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Abstract. We present a new methodology for detecting faults and ab-
normal behavior in production plants. The methodology stems from a
joint project with a Danish energy consortium. During the course of the
project we encountered several problems that we believe are common for
projects of this type. Most notably, there was a lack of both knowledge
and data concerning possible faults, and it therefore turned out to be
infeasible to learn/construct a standard classification model for doing
fault detection. As an alternative we propose a method for doing on-line
fault detection using only a model of normal system operation, i.e., it
does not rely on information about the possible faults. We illustrate the
proposed method using real-world data from a coal driven power plant
as well as simulated data from an oil production facility.

1 Introduction

Most production plants are equipped with sensors providing information to a
control room where operators monitor the production process. Based on skill and
experience the operators are alerted if something unusual happens, and through
inspection of sensor readings, or derivatives thereof (so-called soft sensors), a
diagnostic process may be initiated.

In connection to a joint project with an energy consortium, we have been
working on establishing an alert system for a coal driven power plant. By an
alert system we mean a system that, based on sensor readings, raises a flag in
case of an abnormal situation. We intended to base the system on a Bayesian
network representation [15, 10] of the power plant, and to help establish the
model we had access to process engineers and an extensive database of logged
sensor data. However, during the course of the project we encountered several
problems, which we believe are common for projects of this type:

1. The engineers’ knowledge of the plant is not sufficient for providing a causal
structure.

2. The production process is so complex that it is difficult for the engineers
to specify the possible faults (abnormal situations) and, in particular, how
these faults would manifest themselves in the sensor readings.



3. The time constants, describing the delay from event to effect, are difficult to
determine.

4. Faults are so rare that statistics cannot be used to learn neither the structure
nor the parameters of a model of the faults.

5. As there is a difference between a true value and its sensor reading, true
values should appear as hidden variables.

Faced with these problems, one approach would be to get as much causal
structure from the engineers as possible and to combine this information with
a data driven learning method. Unfortunately, state of the art of structural
learning algorithms cannot cope with domains with a massive set of hidden
variables. Furthermore, due to the lack of knowledge about the possible faults
it is not obvious how such a model should subsequently be used for classifying
abnormal behavior.

In this paper we propose an alternative methodology for on-line detection of
abnormal behavior in production systems. The method focuses on systems which
are prone to the problems described above, and it has the desirable property
that it does not require information about the possible faults nor a model of
abnormal behavior. We illustrate the proposed method using real-world data
from the above mentioned power plant as well as simulated data from an oil
production facility.

2 The proposed methodology

As implied above, it is not obvious how to construct a classifier (encoding the
possible faults) for detecting abnormal behavior; neither in the form of a causal
model nor in the form of e.g. a Näıve Bayes model [7] or a tree augmented Näıve
Bayes model [8].

Instead, we propose to learn a Bayesian network representing normal opera-
tion only. At each time step the model is then used to calculate the probability
of the set of sensor readings for that time step. This probability is in turn used
to evaluate whether the sensor readings are jointly outside the scope of nor-
mal operation. That is, the methodology we propose basically consists of two
steps: (i) learning a model of the sensors for normal operation, and (ii) using
the learned model to monitor the system, initiate alerts and perform on-line
diagnostics. Note that the use of models for describing normal operation has
also been explored in the model-based diagnosis community [6]: Based on a pre-
specified model of normality (formulated in first-order logic), each component in
the system is assigned a state (either normal or abnormal) which is consistent
with both the model and any observations made of the system.

2.1 Learning a model

The available database consists of sensor readings that have been logged during
normal system operation; each instance in the database can be seen as a “snap-
shot” of the overall production process. In what follows we shall assume that



this production process is composed of an ordered collection (C1, C2, . . . , Cn) of
components (or sub-processes). The output of component Ci serves as input to
component Ci+1, and (for ease of exposition) each component, Ci, is assumed
to be equipped with a single sensor, Si. For instance, when tracking the coal
in a power plant we can, at an abstract level, describe the overall production
process as being composed of three components: the silo, the coal mill, and the
furnace. Since the production process is a physical non-instantaneous process we
also have a delay (or time constant) associated with each of the components C,
i.e., the time it takes for a particular unit (e.g. a piece of coal) to pass through
that component.

