truth increases if the interval contains greater values, whereas the
knowledge increases when the interval becomes moreprecise. Negation can be defined
as¬〈x, y〉 = 〈¬y,¬x〉, where¬ is a negation operator onL. This approach has been
used, e.g. in [14], whereL is the unit interval[0, 1]Q = [0, 1]∩Q with standard ordering.

Logic Programs.Fix a bilattice. We start with the definitions given in [9] andextend it
to the casearbitrary computable functionsf ∈ F are allowed in rule bodies to manipu-
late the truth values. For the ease of presentation, we limitour attention to propositional
logic programs. The first order case can be handled by grounding. So, consider an al-
phabet of propositional letters. Anatom, denotedA is a propositional letter. A literal,l,
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is of the formA or¬A, whereA is an atom. Aformula, ϕ, is an expression built up from
the literals, the members of a bilatticeB using∧,∨,⊗ and⊕ and the functionsf ∈ F .
Note that members of the bilattice may appear in a formula, aswell as functions: e.g. in
FOUR, f(p ∧ q, r ⊗ f) ⊕ v is a formula. The intuition here is that the truth value of
the formulaf(p ∧ q, r ⊗ f) ⊕ v is obtained by determining the truth value ofp ∧ q and
r⊗f, then apply the functionf to them and join the result to the truth value ofv. A rule
is of the formA ← ϕ, whereA is an atom andϕ is a formula. The atomA is called the
head, and the formulaϕ is called thebody. A normal logic program(in the following,
simply logic program), denoted withP, is a finite set of rules. TheHerbrand baseof P
(denotedBP ) is the set of atoms occurring inP. GivenP, the setP∗ is constructed as
follows; (i) if an atomA is not head of any rule inP∗, then add the ruleA ← f to P∗;
2 and(ii) replace several rules inP∗ having same head,A ← ϕ1, A ← ϕ2, . . . with
A ← ϕ1 ∨ϕ2 ∨ . . .. Note that inP∗, each atom appears in the head ofexactly onerule.

Example 1 ([14]).ConsiderK([0, 1]Q), with∧ = min and∨ = max. Consider an in-
surance company, which has information about its customersused to determine the
risk coefficient of each customer. Suppose a value of the riskcoefficient is already
known, but has to be re-evaluated (the client is a new client and his risk coefficient is
given by his precedent insurance company). The company may have:(i) data grouped
into a set of facts{(Experience(john) ← [0.7, 0.7]), (Risk(john) ← [0.5, 0.5]),
(Sport car(john) ← [0.8, 0.8])}; and (ii) a set of rules, which after grounding are:

Good driver(john) ← Experience(john) ∧ ¬Risk(john)
Risk(john) ← 0.8 · Young(john)
Risk(john) ← 0.8 · Sport car(john)
Risk(john) ← Experience(john) ∧ ¬Good driver(john)

Interpretations. An interpretation of a logic programon the bilattice〈B,¹t,¹k〉 is
a mapping from atoms to members ofB. An interpretationI is extended from atoms
to formulae as follows:(i) for b ∈ B, I(b) = b; (ii) for formulaeϕ andϕ′, I(ϕ ∧
ϕ′) = I(ϕ) ∧ I(ϕ′), and similarly for∨,⊗,⊕ and¬; and (iii) for formulaef(ϕ),
I(f(ϕ)) = f(I(ϕ)), and similarly for binary functions. The truth and knowledge order-
ings are extended fromB to the setI(B) of all interpretations point-wise:(i) I1 ¹t I2

iff I1(A) ¹t I2(A), for every ground atomA; and(ii) I1 ¹k I2 iff I1(A) ¹k I2(A),
for every ground atomA. We define(I1 ∧ I2)(A) = I1(A) ∧ I2(A), and similarly for
the other operations. WithIf andI⊥ we denote the bottom interpretations under¹t

and¹k respectively (they map any atom intof and⊥, respectively). It is easy to see
that〈I(B),¹t,¹k〉 is an infinitary interlaced and distributive bilattice as well.

Models. An interpretationI is a modelof a logic programP, denoted byI |= P, iff
for theuniquerule involvingA, A ← ϕ ∈ P∗, I(A) = I(ϕ) holds. Note that usually
a model has to satisfyI(ϕ) ¹t I(A) only, i.e.A ← ϕ ∈ P∗ specifies the necessary
condition onA, “A is at least as true asϕ”. But, asA ← ϕ ∈ P∗ is the unique rule with
headA, the constraint becomes also sufficient (see e.g. [9]).

