N

N
N

HAL

open science

Label-Guided Graph Exploration by a Finite Automaton

Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, David Peleg

» To cite this version:

Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, David Peleg. Label-Guided Graph
Exploration by a Finite Automaton. ICALP 2005, Jul 2005, Lisbonne, Portugal. pp.335-346,

10.1007/11523468 28 . hal-00339772

HAL Id: hal-00339772
https://hal.science/hal-00339772
Submitted on 18 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00339772
https://hal.archives-ouvertes.fr

Label-Guided Graph Exploration
by a Finite Automaton

Reuven Cohen! *, Pierre Fraigniaud? **, David Ilcinkas? **, Amos Korman?,
and David Peleg!

! Dept. of Computer Science, Weizmann Institute, Israel
{r .cohen,amos.korman,david. peleg}@weizmann. ac.il
2 CNRS, LRI, Université Paris-Sud, France

{pierre,ilcinkas}@lri.fr

Abstract. A finite automaton, simply referred to as a robot, has to ex-
plore a graph, i.e., visit all the nodes of the graph. The robot has no a
priori knowledge of the topology of the graph or of its size. It is known
that, for any k-state robot, there exists a (k+1)-node graph of maximum
degree 3 that the robot cannot explore. This paper considers the effects
of allowing the system designer to add short labels to the graph nodes in
a preprocessing stage, and using these labels to guide the exploration by
the robot. We describe an exploration algorithm that given appropriate
2-bit labels (in fact, only 3-valued labels) allows a robot to explore all
graphs. Furthermore, we describe a suitable labeling algorithm for gen-
erating the required labels, in linear time. We also show how to modify
our labeling scheme so that a robot can explore all graphs of bounded
degree, given appropriate 1-bit labels. In other words, although there
is no robot able to explore all graphs of maximum degree 3, there is a
robot R, and a way to color in black or white the nodes of any bounded-
degree graph G, so that R can explore the colored graph G. Finally, we
give impossibility results regarding graph exploration by a robot with no
internal memory (i.e., a single state automaton).

1 Introduction

Let R be a finite automaton, simply referred to in this context as a robot, moving
in an unknown graph G = (V, E). The robot has no a priori information about
the topology of G and its size. To allow the robot R, visiting a node u, to
distinguish between its edges, the d = deg(u) edges incident to u are associated
to d distinct port numbers in {0,...,d — 1}, in a one-to-one manner. The port
numbering is given as part of the input graph, and the robot has no a priori
information about it. For convenience of terminology, we henceforth refer to
“the edge incident to port number [at node u” simply as “edge [of v”. (Clearly,

* Supported by the Pacific Theaters Foundation.

** Supported by the project “PairAPair” of the ACI Masses de Données, the project
“Fragile” of the ACI Sécurité et Informatique, and by the project “Grand Large” of
INRIA.

if this edge connects u to v, then it may also be referred to as “edge I’ of v” for
the appropriate {.) The robot has a transition function f, and a finite number of
states. If R enters a node of degree d through port ¢ in state s, then it switches
to state s’ and exits the node through port i/, where (s',i") = f(s,i,d). The
objective of the robot is to exzplore the graph, i.e., to visit all its nodes.

The first known algorithm designed for graph exploration was introduced
by Shannon [8]. Since then, several papers have been dedicated to the feasi-
bility of graph exploration by a finite automaton. Rabin [6] conjectured that
no finite automaton with a finite number of pebbles can explore all graphs (a
pebble is a marker that can be dropped at and removed from nodes). The first
step towards a formal proof of Rabin’s conjecture is generally attributed to Bu-
dach [2], for a robot without pebbles. Blum and Kozen [1] improved Budach’s
result by proving that a robot with three pebbles cannot perform exploration of
all graphs. Kozen [5] proved that a robot with four pebbles cannot explore all
graphs. Finally, Rollik [7] gave a complete proof of Rabin’s conjecture, showing
that no robot with a finite number of pebbles can explore all graphs. The re-
sult holds even when restricted to planar 3-regular graphs. Without pebbles, it
was proved [4] that a robot needs ©(D log A) bits of memory for exploring all
graphs of diameter D and maximum degree A. On the other hand, if the class of
input graphs is restricted to trees, then exploration is possible even by a robot
with no memory (i.e., zero states), simply by DFS using the transition function
f(i,d) =i+ 1modd (see, e.g., [3]).