Based on this perspective, we initially considered learning a model of the flow
of one unit (e.g. coal) through the production plant. The variables in the learned
model would then represent the sensors in the system. One approach for learning
such a model would be to first transform the original database s.t. a case in the
transformed database would correspond to the sensor readings related to one
particular unit (this transformation is illustrated in Table 1). However, making
such a transformation requires information about the time constants, and this
information was unfortunately not available.
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Table 1. The original database is transformed s.t. each case in the resulting database
contains the sensor readings related to one particular unit in the system. Note that
in the tables above we have assumed that the time delay between sensor S1 and S2

corresponds to the sampling delay between case/snapshot c1 and cj in the original
database.

An alternative approach would be to learn a dynamic Bayesian network
model directly from the database by treating the cases as representing a trajec-
tory through the system [9, 1]. Unfortunately, learning such a model also requires
information about the time constants.

Instead, we simply focused on learning a Bayesian network model over the
sensor variables directly from the database. This approach, however, has a po-
tential computational drawback in the sense that we must expect the learned
model to be very dense (this was also confirmed in the empirical experiments).
To see this, consider Fig. 1 which illustrates a simplified temporal causal model
of the data generation process for a production plant. Learning a model for the
sensor variables can now conceptually be seen as learning a model that describes



the marginal distribution over the sensor variables Si in a time slice. However,
according to Fig. 1 we see that after very few time steps, each pair of variables in
a time slice are dependent no matter how we condition on the other variables in
the time slice. This is not only due to the hidden variables (modeling the compo-
nents in the system), but also because standard learning methods treat the cases
as being independent [4]; the latter corresponds to the past being unobserved.
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Fig. 1. The figure illustrates a dynamic Bayesian network representation of the data
generation process for a production plant. The variable Si represents the sensor asso-
ciated with component Ci, and the arcs going into a sensor variable from a previous
time slice models that the state of a sensor (correct, faulty or drifting) has an impact
on the next sensor reading.

2.2 Initiation of alerts

The sensor readings are received in a constant flow, which is chopped up into
time steps of, say, 1 second. This means that for every second we have evidence
consisting of a value for each variable in the model.

Let the evidence be ē = {e1, . . . , en}, where ei is a sensor reading. We can
now calculate the conflict measure for the evidence as [11]:

conf(ē) = log

[

P (e1) · . . . · P (en)

P (ē)

]

.

The probabilities P (ei) can be read directly from the Bayesian network in
its initial state, and it does not require any propagation. As all variables in
the model are instantiated, P (ē) is also very easy to calculate: It is simply the
product of the appropriate entries in the conditional probability tables of the
Bayesian network, and no propagation is required, i.e, the complexity is linear
in the number of variables in the model.

Since the learned model represents normal system operation we would in gen-
eral expect that sensor readings recorded during normal operation are positively
correlated (i.e., conf(ē) ≤ 0) relative to the model. Thus, when conf(ē) > 0 then
this is an indication of an abnormal situation, and an alert may be triggered,



see also [13, 12]. The conflict measure can also be interpreted as a soft measure
of inconsistency: If a case is inconsistent with the model, then it has probability
0, and if it is close to being inconsistent then it has an unusual low probability;
“unusual” is for this measure calculated relative to the model for complete in-
dependence. For the conflict measure above, we expect a rather constant level
for conf(·) under stable normal operation. When the process is changed, and it
transforms from one mode of normal operation to another, we should expect
oscillations in the conflict values until the changes have propagated and resulted
in a new stable mode of normal operation.