2 It is a standard practice in logic programming to consider such atoms asfalse.
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Query. A query, denotedq, is an expression of the form?A (query atom), intended as
a question about the truth of the atomA in the selected intended model ofP. We also
allow a query to be aset{?A1, . . . , ?An} of query atoms. In that latter case we ask
about the truth of all the atomsAi in the intended model of a logic programP.

Semantics of Logic Programs.The semantics of a logic programP is determined
by selecting a particular model, or a set of models, ofP. In our context we will con-
sider two possible intended semantics over bilattices, namely theKripke-Kleene(KK)
and theWell-Founded semantics(WF) [9, 21], which are well-established semantics for
non-monotonic negation over bilattices. It is well-know that the WF semantics is more
informative (provides more knowledge) than the KK semantics.

Example 2. ConsiderFOUR andP = {(p ← p), (q ← ¬r), (r ← ¬q ∧¬p)}. Let us
identify an interpretationI as a triple for the truth-values of〈p, q, r〉. Then the models
of P are I1 = 〈⊥,⊥,⊥〉, I2 = 〈⊥, t, f〉, I3 = 〈f,⊥,⊥〉, I4 = 〈f, f, t〉, I5 = 〈f, t, f〉,
I6 = 〈f,⊤,⊤〉, I7 = 〈t, t, f〉, I8 = 〈⊤, t, f〉 andI9 = 〈⊤,⊤,⊤〉. The KK semantics
will be I1, while the WF semantics will beI3. Note thatI1 ¹k I3.

Formally, theKripke-Kleene semanticshas a simple and intuitive characterization, as it
corresponds to the¹k-least model of a logic program, i.e. theKripke-Kleene modelof
a logic programP is KK(P) = min¹k

{I: I |= P}. Theexistence and uniquenessof
KK(P) is guaranteed by the fixed-point characterization, by meansof the immediate
consequence operatorΦP . For an interpretationI, for any ground atomA with (unique)
A ← ϕ ∈ P∗, ΦP(I)(A) = I(ϕ). We can show that (based on [9, 14]) the functionΦP

is ¹k-continuous overI(B), the set of fixed-points ofΦP is a complete lattice under
¹k and, thus,ΦP has a¹k-least fixed-point andI is a model of a programP iff I is
a fixed-point ofΦP . Therefore, the Kripke-Kleene model ofP coincides with the least
fixed-point ofΦP under¹k, which can be computed in the usual way by iteratingΦP

overI⊥ and is attained after at mostω iterations.

Example 3. ConsiderK([0, 1]Q), the functionf(〈x, 1〉) = 〈x+a
2

, 1〉 (0 < a ≤ 1, a ∈
Q), andP = {A ← f(A)}. Then the KK model is attained afterω steps ofΦP itera-
tions overI⊥ = 〈0, 1〉 and isKK(P)(A) = 〈a, 1〉.

TheWell-Founded semanticsover bilattices is derived directly from Fitting’s formula-
tion [9]. Informally, an interpretationI is thewell-founded modelof a logic program
P if I it the¹k-least interpretation satisfyingI = I ′, whereI ′ is computed according
to the so-calledGelfond-Lifschitz transformation: (i) substitute (fix) inP∗ the negative
literals by their evaluation with respect toI. LetPI be the resultingpositiveprogram,
called reduct of P w.r.t. I; and (ii) compute the truth-minimal modelI ′ of PI . For
instance, givenP andI3 in Example 2,PI3 is {(p ← p), (q ← ⊥), (r ← ⊥ ∧ t)},
whose¹t-least model isI3. Also I3 is the¹k-least model satisfying the above condi-
tion. Therefore,I3 is well-founded model. Note that the¹t-least model ofPI1 (= PI3 ),
is I3, soI1 does not satisfy the Gelfond-Lifschitz transformation. Formally, Fitting [9]
relies on a binary immediate consequence operatorΨP , which accepts two input inter-
pretationsI andJ over a bilattice, the first one is used to assign meanings to positive lit-
erals, while the second one is used to assign meanings to negative literals. LetI andJ be
two interpretations in the bilattice〈I(B),¹t,¹k〉. The notion ofpseudo-interpretation
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I △ J over the bilattice is defined as follows: for an atomA: (I △ J)(A) = I(A)
and (I △ J)(¬A) = ¬J(A). Pseudo-interpretations are extended to non-literals in
the obvious way. For instance,(I △ J)(f(¬A ∧ B)) = f((I △ J)(¬A ∧ B)) =
f((I △ J)(¬A) ∧ (I △ J)(B)) = f(¬J(A) ∧ I(B)). We can now defineΨP as fol-
lows. For I, J ∈ I(B), ΨP(I, J) is the interpretation, which for any atomA with
A ← ϕ ∈ P∗, satisfiesΨP(I, J)(A) = (I △ J)(ϕ). Note thatΦP is a special case of
ΨP , as by constructionΦP(I) = ΨP(I, I). Similarly to [9], we can show that the op-
eratorΨP is ¹k-continuous in both arguments,¹t-continuous in its first argument and
¹t-antitone in its second argument. To define the well-foundedsemantics, Fitting [9]
further introduces theΨ ′

