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Abstract

This paper explores the hypothesis that pointing gesture recognition can be learned
using a reward based system. An experiment with two four-legged robots is pre-
sented. One of the robots takes the role of an adult and is pointing to an object,
the other robot, the learner, has to interpret the pointing gesture correctly in order
to find the object. We discuss the results of this experiment in relation to possible
developmental scenarios about how children learn to interpret pointing gestures.

1 Introduction

The skill of pointing interpretation is a crucial step in the development of a young child
toward the capability of joint attention [1]. It plays an important role in the non-linguistic
communication system which serves as a foundation for the development of language [2].
The comprehension of pointing seems to require more than gaze detection, and might be
connected with the apprehension of complex signs between 10 and 12 months [3]. How
does this capability develop?

This paper explores the hypothesis that pointing gesture recognition is learned using
a reward-based system. This hypothesis assumes, for instance, that by looking in the di-
rection where the adult is pointing to, the child will often see something interesting from
its point of view. It can be an interest in an opportunity for learning [4] or in an object
which serves a current need (e.g. food). It can happen that by misinterpreting the pointing
direction the child will also find an interesting object, however, the hypothesis assumes
that there is a statistically significant correlation between the correct pointing direction
and interesting objects. Alternatively, the hypothesis concerns situations where parents
reward the child with affection or another emotional response if the child interprets the
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adult’s pointing gesture correctly. In such a case, the child would learn the pointing inter-
pretation through a sort of parental conditioning.

The learning process in both situations shares a common underlying structure. It can
be modelled as a supervised learning process with the pointing gesture as the visual input,
and the location of the pointing aim, or the movement direction to look at this location,
as the desired output. The evaluation feedback is obtained through the reward, which is
the satisfaction of a drive in the first case and an emotional response in the parental con-
ditioning case.

In the rest of the paper, we will show that a robot can learn to interpret pointing ges-
tures of another robot using a reward-based system. We will then discuss the results of
this experiment in relation to potential underlying mechanisms described in child devel-
opment literature.

2 Robot Experiments

2.1 The Interaction Scenario

Here we describe and show robot experiments where a pointing gesture is learned to be
classified as either left or right. For these experiments, two Sony AIBOs were sitting
on the floor, facing each other (see figure 1). One of the robots (the adult) is randomly
pointing towards an object on the left or right side of its body using its left or right front
leg, respectively. The other robot (the child) is watching it. From looking at the pointing
gesture of the other robot, the learning robot guesses the direction and starts looking for
an object on this side. Finding the object on this side represents a reward.

Since the focus of this experiment is learning of pointing recognition and not pointing,
this skill is hardwired in the adult robot. The robot is visually tracking a coloured object
on its left or right side, thereby facing the object. Pointing is achieved by simply copying
the joint angle of the head to the joint angle of the arm. Note that the pointing robot takes
on an exact pointing position and does not only distinguish between the left and the right
side.

2.2 Image Processing and Feature Space

A sample camera image from the robot’s point of view can be seen in figure 2 left. For
the experiments, the robot took 2300 pictures focussing on its pointing partner, 1150 for
each pointing direction. The situations in which the pictures have been taken varied in
the distance between the two robots, the viewing angle, the lighting conditions and the
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Figure 1: An example of pointing shown with two robots. The robot on the left represents
the adult who is pointing, the robot on the right represents the child who is learning to
interpret the pointing gesture.

backgrounds (three different backgrounds).

From the original camera image, a small number of features has to be selected to
facilitate the learning of interpreting the pointing gesture. We decided to apply two main
filters to the image. One filter extracts the brightness of the image, the other filter extracts
horizontal and vertical edges. These choices are biologically motivated. Eyes are very
sensitive to brightness levels, and edges are the independent components of natural scenes
[5]. The original image I is thus transformed to I ′ using a filter f :

I
f

−→ I ′

For both filters, the colour image is transformed into greyscale first with pixel values
between 0 and 255. In the subsequent steps, the image is divided into its left part and
its right part (see figure 3). This is justified by the robot always centering on the other
robot’s face using an independent robot tracking mechanism, thus dividing the image into
the right half of the other robot and its left half.

I ′ −→ I ′

L, I ′

R

The brightness filter Bθ applies a threshold θ to the image, which sets all pixels with
a value greater than θ to 255, and all others to 0. For the experiments, values of θ = 120
and θ = 200 have been used. For the edge filter, we chose two Sobel filters SH and SV

(see [6]) which extracts the horizontal and the vertical edges, respectively. An example of
an image transformed by the filters can be seen in figure 2.

To the filtered images I ′, different operators op can be applied to extract low-dimensional
features. These operators are the centre of mass µ = (µx, µy) and the sum Σ.

I ′
op
−→ q
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Figure 2: Left: A robot pointing to its left side as seen from another robot’s camera.
The child robot tracks the adult robot in order to keep it in the centre of its visual field.
Centre: Feature extraction for brightness using a threshold θ. Right: Feature extraction
for horizontal edges using a Sobel edge detector.

where q is the resulting scalar feature.
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Figure 3: Feature extraction from the original camera image.