As noted above, a positive conflict value is an indication of an abnormal
situation. On the other hand, a negative conflict value does not necessarily imply
that we have a normal situation as it may hide a serious conflict: If the sensors
are strongly correlated during normal operation, the conflict level will be very
negative, and a few conflicting sensor readings may therefore not cause the entire
conflict to be positive. This can also be seen from the following proposition.

Proposition 1. Let ēx = {ex
1 , . . . , ex

n}, ēy = {ey
1, . . . , e

y
m}, and ē = ēx ∪ ēy.

Then

conf(ē) = conf(ēx, ēy) + conf(ēx) + conf(ēy),

where conf(ēx, ēy) = log
[

P (ēx)P (ēy)
P (ē)

]

.

So, it may happen that ēx and ēy are internally so strongly correlated that
they dominate a conflict between the two sets. Thus, even when the conflict is
negative, we shall watch out for jumps in the conflict level that may indicate a
potential abnormal situation.

When an alert has been triggered, the system can start tracing the source
of the alert. Various ways of tracing the conflict may be used. In our case we
perform a greedy conflict resolution: recursively remove the sensor reading that
reduces the conflict the most, and continue until the conflict is below a prede-
fined threshold. This procedure can be performed very fast by exploiting lazy
propagation [14] or fast retraction [5], as can be seen from the following propo-
sition.

Proposition 2. Let ē be evidence, X a variable with evidence ex, and ē−x the

remaining evidence. Then

conf(ē) = log

[

P (ex)

P (ex|ē−x)

]

+ conf(ē−x).

That is, the reading with lowest normalized likelihood given the other read-
ings contributes the most to the conflict. Note that as the Markov blanket of X

is instantiated, the calculation of P (ex|ē
−x) can be performed locally.

3 Empirical results

The proposed methodology has been tested on real-world data from a coal based
power plant as well as simulated data from an oil production facility; in the latter



case the data was generated based on a model that includes the dynamics of the
facility as well as control loops.

3.1 Power plant data

We received data about the power plant under normal system operation with
load average 90 − 100%, i.e., the power plant operated between 90% and 100%
of its full capacity. The data set contains 9600 cases, and each case consists of
87 simultaneous observations with no missing values.1 The cases does not only
contain actual sensor values, but they also include soft sensors, i.e., artificial
“sensors” that have been computed based on the values of other sensors, as well
as set-points and other indirect signals. As a preprocessing step, all data sets
were naively discretized using equal width binning, where the number of bins
were chosen (based on several tests) to be 3. Based on the preprocessed data, we
learned a Bayesian network model as described in Section 2.1; the actual learning
was performed using the software tool PowerConstructor with a 0.1-threshold
for the conditional independence tests [2, 3].2 Since the database is complete, the
parameters of the model could simply be estimated using frequency counts.

In addition to the data sets for normal system operation, we received three
data sets that each contained 1441 cases. Two of the data sets covered actual
errors/abnormal situations whereas the last represented an “unusual behavior”
that it would be interesting to detect:

– The fall-pipe leading coal into the power plant becomes clogged.
– A temperature sensor becomes faulty.
– A load change (from 60− 75% to 90− 100%) occurs while the water concen-

tration is high.

We have tested the proposed methodology by simulating on-line performance
using the “clogged fall-pipe” data set as well as the “faulty-sensor” data set. Both
tests were performed “blind-folded”, i.e., we first analyzed the data and then,
after the analysis, we discussed our findings with the domain experts.

A plot of the conflict measures for the “clogged fall-pipe” data set is depicted
in Fig. 2. From the plot we see that we have positive conflict measures from
observation 1136 and forward, i.e., the conflict measures indicate that the system
makes a transition from a normal to an abnormal system state at 1136. This is
also consistent with the information provided to us, namely that the system
entered an abnormal state (the fall-pipe became clogged) between 1100 and
1144. Another interesting aspect of the plot is the fluctuations in the conflict
measure that appears around observation 700 and lasts until approximately 780.
We were later told that in this interval the system actually made a short change
in load average from 99% to 84% and then back again.