P operator, whose¹k-least fixed-point will be the WF model
of a program. For any interpretationI, Ψ ′

P(I) is the¹t-least fixed-point of the operator
λx.ΨP(x, I), i.e.

Ψ ′
P(I) = lfp¹t

(λx.ΨP(x, I)) . (1)

Due to the¹t-continuity ofΨP on its first argument,Ψ ′
P is well defined.Ψ ′

P(I) can be
computed by iteratingΨP(x, I) overIf and the limit is attained in at mostω iterations.
In particular, we can show that the operatorΨ ′

P is¹k-continuous,¹t-antitone and every
fixed-point ofΨ ′

P is also a fixed-point ofΦP , i.e. a model ofP. Therefore, the set of
fixed-points ofΨ ′

P is a complete lattice under¹k and, thus,Ψ ′
P has a¹k-least fixed-

point, which is denotedWF (P). WF (P) is theWell-Founded modelof P. Of course,
the well-founded model can be computed by iteratingΨ ′

P starting fromI⊥ and the limit
is attained in at mostω iterations.

Example 4. ConsiderK([0, 1]Q) and P = { (A ← A ∨ B), (B ← (¬C ∧ A) ∨
〈0.3, 0.5〉), (C ← ¬B ∨ 〈0.2, 0.4〉) }. Then the computation ofKK(P), as¹k-least
fixed-point ofΦP , converges toKK(P)(A, B,C) = 〈〈0.3, 1〉, 〈0.3, 0.8〉, 〈0.2, 0.7〉〉.
The computation ofWF (P), as¹k-least fixed-point ofΨ ′

P , converges toWF (P)(A,

B,C) = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉. Notice thatKK(P) ¹k WF (P), as ex-
pected.

Example 5. Consider Example 1. It turns out that the KK semantics isI1, while the
WF semantics isI2, where (for ease, we use first letter only)I1(R(j)) = [0.64, 0.8],
I1(S(j)) = [0.8, 0.8], I1(Y(j)) = [0, 1], I1(G(j)) = [0.2, 0.36], I1(E(j)) = [0.7, 0.7],
while I2(R(j)) = [0.64, 0.7], I2(S(j)) = [0.8, 0.8], I2(Y(j)) = [0, 0], I2(G(j)) =
[0.3, 0.36], I2(E(j)) = [0.7, 0.7]. Note thatI1 ¹k I2. In fact,I2 establish thatjohn’s
degree ofRisk is in between[0.64, 0.7], whileI1 is lessprecise. Also note thatI2(Y(j))
= [0, 0] (= false), whileI1(Y(j)) = [0, 1] (= unknown).

