Abstract
We present a probabilistic approach to the medical retrieval task. We experimented with the Westerveld method [1] to obtain our results for ImageCLEF. In addition to these results we describe our findings of involving a medical expert in our research. The expert helped us identifying useful image retrieval applications and reflected upon the setup of ImageCLEF’s medical task. Finally we describe the evaluation of an interactive implementation of the probabilistic approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Westerveld, T.: Using generative probabilistic models for multimedia retrieval. PhD thesis, University of Twente, CTIT Ph.D.-thesis series, ISSN 1381-3617; No. 04-67, Enschede, The Netherlands (2004)
Squire, D.M., Müller, W., Müller, H., Pun, T.: Content-based query of image databases: inspirations from text retrieval. Pattern Recognition Letters 21, 1193–1198 (2000)
Westerveld, T., de Vries, A., van Ballegooij, A., de Jong, F., Hiemstra, D.: A probabilistic multimedia retrieval model and its evaluation. EURASIP Journal on Applied Signal Processing 2003, 186–198 (2003)
Korn, P., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast and effective retrieval of medical tumor shapes. IEEE Transactions on Knowledge and Data Engineering 10, 889–904 (1998)
Lehmann, T., Guld, M., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., Wein, B.: Content-based image retrieval in medical applications. Methods of Information in Medicine 43, 354–361 (2004) (in press)
Mattiea, M., Staib, L., Stratmann, E., Tagare, H., Duncan, J., Miller, P.: Pathmaster: Content-based cell image retrieval using automated feature extraction. Journal of the American Medical Informatics Association 7, 404–415 (2000)
Müller, H., Rosset, A., Vallée, J., Geissbuhler, A.: Comparing feature sets for content-based medical information retrieval. In: SPIE Medical Imaging, San Diego, CA, USA (2004)
Shyu, C., Brodley, C., Kak, A., Kosaka, A., Aisen, A., Broderick, L.: Assert – a physician-in-the-loop content-based retrieval system for hrct image databases. Computer Vision and Image Understanding 75, 111–132 (1999)
Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval: the end of the early years. IEEE transactions on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000) (invited review)
Clough, P., Müller, H., Sanderson, M.: The CLEF Cross Language Image Retrieval Track (ImageCLEF) 2004. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)
Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medicine - clinical benefits and future directions. International Journal of Medical Informatics 73, 1–23 (2004)
Lyman, P., Varian, H.R.: how much information (2003), Retrieved from http://www.sims.berkeley.edu/how-much-info-2003 (1/11/2004)
Güld, M., Kohnen, M., Keysers, D., Schubert, H., Wein, B., Bredno, J., Lehmann, T.: Quality of dicom header information for image categorization. In: Proceedings SPIE, vol. 4685, pp. 280–287 (2002)
Vasconcelos, N.: Bayesian Models for Visual Information Retrieval. PhD thesis, Massachusetts Institut of Technology (2000)
Westerveld, T., de Vries, A.: Experimental evaluation of a generative probabilistic image retrieval model on ‘easy’ data. In: Proceedings of the Multimedia Information Retrieval Workshop 2003 (2003); In conjunction with the 26th annual ACM SIGIR conference on Information Retrieval
Kraaij, W.: Variations on language modeling for information retrieval. PhD thesis, CTIT PhD thesis series No. 04-62, Neslia Paniculata (2004)
Westerveld, T., de Vries, A.: Experimental result analysis for a generative probabilistic image retrieval model. In: Proceedings of the 26th ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2003), pp. 135–142 (2003)
Boldareva, L.: Improving objects similarities with relevance judgements from the searchers. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 555–557. Springer, Heidelberg (2005)
Lubbers, K.: Image retrieval in de medische praktijk: mogelijkheden van een probabilistische aanpak. Master’s thesis, University of Twente (2004) (in Dutch)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lubbers, K., de Vries, A.P., Huibers, T., van der Vet, P. (2005). A Probabilistic Approach to Medical Image Retrieval. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds) Multilingual Information Access for Text, Speech and Images. CLEF 2004. Lecture Notes in Computer Science, vol 3491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11519645_74
Download citation
DOI: https://doi.org/10.1007/11519645_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27420-9
Online ISBN: 978-3-540-32051-7
eBook Packages: Computer ScienceComputer Science (R0)