The ability of dropping and removing pebbles at nodes can be viewed alter-
natively as the ability of the robot to dynamically label the nodes. If the robot
is given k pebbles, then, at any time of the exploration, . |l.| < k where I,
is the label of node u and |I,,| denotes the size of the label in unary. This paper
considers the effects of allowing the system designer to assign labels to the nodes
in a preprocessing stage, and using these labels to guide the exploration by the
robot. The transition function f is augmented to utilize labels as follows. If R in
state s enters a node of degree d, labeled by [, through port i, then it switches
to state s’ and exits the node through port ¢, where

(s',i") = f(s,1,d,1).

This model can be considered stronger than Rabin’s pebble model since labels
are given in a preprocessing stage, but it can also be considered weaker since,
once assigned to nodes, the labels cannot be modified.

In this paper, we consider settings where it is expected that the graph will be
visited by many exploring robots, and consequently, the system designer would
like to preprocess the graph by leaving (preferably small) road-signs, or labels,
that will aid the robots in their exploration task. As possible scenarios one may
consider a network system where finite automata are used for traversing the
system and distributing information in a sequential manner.

More formally, we address the design of exploration labeling schemes. Such
schemes consist of a pair (£,R) such that, given any graph G with any port
numbering, the algorithm £ labels the nodes of G, and the robot R explores G

Label size|Robot’s memory Time
(#Dbits) (#bits) (#edge-traversals)
2 0(1) O(m)
1 O(log A) 0(A°Mm)

Table 1. Summary of main results.

with the help of the labeling produced by L. In particular, we are interested in
exploration labeling schemes for which: (1) the preprocessing time required to
label the nodes is polynomial, (2) the labels are short, and (3) the exploration
is completed after a small number of edge-traversals.

As a consequence of Rollik’s result, any exploration labeling scheme must use
at least two different labels. Our main result states that just three labels (e.g.,
three colors) are sufficient for enabling a robot to explore all graphs. Moreover,
we show that our labeling scheme gives to the robot the power to stop once
exploration is completed, although, in the general setting of graph exploration,
the robot is not required to stop once the exploration has been completed, i.e.,
once all nodes have been visited. In fact, we show that exploration is completed
in time O(m), i.e., after O(m) edge traversals, in any m-edge graph.

For the class of bounded degree graphs, we design an exploration scheme
using even smaller labels. More precisely, we show that just two labels (i.e.,
1-bit labels) are sufficient for enabling a robot to explore all bounded degree
graphs. The robot is however required to have a memory of size O(log A) to
explore all graphs of maximum degree A. The completion time O(A°(Mm) of
the exploration is larger than the one of our previous 2-bit labeling scheme,
nevertheless it remains polynomial.

All these results are summarized in Table 1. The two mentioned labeling
schemes require polynomial preprocessing time.

We also prove several impossibility results for 1-state robots, i.e., robots that
are oblivious. The behavior of 1-state robots depends solely on the input port
number, and on the degree and label of the current node. In particular, we prove
that for any d > 4 and for any 1-state robot using at most |logd| — 2 colors,
there exists a simple graph of maximum degree d that cannot be explored by
the robot. This lower bound on the number of colors needed for exploration can
be increased exponentially to d/2 — 1 by allowing loops.

2 A 2-bit exploration-labeling scheme

In this section, we describe an exploration-labeling scheme using only 2-bit (ac-
tually, 3-valued) labels. More precisely, we prove the following.

Theorem 1. There exists a robot with the property that for any graph G, it is
possible to color the nodes of G with three colors (or alternatively, assign each
node a 2-bit label) so that using the labeling, the robot can explore the entire

graph G, starting from any given node and terminating after identifying that the
entire graph has been traversed. Moreover, the total number of edge-traversals by
the robot is < 20m.

To prove Theorem 1, we first describe the labeling scheme £ and then the
exploration algorithm. The node labeling is in fact very simple; it uses three
labels, called colors, and denoted WHITE, BLACK, and RED. Let D be the diameter
of the graph.

Labeling £. Pick an arbitrary node r. Node r is called the root of the labeling
L. Nodes at distance d from r, 0 < d < D, are labeled WHITE if d mod 3 = 0,
BLACK if d mod 3 = 1, and RED if d mod 3 = 2.