3 Top-Down Query Answering

Given a logic programP and either the KK or the WF model, one way to answer
to a query?A is to compute the intended modelI of P by a bottom-up fixed-point
computation and then answer withI(A). This always requires to compute a whole
model, even if in order to determineI(A), not all the atom’s truth is required. Our goal
is to present a simple, yet general top-down method, which relies on the computation
of just a part of an intended model. Essentially, we will try to determine the value
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of a single atom by investigating only a part of the programP. Our method is based
on a transformation of a program into a system of equations ofmonotonic functions
over lattices and bilattices for which we compute the least fixed-point in a top-down
style. The idea is the following. Let〈B,¹t,¹k〉 be a bilattice and letP be a logic
program. Consider the Herbrand baseBP = {A1, . . . , An} of P and considerP∗. Let
us associate to each atomAi ∈ BP a variablexi, which will take a value in the domain
B (sometimes, we will refer to that variable withxA as well). An interpretationI may
be seen as an assignment of bilattice values to the variablesx1, ..., xn. For an immediate
consequence operatorO, e.g.ΦP , a fixed-point is such thatI = O(I), i.e. for all atoms
Ai ∈ BP , I(Ai) = O(I)(Ai). Therefore, we may identify the fixed-points ofO as the
solutions overB of the system of equations of the following form:

x1 = f1(x11
, . . . , x1a1

) ,
...

xn = fn(xn1
, . . . , xnan

) ,

(2)

where for1 ≤ i ≤ n, 1 ≤ k ≤ ai, we have1 ≤ ik ≤ n. Each variablexik
will take a

value in the domainB, each (monotone) functionfi determines the value ofxi (i.e.Ai)
given an assignmentI(Aik

) to each of theai variablesxik
. The functionfi implements

O(I)(Ai). Of course, we are especially interested in the computationof the least fixed-
point of the above system. For instance, by considering the logic program in Example 2,
the fixed-points of theΦP operator are the solutions over a bilattice of the system of
equations (p 7→ x1, q 7→ x2, r 7→ x3)

x1 = x1 , x2 = ¬x3 , x3 = ¬x2 ∧ ¬x1 . (3)

It is easily verified that all nine interpretationsIi in Example 2 are bijectively related
to the solutions of the system (3) overFOUR and (x1, x2, x3) = (⊥,⊥,⊥) is the
¹k-least solution and corresponds to the Kripke-Kleene modelof P.

Now, at first present the general procedure for the top-down computation of the
value of variable in the¹-least solution of the system (2), given a latticeL = 〈L,¹〉.
Then, we will customize it to the particular case of the Kripke-Kleene semantics and
the well-founded semantics. We use some auxiliary functions. s(x) denotes the set of
sonsof x, i.e.s(xi) = {xi1 , . . . , xiai

} (the set of variables appearing in the right hand
side of the definition ofxi). p(x) denotes the set ofparentsof x, i.e. the setp(x) =
{xi:x ∈ s(xi)} (the set of variables depending on the value ofx). In the general case,
we assume that each functionfi:L

ai 7→ L in Equation (2) is¹-monotone. We also use
fx in place offi, for x = xi. We refer to the monotone system as in Equation (2) as
the tupleS = 〈L, V,f〉, whereL is a lattice,V = {x1, ..., xn} are the variables and
f = 〈f1, ..., fn〉 is the tuple of functions. As it is well known, a monotonic equation
system as(2) has a¹-least solution, lfp¹(f), the¹-least fixed-point off is given as
the least upper bound of the¹-monotone sequence,y0, . . . ,yi, . . ., wherey0 = ⊥ and
yi+1 = f(yi).

Example 6. Consider Example 4. The equational system is{xA = xA ∨ xB , xB =
(¬xC ∧ xA) ∨ 〈0.3, 0.5〉, xC = ¬xB ∨ 〈0.2, 0.4〉}. The¹k-least fixed-point com-
putation isy0 = ⊥ = 〈[0, 1]Q, [0, 1]Q, [0, 1]Q〉 (the triples represent(xA, xB , xC)),
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y1 = 〈[0, 1]Q, [0.3, 1]Q, [0.2, 1]Q〉, y2 = 〈[0.3, 1]Q, [0.3, 0.8]Q, [0.2, 0.7]Q〉 and y3 =
y2, which corresponds to the KK model of the program, as expected.