1 Since each case contains sensors readings for a particular point in time, the database
can also be interpreted as a sequence of “snapshots” of the plant.

2 The structure of the learned model is not included in this paper, since it is only used
as a factorization of the joint probability distribution and should not be subject to
interpretation from e.g. a causal point of view.
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Fig. 2. The left hand figure shows a plot of the conflict measure for each case in the
“clogged fall-pipe” data set; a value above 0 indicates a conflict. Note how the conflict
measure is affected by the load-change and the fall-pipe becoming clogged. To reduce
the noise in the data, the right hand figure shows the 0.9 percentile of the last 30 cases.

When performing conflict resolution, the algorithm indicates that the sensor
measuring the water-percentage in the coal can explain all the conflicts. Ideally,
we would have liked the system to pinpoint that the fall-pipe is clogged, however,
this would require a sensor placed at that location. Since the system does not
include such a sensor, we interpret the result as indicating that there is an
inconsistency in the energy balance of the system and that this inconsistency can
best be explained by the water percentage in the coal; this was also consistent
with the analysis by the engineers.

A similar test was made on the “faulty sensor” data set, where the conflict
measures can be seen in Fig. 3. As suggested by the plot, the conflict measure in-
dicates that the system entered the abnormal state prior to the first observation;
this was later confirmed by the engineers. We were also informed that in the be-
ginning of the data set and around observation 600, there were two quick changes
in the load averages (from 90− 100% to 80% and back again); these changes are
reflected as quick changes in the calculated conflict measures. Finally, we were
told that around observation 600 the temperature drops from 100◦C to 90◦C (at
which level it stays for the remaining observations). Observe, that around this
observation we also see a permanent drop in the conflict measure.

When performing conflict resolution we found that after observation 600,
there were six significant sensors that could explain the conflict. We were in-
formed that four of the sensors were actually significant for this scenario, but
that the other two “sensors” should not have been picked out since they were
set-points rather than sensors. However, the identification of these sensors ac-
tually makes sense as there is a conflict between the system sensors and the
set-points. A simple approach for solving this problem could be to take such
prior knowledge into account during conflict resolution.

Finally, we have made a tentative analysis of the “load-change” data set.
A difficulty with this data set is that the learned model only covers normal
operation during load average 90 − 100%. Hence, we have only considered the
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Fig. 3. A plot of the conflict measure for each case in the “faulty-sensor” data set; a
value above 0 indicates a conflict. Note how the conflict measure is affected by the load-
changes and the drop in temperature. The right hand figure shows the 0.9 percentile
of the last 30 cases.

observations made after the load change has been completed, and where the
distinguishing characteristics of the data set is that the coal has a high water
concentration. That is, the data set has not been produced from a system state
which should be classified as being abnormal, but rather an unusual system state
that it would be interesting to detect (in case it would eventually result in an
abnormal state). Fig. 4 shows a plot of the conflicts after observation 550 where
the load change has been completed.
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Fig. 4. A plot of the conflict measure for the “load-change” data set after the change
has taken effect. The system is correctly classified as not being in an abnormal state.
The right hand figure shows the 0.9 percentile of the last 30 cases.

As can be seen from the figure, the conflict values are all below 0 (except
for a few single cases). This is consistent with the system not being in an ab-
normal state. However, from the measurements we can also see that the average



conflict value is higher than for normal operation: For the “load-change” data
set, the average conflict value is −7.44, but during normal operation in the
“clogged-fall-pipe” data set the average conflict value is between −10.34 and
−22.8 with an average of −19.96. That is, you may be able to discriminate be-
tween different types of normal system operation by also considering the value
of the conflict measure and not only whether it is positive or negative.