The neighbor set A (u) of each node u can be partitioned into three disjoint
sets: (1) the set pred(u) of neighbors closer to r than wu; (2) the set succ(u)
of neighbors farther from r than u; (3) the set sibling(u) of neighbors at the
same distance from r as u. We also identify the following two special subsets of
neighbors:

— parent(u) is the node v € pred(u) such that the edge {w,v} has the smallest
port number at v among all edges leading to a node in pred(u).
— child(w) is the set of nodes v € succ(u) such that parent(v) = u.

For the root, set parent(r) = (). The exploration algorithm is partially based
on the following observations.

1. For the root r, child(r) = succ(r) = N(r).

2. For every node u with label £(u), and for every neighbor v € N (u), the label
L(v) uniquely determines whether v belongs to pred(u), succ(u) or sibling(u).

3. Once at node u, a robot can identify parent(u) by visiting its neighbors
successively, starting with the neighbor connected to port 0, then port 1,
and so on. Indeed, by observation 2, the nodes in pred(u) can be identified
by their label. The order in which the robot visits the neighbors ensures that
parent(u) is the first visited node in pred(u).

Remark. The difficulty of graph exploration by a robot with a finite memory is
that the robot entering some node u by port p, and aiming at exiting u by the
same port p after having performed some local exploration around u, has not
enough memory to store the value of p.

Exploration algorithm. Our exploration algorithm uses a procedure called
Check Edge. This procedure is specified as follows. When Check Edge(j) is ini-
tiated at some node u, the robot starts visiting the neighbors of u one by one,
and eventually returns to u reporting one of three possible outcomes: “child”,
“parent”, or “false”. These values have the following interpretation:

(3) if “child” is returned, then edge j at u leads to a child of u;

(é1) if “parent” is returned, then edge j at u leads to the parent of w;
(7491) if “false” is returned, then edge j at u leads to a node in NV (u) \ (parent(u)U
child(u)).

The implementation of Procedure Check Edge will be described later. Mean-
while, let us describe how the algorithm makes use of this procedure to perform
exploration.

Assume that the robot R is initially at the root r of the 3-coloring £ of the
nodes. R leaves r by port number 0, in state DOWN. Note that, by the above
observations, the node at the other endpoint of edge 0 of r is a child of r.

Assume that R enters a node u via port number i, in state DOWN. Assume u
is of degree d; all arithmetic operations in the following description are modulo
d. R aims at identifying a child of u if one exists, or to backtrack along edge
i of u if none exists. To do so it executes Procedure Check Edge(j) for every
port number j =¢+1,7+2,... until the procedure eventually returns “child” or
“parent” for some port number j. R then sets its state to DOWN in the former
case and UP in the latter, and leaves u by port j.

Assume that R enters a node u via port number 4, in state UP. Assume u
is of degree d; all arithmetic operations in the following description are modulo
d. R aims at identifying a child of u with port number j € {i +1,...,p — 1}
if one exists (where p is the port number of the edge leading to parent(u)), or
to carry on moving up to the parent of w if there is no such child. To do so,
R executes Procedure Check _Edge(j) for every port number j =i+ 1,1+ 2,...
until the procedure eventually returns “child” or “parent” for some port number
j- R then sets its state to DOWN in the former case and UP in the latter, and
leaves u by port j.

If the robot does not start from the root r of the labeling £, then it first goes
to r by using Procedure Check_Edge to identify the parent of every intermediate
node, and by identifying r as the only node with pred(r) = 0.

Moreover, the robot can stop after the exploration has been completed. More
precisely, this can be done by introducing a slight modification of the robot
behavior when it enters a node u of degree d via port number d in state Uup. In
this case, R first check whether u has a parent. If yes, then it acts as previously
stated (R does not need to store d since d is the node degree). If not, the robot
terminates the exploration.

Procedure Check Edge. We now describe the actions of the robot R when
Procedure Check Edge(j) is initiated at a node u. The objective of R is to set
the value of the variable edge to one of {parent, child, false}. We denote by v
the other endpoint of the edge e with port number j at u. First, R moves to
v in state “check_edge”, carrying with it the color of node u. Let ¢ be the port
number of edge e at v. There are three cases to be considered.

(a) v € sibling(u): Then R backtracks through port ¢ and reports “edge =
false”.

(b) v € pred(u): Then R aims at checking whether v is the parent of u, that is,
whether w is a child of v. For that purpose, R moves back to u, and proceeds
as follows: R successively visits edges j—1,j—2, ... of u until either the other
endpoint of the edge belongs to pred(u), or all edges j — 1,5 —2,...,0 have
been visited. R then sets “edge=false” in the former case and “edge=parent”
in the latter. At this point, let & be the port number at u of the last edge
visited by R. Then R successively visit edge k+ 1,k + 2, - - - until the other
endpoint belongs to pred(u). Then it moves back to v and reports the value
of edge.