Informally our algorithm works as follows. Assume we are interested in the value ofx0

in the least fixed-point of the system. We associate to each variablexi a markingv(xi)
denoting the current value ofxi (the mappingv contains the current value associated
to the variables). Initially,v(xi) is ⊥. We start with puttingx0 in the active list of
variablesA, for which we evaluate whether the current value of the variable is identical
to whatever its right-hand side evaluates to. When evaluating a right-hand side it might
of course turn out that we do indeed need a better value of somesons, which will
assumed to have the value⊥ and put them on the list of active nodes to be examined.
In doing so we keep track of the dependencies between variables, and whenever it turns
out that a variable changes its value (actually, it can only¹-increase) all variables that
might depend on this variable are put in the active set to be examined. At some point
(even if cyclic definitions are present) the active list willbecome empty and we have
actually found part of the fixed-point, sufficient to determine the value of the queryx0.
The algorithm is given below.

ProcedureSolve(S, Q)
Input: ¹-monotonic systemS = 〈L, V, f 〉, whereQ ⊆ V is the set of query variables;
Output: A setB ⊆ V , with Q ⊆ B such that the mappingv equals lfp¹(f) onB.

1. A: = Q, dg: = Q, in: = ∅, for all x ∈ V do v(x) = ⊥, exp(x) = false

2. while A 6= ∅ do
3. selectxi ∈ A, A: = A \ {xi}, dg: = dg ∪ s(xi)
4. r: = fi(v(xi1), ..., v(xiai

))

5. if r ≻ v(xi) then v(xi): = r, A: = A ∪ (p(xi) ∩ dg) fi
6. if not exp(xi) then exp(xi) = true, A: = A ∪ (s(xi) \ in), in: = in ∪ s(xi) fi

od

The variabledg collects the variables that may influence the value of the query vari-
ables, the array variableexp traces the equations that has been “expanded” (the body
variables are put into the active list), while the variablein keeps track of the variables
that have been put into the active list so far due to an expansion (to avoid, to put the
same variable multiple times in the active list due to function body expansion). The
attentive reader will notice that theSolve procedure has much in common with the so-
calledtabulationprocedures, like [3, 5]. Indeed, it is a generalization of itto arbitrary
monotone equational systems over lattices.

Example 7. Consider Example 6 and query variablexA. Below is a sequence of
Solve(S, {xA}) computation w.r.t.¹k. Each line is a sequence of steps in the ‘while
loop’. What is left unchanged is not reported.

1. A: = {xA}, xi: = xA, A: = ∅, dg: = {xA, xB}, r: = ⊥, exp(xA): = true, A: = {xA, xB},
in: = {xA, xB}

2. xi: = xB , A: = {xA}, dg: = {xA, xB , xC}, r: = 〈0.3, 1〉, v(xB): = 〈0.3, 1〉, A: = {xA, xC},
exp(xB): = true, in: = {xA, xB , xC}

3. xi: = xC , A: = {xA}, r: = 〈0.2, 0.7〉, v(xC): = 〈0.2, 0.7〉, A: = {xA, xB}, exp(xC): = true

4. xi: = xB , A: = {xA}, r: = 〈0.3, 0.8〉, v(xB): = 〈0.3, 0.8〉, A: = {xA, xC}
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5. xi: = xC , A: = {xA}, r: = 〈0.2, 0.7〉
6. xi: = xA, A: = ∅, r: = 〈0.3, 1〉, v(xA): = 〈0.3, 1〉, A: = {xA, xB}
7. xi: = xB , A: = {xA}, r: = 〈0.3, 0.8〉,
8. xi: = xA, A: = ∅, r: = 〈0.3, 1〉
9. stop. return v(xA, xB , xC) = 〈〈0.3, 1〉, 〈0.3, 0.8〉, 〈0.2, 0.7〉〉

The fact that only a part of the model is computed becomes evident, as the computation
does not change if we add any programP ′ toP in whichA,B andC do not occur.

Given a systemS = 〈L, V,f〉, whereL = 〈L,¹〉, let h(L) be theheightof the truth-
value setL, i.e. the length of the longest strictly¹-increasing chain inL minus 1,
where the length of a chainv1, ..., vα, ... is the cardinal|{v1, ..., vα, ...}|. Thecardinal
of a countable setX is the least ordinalα such thatα andX areequipollent, i.e. there
is a bijection fromα to X. For instance,h(FOUR) = 2 w.r.t.¹k as well as w.r.t.¹t,
while h(K([0, 1]Q)) = ω. It can be shown that the above algorithm behaves correctly.

Proposition 8. Given a monotone system of equationsS = 〈L, V,f〉, then there is a
limit ordinal λ such that after|λ| stepsSolve(S, Q) determines a setB ⊆ V , with
Q ⊆ B such that the mappingv equals lfp¹(f) onB, i.e.v|B = lfp¹(f)|B .