The four filters B120, B200, SH and SV together with the three operators µx, µy and Σ
applied to both the left and the right side of the image I result in 4 · 3 · 2 = 24 different
features qL and qR (see figure 3). We take the differences between the left and right
features resulting in 12 new features v = qL − qR.

2.3 Feature Selection

We selected a subset of the features by applying pruning methods. This is done by evalu-
ating a subset of attributes by considering the individual predictive ability of each feature
along with the degree of redundancy between them. Subsets of features that are highly
correlated with the class while having low intercorrelation are preferred. The method used
was greedy hillclimbing augmented with a backtracking facility provided by WEKA [7].
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From the 12 features available to the robot, 3 have been selected to be the most meaning-
ful: B200 ◦ µy, SH ◦ Σ and SV ◦ Σ. Their values for all images are depicted in figure 4.
Intuitively, the robot lifting its arm results in a vertical shift of brightness on this side of
the image, an increase of horizontal edges and a decrease of vertical edges on this side.

Figure 4: Most successful scalar features for pointing gesture recognition from an image
and the frequency of their values in the image data set. The red values are taken from
pointing towards the left, the blue ones from pointing towards the right. Left: B200 ◦ µy.
Centre: SH ◦ Σ. Right: SV ◦ Σ.

For comparison, we also calculated the three least successful features. They turned
out to be B200 ◦ µx, B120 ◦ µx and SV ◦ µy.

3 Results

For learning the pointing gesture recognition, we used a multi-layer-perceptron (MLP)
with the selected features as input, 3 neurons in the hidden layer, and the pointing direc-
tion coded with two neurons as output. The learning algorithm is backpropagation with
a learning rate λ = 0.3 and momentum m = 0.2. The evaluation is based on a 10-fold
cross validation.

We chose backpropagation as a supervised learning algorithm which is comparable
to a reward-based system in case of a binary decision. The choice of using MLPs and
backpropagation is arbitrary and can be replaced by any other suitable machine learning
technique involving reward. It is however sufficient to show that pointing gesture recog-
nition can be easily learned between two robots.
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Table 1: Learning results of different input features using 10-fold cross validation on the
dataset of 2300 images.

features MLP success rate
best 3 3-3-2 95.96%

worst 3 3-3-2 50.74%
all 12 12-7-2 98.83%

The success rate for the three chosen features (figure 4) is 95.96% (see table 3) using a
3-3-2 MLP and one epoch of training. When using all the 12 difference values v as inputs
to a 12-7-2 MLP, the success rate increases to 98.83%. The success rate for the worst
three features and one epoch of training is 50.74%, just slightly above chance.

In figure 5, the progress of learning can be monitored. The upper graph shows the
error curve when the images of the pointing robot are presented in their natural order,
alternating between left and right. The lower graph shows the error curve for images
presented in a random order from a pre-recorded sequence. The error decreases more
rapidly in the ordered sequence, but varies when conditions are changed.

4 Discussion

Using a setup with two robots, we showed that pointing gesture detection can be easily
learned with a reward based system. To the best of our knowledge, this is the first ex-
periment on pointing and pointing gesture recognition using two robots. Earlier robotic
experiments focused on gaze and pointing gesture recognition between a human and a
robot [8, 9]. A computational model of reward-based emergence of gaze following was
presented in Carlson and Triesch [10]. Their findings which can probably be extended
to pointing interpretation are compatible with ours. But there are still other hypotheses
about the origin of pointing gesture detection.

By the age of 9 months, the child becomes capable of imperative pointing [11]. Point-
ing can for instance be used to ask for an unreachable object, but at this stage, the child
does not monitor the attention of the adult. Could it be possible that the child interprets
the pointing gestures of others in relation with its own pointing ability? Are mirror neu-
rons playing a role in this interpretation [12]? This remains an unlikely hypothesis, since
no experimental correlation has been found in children between the learning of pointing
and the learning of pointing gesture recognition [13].

Another possibility could be that simply the correlation between the presence of ob-
jects in general and pointing gestures is sufficient for learning how to interpret pointing
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Figure 5: Error of MLP during learning. Top: sequence of images in natural order. Bot-
tom: random order of training images.
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(without the necessity of an explicit feedback). It has been tested in the case of gaze
following in the context of a human-robot interaction by Nagai et al. [8] and found to
be feasible. This hypothesis relies on the assumption that the correlation is sufficiently
strong to be discovered in practice.

There is no definitive way of comparing the relative plausibility of the reward based
and the correlation based hypothesis. It is possible that a combination of these processes
is involved in the learning of pointing interpretation.

5 Perspectives

The interpretation of pointing is only a small piece of the developmental puzzle that leads
to the capability of joint attention. In particular, we still need to understand the dynamics
of social coordination and of attention manipulation. More importantly, to reach joint
attention, a robot must monitor and direct the intention underlying the behaviour of others
[1]. More experiments will be needed to progressively understand the development of
these skills.
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