(c) v € succ(u): Then R aims at checking whether w is the parent of v. For that
purpose, R proceeds in a way similar to Case (b), i.e., it successively visits
edges i — 1,7 — 2, ... of v until either the other endpoint of the edge belongs
to pred(v), or all edges i — 1,i — 2,...,0 have been visited. R then sets its
variable edge to “false” in the former case and to “child” in the latter. At
this point of the exploration, let & denotes the port number of the last edge
incident to v that R visited. Then R successively visits edges k+1,k+2,. ..
until the other endpoint w of the edge belongs to pred(v). Then it moves to
w, and reports the value of edge.

This completes the description of our exploration procedure.

Proof of Theorem 1. Clearly, labeling all nodes by £ can be done in time linear
in m, the number of edges of the graph. Obviously, two bits are enough to encode
the label of each node. More specifically, using two bits for a color that is present
on at most one third of the nodes, and one bit for the two other colors, we obtain
a labeling with average label size 4/3. It remains to prove the correctness of the
exploration algorithm.

It is easy to check that if Procedure Check Edge satisfies its specifications,
then the robot R essentially performs a DFS traversal of the graph using edges
{u,v} where u = parent(v) or u € child(v). Thus, we focus on the correctness
of Procedure Check_Edge() initiated at node u. Let v be other endpoint of the
edge e with port number j at u, and let ¢ be the port number of edge e at v. We
check separately the three cases considered in the description of the procedure.
By the previous observations, comparing the color of the current node with the
color of u allows R to distinguish between these cases.

If v € sibling(u), then v is neither a parent nor a child of u, and thus reporting
“false” is correct. Indeed, R then backtracks to u via port i, as specified in
Case (a).

If v € pred(u), then v = parent(u) iff for every neighbor wy, connected to u
by an edge with port number k € {j — 1,5 — 2,...,0}, wy, ¢ pred(u). The robot
does check this property in Case (b) of the description, by returning to u, and
visiting all the wy’s. Hence, Procedure Check Edge performs correctly in this
case.

Finally, if v € succ(u), then v = child(u) iff for every neighbor z; connected
to v by an edge with port number I € {i — 1,i — 2,...,0}, z; ¢ pred(v). In
case (c), the robot does check this property by visiting all the z;’s. At this point,

it remains for R to return to u (obviously, the port number leading from v to
u cannot be stored in the robot memory since it has only a constant number of
states). Let k be the port number of the last edge incident to v that R visited
before setting its variable edge to “false” or “child”. We have 0 < k < i —1,
z ¢ pred(v) for alll € {k+1,...,i— 1}, and u € pred(v). Thus v is identified
as the first neighbor that is met when visiting all v’s neighbors by successively
traversing edges k + 1,k + 2,... of v. This is precisely what R does according
to the description of the procedure in Case (c). Hence, Procedure Check Edge
performs correctly in this case.

Hence Procedure Check Edge performs correctly in all cases and so does
the global exploration algorithm. It remains to compute the number of edge
traversals performed by the robot during the exploration (including the several
calls to Check_Edge).

We use again the same notations as in the description and the proof of
Procedure Check Edge. Let us consider the Procedure Check Edge(j) initiated
at node u. Let v be other endpoint of the edge e with port number j at u, and
let ¢ be the port number of edge e at v. First observe that during the execution
of the Procedure Check_Edge only edges incident to u and v are traversed. More
precisely:

Case (a): v € sibling(u). Then edge e = {u,v} is traversed twice and no other
edges are traversed during this execution of Procedure Check _Edge.

Case (b): v € pred(u). Then R traverses only edges incident to u. Let k be
the greatest port number of the edges leading to a node in pred(u) and
satisfying k < j. If it does not exist, set k = 0. R explores twice each edge
45 —1,...,k + 1 of u, then twice edge k, and finally again twice edges
k+1,...,5 —1,7. To summarize, edge k of u is explored twice, and edges
k+1,...,5—1,j of u are explored four times.

Case (c): v € succ(u). Then R traverses only edges incident to v. Let k be
the greatest port number of the edges leading to a node in pred(v) and
satisfying k < 4. If it does not exist, set k = 0. R explores once edge j of u,
twice each edge ¢ — 1,i — 2,...,k + 1 of v, twice edge k, twice again edges
k+1,...,i—2,i—1, and finally once edge i of v (i.e., j of u). To summarize,
edge i of u and edge k of v are explored twice and edges k+1,...,i—2,i—1
of v are explored four times.