From a computational point of view, by means of appropriate data structures, the op-
erations onA, v, dg, in, exp, p ands can be performed in constant time. Therefore,
Step1. is O(|V |), all other steps, except Step2. and Step4. areO(1). Let c(fx) be
the maximal cost of evaluating functionfx on its arguments, so Step4. is O(c(fx)).
It remains to determine the number of loops of Step2. In case the heighth(L) of the
bilatticeL is finite, observe that any variable is increasing in the¹ order as it enters in
theA list (Step5.), except it enters due to Step6., which may happen one time only.
Therefore, each variablexi will appear inA at mostai · h(L) + 1 times, whereai is the
arity of fi, as a variable is only re-entered intoA if one of its son gets an increased value
(which for each son only can happenh(L) times), plus the additional entry due to Step
6. As a consequence, the worst-case complexity isO(

∑
xi∈V (c(fi) · (ai · h(L) + 1)).

Therefore:

Proposition 9. Given a monotone system of equationsS = 〈L, V,f〉. If the computing
cost of each function inf is bounded byc, the arity bounded bya, and the height is
bounded byh, then the worst-case complexity of the algorithmSolve is O(|V |cah).

In case the height of a bilattice is not finite, the computation may not terminate after a
finite number of steps (see Example 3). Fortunately, under reasonable assumptions on
the functions, we may guarantee the termination ofSolve. We exploit two of such con-
ditions. Consider a monotonic equational systemS = 〈L, V,f〉. Consider a function
f :L → L, where〈L,¹〉 is a lattice. Let[⊥]f be thef -closure of{⊥}, i.e. the small-
est set that contains{⊥} and is closed underf . We say thatf has a finite generation
(see also [2] for more on this issue) iff[⊥]f is finite. For instance, it can be verified
that the functions∧,∨,⊗,⊕,¬ have a finite generation onanyfinite setX ⊆ B. More
concretely, over the interval bilattice on[0, 1]Q, min,max, 1 − x and Lukasiewicz t-
norm and t-conorm,max(x + y − 1, 0),min(x + y, 1) have a finite generation, while
e.g. the product t-normx · y and its t-conormx + y − x · y have not. Note also that
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if f, g have a finite generation overX then so hasf ◦ g. Therefore, given an equa-
tional systemS = 〈L, V,f〉. If f has a finite generation, then[⊥]f is finite. That is,
{⊥,f(⊥),f2(⊥), ...} is finite. In particular, on induction on the computation of the¹-
least fixed-point ofS it can be shown that at each step of the bottom-up computationof
the¹-least fixed-point, the values of the variables are in[⊥]f . Therefore, theheightof
[⊥]f , h([⊥]f ), is finite. On the other hand, it can easily be seen thatSolve terminates if
the sequence,⊥,f(⊥),f2(⊥), ... converges after a finite number of steps. Therefore:

Proposition 10. Given a monotone system of equationsS = 〈L, V,f〉. ThenSolve

terminates ifff has a finite generation. If the cost of computing each of the functions
in f is bounded byc and the arity bounded bya then the worst-case complexity of the
algorithmSolve is O(|V |cah), whereh is the height of[⊥]f .

The second condition, which guarantees the termination ofSolve, is inspired directly
by [4] and is a special case of above. On bilattices, we say that a functionf :Bn → B
is boundediff f(x1, . . . , xn) ¹k ⊗ixi. Now, consider a monotone system of equations
S = 〈L, V,f〉. We say thatf is boundediff each fi is a composition of functions,
each of which is either bounded, or a constant inB or one of∨,∧,⊕,⊗ and¬. For
instance, the function in Example 3 is not bounded, whilefi(〈x, y〉) = 〈max(0, x +
y − 1), 1〉 ∧ 〈0.3, 0.4〉 over K([0, 1]Q) is. The idea is to prevent the existence of an
infinite ascending chain of the form⊥ ≺k f(⊥) ≺k . . . ≺k fm(⊥) ≺k . . .. In fact,
roughly, consider a¹k-monotone functionf = g ◦ h, whereg is a bounded function,
while h is the composition of constants inB or functions among∨,∧,⊕,⊗ and¬.
Then⊥ ¹k f(⊥) = g ◦ h(⊥) = g(h(⊥)) ¹k h(⊥). But h has a finite generation
and, thus, so hasf . The argument forf = h ◦ g is similar. Therefore:

Proposition 11. Given a monotone system of equationsS = 〈L, V,f〉, wheref is
bounded. ThenSolve terminates.