3.2 Oil production data

We have received a database with 10000 simulated cases for normal system
operation for an oil production facility; each case in the database covers 140
sensors with white noise added to the sensor values.3 The database was generated
from a temporal causal model, which also simulated standard process variations.
Hence, the database shares the same characteristics w.r.t learning as the power
plant database (see Section 2.1). All of the sensor values appeared as real-valued
output, so as a preprocessing step all variables/sensors were discretized. The
actual discretization was performed using cross-validation to find the number
of bins (with a maximum of 5) that maximizes the estimated likelihood of the
data; the actual discretization was performed using Weka [16].

In order to test the proposed methodology in this setting, we used two other
data sets both containing 10000 cases. The first data set had been generated by
simulating faults in the pumping system whereas the second data set had been
generated by simulating faults in the cooling system (see also Table 2).

Time: “Pump” data set “Cooling” data set

30 Small leak in the pump Small external leak in the cooling system
1500 Large leak in the pump Large external leak in the cooling system
3000 Normal operation Normal operation
3500 Small degradation of motor efficiency Small internal leak in the cooling system
5000 Large degradation of motor efficiency Large internal leak in the cooling system
6500 Normal operation Normal operation
7000 Small degradation of pump efficiency Moderate fouling
8500 Large degradation of pump efficiency Significant fouling
Table 2. The table summarizes the changes in the production process for the “Pump”
data set and the “Cooling” data set, respectively. Note that the changes in the two
scenarios are initiated at the same points in time.

A plot of the conflict measure for the “Pump” data set is depicted in Fig. 5(a);
as in the previous section, Fig. 5(b) shows the 0.9-percentile over the last 30
cases. The vertical lines in the two plots correspond to the points in time where

3 Similar to the power plant database, the database can be interpreted as a sequence
of “snapshots” of the facility.



changes are initiated (see Table 2). As can be seen from Fig. 5, there are signif-
icant changes in the conflict measure at time 1500, 3000, 5000, 6500 and 8500,
which either correspond to large errors in system operation or changes back to
normal system operation. From Table 2 we see that the changes appearing at 30,
3500 and 7000 correspond to small errors in the system operation and, accord-
ingly, they are also less apparent in the plots. In particular, the change which
appears at 3500 occurs before the system has settled into stationary normal
system operation.
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Fig. 5. The left hand figure shows a plot of the conflict measure for each case in the
“Pump” data set. The vertical lines indicates when a change in the production process
is initiated as specified in Table 2. The figure to the right shows the 0.9 percentile of
the last 30 cases.

A similar plot of the conflict measure for the “Cooling” data set is depicted
in Fig. 6(a). Analogously to the previous data set, there is a significant change
in the conflict measure for all errors except at time 30, 3500 and 7000.

Observe that the conflict measures for both databases are all negative, which
is a consequence of the decomposition property (Proposition 1) as discussed in
Section 2.2. Thus, in order to detect changes in system operation we need to
track jumps in the conflict measure. However, a method for performing this
analysis is a subject for future research.

4 Conclusion and future work

We have proposed an alert system methodology based on conflict analysis. A
distinguishing characteristic of the proposed methodology is that it only relies
on a model for normal system operation, i.e., knowledge about the possible
faults is not required. Moreover, the computational complexity of the algorithm
ensures that on-line analysis is feasible. The methodology has been successfully
tested on both real-world data from a power plant and simulated data from an
oil production facility.
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Fig. 6. The figure to the left shows a plot of the conflict measure for each case in the
“Cooling” data set. The vertical lines indicates when a change in the production process
is initiated as specified in Table 2. The right hand figure shows the 0.9 percentile of
the last 30 cases.

As part of ongoing research and future work, we are working on establishing
alternative straw models in order to perform a more refined conflict analysis; see
also the discussion in [13, 12] concerning the independence straw model [11]. Hav-
ing an alternative straw model might also reduce the effect of the decomposition
property. I.e., when faulty sensors’ impact on the conflict measure is dominated
by strongly correlated sensors. Furthermore, we are considering procedures for
tracking changes in the actual value of the conflict measure in order to perform
early fault detection by identifying trends in the behavior of the system being
monitored, e.g. if the system “drifts” towards an abnormal state.
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