We bound now the number of times each edge e of the graph is traversed.
Edge e = {u,v} is labeled i at u and j at v. Let us consider different cases:

(1) e = {u,v} with v = parent(u). The edge e is in the spanning tree, and
thus is explored twice outside any execution of the Procedure Check_Edge.
During Procedure Check Edge(j) at v, edge e is explored twice. e is also
explored four times during Check Edge(i) at u, except if ¢« = 0 where e is
only explored twice during Check Edge(7) at u. If there exists an edge {u', u}
labeled i' at w and 4" at u' such that ¢’ < i and u' € pred(u), then edge e is
explored twice during Procedure Check Edge(i') at u and twice again during

Procedure Check_Edge(i") at u'. If there exists an edge {v’,v} labeled j' at
v and j" at v' such that j' < j and v’ € pred(v), then edge e is explored four
times during Procedure Check Edge(j') at v and four times again during
Procedure Check Edge(j") at v'. To summarize, edge e is explored at most
20 times during a DFS.

(2) e ={u,v} withv € pred(u) but v # parent(u). During Procedure Check Edge(4)
at v, edge e is explored twice. e is also explored four times during Check Edge(i)
at u. If there exists an edge {u',u} labeled ' at w and " at u' such that
i’ < i and v’ € pred(u), then edge e is explored twice during Procedure
Check Edge(i') at v and twice again during Procedure Check Edge(i") at
u'. If there exists an edge {v',v} labeled j' at v and j” at ' such that
j' < j and v' € pred(v), then edge e is explored four times during Procedure
Check Edge(j') at v and four times again during Procedure Check Edge(j"')
at v'. To summarize, edge e is explored at most 18 times during a DFS.

(3) e = {u,v} with v € sibling(u). During Procedure Check Edge(j) at v, edge
e is explored twice. e is also explored twice during Check Edge(i) at u. If
there exists an edge {u',u} labeled i’ at u and " at «' such that i’ <
i and u' € pred(u), then edge e is explored four times during Procedure
Check Edge(i') at v and four times again during Procedure Check Edge(i")
at u'. If there exists an edge {v',v} labeled j' at v and j" at v’ such that
j' < j and v' € pred(v), then edge e is explored four times during Procedure
Check Edge(j') at v and four times again during Procedure Check Edge(j'")
at v'. To summarize, edge e is explored at most 20 times during a DFS.

Therefore, our exploration algorithm completes exploration in time < 20|E|
where |E| is the number of edges in the graph G. |

3 A 1-bit exploration-labeling scheme for bounded degree
graphs

In this section, we describe an exploration labeling scheme using only 1-bit labels.
This scheme requires a robot with O(log A) bits of memory for the exploration
of graphs of maximum degree A. More precisely, we prove the following.

Theorem 2. There exists a robot with the property that for any graph G of de-
gree bounded by a constant A, it is possible to color the nodes of G with two
colors (or alternatively, assign each node a 1-bit label) so that using the labeling,
the robot can explore the entire graph G, starting from any given node and ter-
minating after identifying that the entire graph has been traversed. The robot has
O(log A) bits of memory, and the total number of edge-traversals by the robot is
O(A©W py).

To prove Theorem 2, we first describe a 1-bit labeling scheme £’ for G =
(V,E), i.e., a coloring of each node in black or white. Then, we will show how
to perform exploration using £'.

Labeling £’. As for £, pick an arbitrary node r € V, called the root. Nodes at
distance d from r are labeled as a function of d mod 8. Partition the nodes into
eight classes by letting

C; = {u € V| distg(r,u) mod 8 =i}

for 0 < 4 < 7. Node u is colored white if u € Co U C> U C3 U Cy, and black
otherwise. Let

Ci = {u | distg(r,u) =1}
= {r}U{u € Cy | distg(r,u) = 2 and N'(u) = C }.

Lemma 1. There is a local search procedure enablmg a robot of O(log A) bits
of memory to decide whether a_node u belongs to C and to C1, and to identify
the class C; of every node u ¢ C.