Note that for bounded functionsf = g ◦ h, the height of[⊥]f is given by the height
of [⊥]h. We believe that this latter height is bounded by the numbern = |V | as we
conjecture thathn(⊥) = hn+1(⊥) (this is compatible with [4]). This would imply
that the worst-case complexity of the algorithmSolve is O(|V |2ca) in that case.

3.1 Top-Down Query Answering Under the Kripke-Kleene Semantics

We start with the Kripke-Kleene semantics, for which we havealmost anticipated how
we will proceed. LetP be a logic program and considerP∗. As already pointed out,
each atom appears exactly once in the head of a rule inP∗. The system of equations
that we build fromP∗ is straightforward. Assign to each atomA a variablexA and
substitute inP∗ each occurrence ofA with xA. Finally, substitute each occurrence
of ← with = and letSKK(P) = 〈L, V,fP〉 be the resulting equational system (see
Equation 3). Of course,|V | = |BP |, |SKK(P)| can be computed in timeO(|P|) and
all functions inSKK(P) are¹k-continuous. AsfP is one to one related toΦP , it
follows that the¹k-least fixed-point ofSKK(P) corresponds to the Kripke-Kleene
semantics ofP. The algorithmSolveKK(P, ?A), first computesSKK(P) and then
callsSolve(SKK(P), {xA}) and returns the outputv on the query variable, wherev is
the output of the call toSolve. SolveKK behaves correctly (see Example 7).
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Proposition 12. LetP and?A be a logic program and a query, respectively. Then
KK(P)(A) = SolveKK(P, {?A}) 3.

From a computational point of view, we can avoid the cost of translatingP intoSKK(P)
as we can directly operate onP. So the costO(|P|) can be avoided. In case the height
of the bilattice is finite, from Proposition 9 it follows immediately that the worst-case
complexity for top-down query answering under the Kripke-Kleene semantics of a logic
programP is O(|BP |cah). Furthermore, often the cost of computing each of the func-
tions of fP is in O(1). By observing that|BP |a is in O(|P|) we immediately have
that in this case the complexity isO(|P|h). It follows that over the bilatticeFOUR
(h = 2) the top-down algorithm works in linear time. Moreover, if the height is a
fixed parameter, i.e. a constant, we can conclude that the additional expressive power
of Kripke-Kleene semantics of logic programs over bilattices (with functions with con-
stant cost) does not increase the computational complexityof classical propositional
logic programs, which is linear. The computational complexity of the case where the
height of the bilattice is not finite is determined by Proposition 10 and Proposition 11.
In general, the continuity of the functions inSKK(P) guarantees the termination after
at mostω steps.

3.2 Top-Down Query Answering Under the Well-Founded Semantics

We address now the issue of a top-down computation of the value of a query under
the well-founded semantics. As we have seen, according to Fitting’s formulation, the
well-founded semantics of a logic programP is the¹k-least fixed-point of the operator
Ψ ′
P(I) = lfp¹t

(λx.ΨP(x, I)). Before we are going to present our top-down procedure
for the well-founded semantics, we roughly explain the approach. To this purpose, let
us consider Example 2. Assume that our query is?r and consider the related equational
system(3). So, our query variable isx3. Following theSolve algorithm,x3 becomes
the active variable. We have to introduce a major change in Step4.: it is not hard to see
that, due to Equation(1), in order to computer: = ¬x2 ∧¬x1, we have to compute the
values ofx1 andx2 w.r.t. the¹t-least fixed-point of another equational system, where
the current partial evaluationv acts as the interpretationI. That is, we have to make a
call to another instance of theSolve algorithm, which computes the values ofx1 and
x2 w.r.t. to the current evaluationv(x1, x2, x3). In our case, we consider the equational
system(3) in which negated variables have been replaced with their value w.r.t. to the
current evaluation and, thus, we replace¬x1,¬x2 and¬x3 with v(x1) andv(x2), and
v(x3) respectively. Once the sub-routine call gives us back the values of the arguments
x1, x2 we computer: = ¬x2 ∧ ¬x1 and continue with Step5.

Let us formalize the above illustrated concept. Given a logic programP, given a
truth value assignmentI, let us denoteS(PI) the equational system obtained from
SKK(P) in which all occurrences of¬x have been replaced with¬I(x), butS(PI) is
based on the¹t order rather than on¹k. Then it can be verified thatSolve(S(PI), Q)
outputs a setB ⊆ V , with Q ⊆ B, s.t. the mappingv equals to the¹t-least fixed-point
on B of the functions inS(PI) andv|B = Ψ ′

P(I)|B . Moreover, from a computational

3 The extension to a set of query atoms is straightforward.
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complexity point of view, the same properties ofSolve hold for Solve(S(PI), Q) as
well. Finally,SolveWF (P, ?A) is asSolveKK(P, ?A), except that Step4. is replaced
with the statementsQ: = s(xi); I: = v; v′: = Solve(S(PI), Q); r: = fi(v

′(xi1), ...,
v′(xiai

)). It can be shown that the following holds:

Proposition 13. LetP and?A be a logic program and a query, respectively. Then
WF (P)(A) = SolveWF (P, ?A).

Example 14. Consider Example 6 and query variablexA. Below is a sequence of
SolveWW (P, ?A) computation. It resembles the one we have seen in Example 7. Each
line is a sequence of steps in the ‘while loop’. What is left unchanged is not reported.

1. A: = {xA}, xi: = xA, A: = ∅, dg: = {xA, xB}, Q: = {xA, xB}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉,
〈0, 1〉〉, r: = 〈0.3, 0.5〉, v(xA): = 〈0.3, 0.5〉, A: = {xA, xB}, exp(xA): = true,

in: = {xA, xB}
2. xi: = xB , A: = {xA}, dg: = {xA, xB , xC}, Q: = {xA, xC}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉,

〈0.5, 0.7〉〉, r: = 〈0.3, 0.5〉, v(xB): = 〈0.3, 0.5〉, A: = {xA, xC}, exp(xB): = true,

A: = {xA, xC}, in: = {xA, xB , xC}
3. xi: = xC , A: = {xA}, Q: = {xB}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉,

r: = 〈0.5, 0.7〉, v(xC): = 〈0.5, 0.7〉, A: = {xA, xB}, exp(xC): = true

4. xi: = xB , A: = {xA}, Q: = {xA, xC}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉, r: = 〈0.3, 0.5〉
5. xi: = xA, A: = ∅, Q: = {xA, xB}, v′: = 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉, r: = 〈0.3, 0.5〉
6. stop. return v(xA, xB , xC)|xA

= 〈〈0.3, 0.5〉, 〈0.3, 0.5〉, 〈0.5, 0.7〉〉|xA
= 〈0.3, 0.5〉

The computational complexity analysis ofSolveWF parallels the one we have made
for SolveKK . If the height of a bilattice is finite then, likeSolveKK , each variablexj

will appear inA at mostaj · (h(L) + 1) times and, thus, the worst-case complexity is
O(

∑
xj∈V (c(fj) · (aj · (h(L)+1)). But now, the cost ofc(fj) is the cost of a recursive

call toSolve, which isO(|BP |cah). Therefore,SolveWF runs in timeO(|BP |
2a2h2c).

That is,SolveWF runs in timeO(|P|2h2c). If the bilattice is fixed, then the height
parameter is a constant. Furthermore, often we can assume that c is O(1) and, thus,
the worst-case complexity reduces toO(|P|2). In the case the height of a bilattice is
not finite, the continuity of the functionsf ∈ F guarantees that each recursive call to
Solve requires at mostω steps. Thus, we have at mostω2 steps forSolveWF . In case
the functions have a finite generation or are bounded, Proposition 10 and Proposition 11
can be applied.

4 Conclusions

We have presented a general top-down algorithm to answer queries for normal logic
programs over lattices as well as over bilattices (for whichno top-down algorithm
was known yet). We believe that its interest relies on the fact that many approaches to
paraconsistency and uncertainty of logic programming withor without non-monotonic
negation are based on bilattices or lattices, respectively. Therefore, the presented algo-
rithms give us general query-solving procedures for many ofthem.
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