Proof. Let B (resp., W) be the set of black (resp., white) nodes which have all
their neighbors black (resp., white). One can easily check that the class C; and
the classes Cjs,...,C7 can be redefined as follows:

— u € Cg & u € B and there is a node in W at distance < 3 from u;

—u € C7 & u ¢ Cg, u has a neighbor in Cg, and there is no node in W at
distance < 2 from u;

— u € C1 & u is black, u has no neighbor in B, and v has a white neighbor v
that has no neighbor in W.

— u € C5 & wu is black, and v ¢ C; U Cg U Cr;

— u € O3 & u € W, and there is a node in C; at distance < 2 from u;

— u € C4 & u has a neighbor in W, and there is no node in C; at distance
< 2 from u.

Based on the above characterizations, the classes C; and Cs,...,C7 can
be easily identified by a robot of O(log A) bits, via performing a local search.
Moreover, the sets C; and C can also be characterized as follows:

— u € Cy © u e Cy and u has no node in Cy at distance < 2;
—u € C & N(u) C Cy and every node v at distance < 2 from wu satisfies
IN(v) N Ci| < [N(u)].

Using this we can deduce:

—u€Cp\ Cou ¢ (U7_,C;) UCy and u has a neighbor in Cy;
—u€Cy\C & ud¢C, has aneighbor in Cy, but has no neighbor in C7.

It follows that a robot of O(log A) bits can identify the class of every node except
for nodes in C. o

Proof of Theorem 2. The exploration algorithm for £’ follows the same strategy
as the exploration algorithm for £. Indeed, for u € C;, we have

pred(u) = N () NCi_1 (mod 8)
SUCC(U) = N(U) N Cz'+1 (mod 8)
sibling(u) = N (u) N C;

Therefore, due to Lemma 1, all instructions of the exploration algorithm using
labeling £ can be executed using labeling £, but for the cases not captured in
Lemma 1, i.e., C.

'To solve the problem of identifying the root, we notice that each of the nodes
in C' can be used as a root, and all the others can be considered as leaves in Cj.
Thus, when leaving the root, the robot should memorize the port P by which
it should return to the root. When the robot arrives at a node u € Cy through
a tree edge and is in the UP state, it leaves immediately through port P and
deletes the contents of P, then it goes down through the next unexplored port
if one is left. When the robot is in a node u € C’l and in the DOWN state, it will
skip the port P.

If the exploration begins at the root, then the above is sufficient. To handle
explorations beginning at an arbitrary node it is necessary to identify the root.
Since every node in C can be used as a root, it suffices to find one node of c by
going up and then start the exploration from it as described above. O

4 TImpossibility results

Theorem 3. For any d > 4, and for any I-state robot using at most d/2 — 1
colors, there exists a graph (with loops) with mazimum degree d and at most d+1
vertices that cannot be explored by the robot.

Proof. Fix d > 4, and assume for contradiction that there exists a 1-state robot
exploring all graphs of degree d colored with at most d/2 — 1 colors. Recall that
when a 1-state robot enters a node v by port i, it will leave v by port j where
j is depending only on 4, d and the color ¢ of v. Thus for fixed d, each color
corresponds to a mapping from entry ports to exit ports, namely, a function
from {0,1,---,d —1} to {0,1,---,d — 1}. Partition the functions corresponding
to the colors of nodes of degree d into surjective functions fi, f2,---, fi and
non-surjective functions gi,92,---,g,. We have 0 < t +r < d/2 — 1. Let ¢;
be the color corresponding to f;, and c;4; be the color corresponding to g;.
For each g;, choose p; to be some port number not in the range of g;. Let
po €{0,1,---,d— 1} \ {p1,p2, -, pr} (it is possible because d — r > 1).

We will construct a family {Go,G1,- -, G} of graphs such that, for every
ke {0,1,---,t}:

1. Gy has exactly one degree-d vertex v (possibly with loops);

2. the other vertices of G, are degree-1 neighbors of v;

3. all edges are either loops incident to v, or edges leading from v to some
degree-1 node;

4. edges labeled p1,po,---,pr at v (if any, i.e., if » > 0) are not loops (and thus
lead to degree-1 nodes);

5. the edge labeled py leads to some degree-1 node, denoted by u;

6. there exists a set X C {0,1,---,d — 1} such that {po,p1,---,pr} C X\ and
d—|Xk| > 2(t — k), and for which, in G}, edges with port number not in Xj,
lead to degree-1 vertices.

We will prove the following property for any k =0, ---,¢:

Property Py. In Gy, if the color of v is in {¢1,- -, ¢k}, then the robot, starting
at ug € V(Gy), cannot explore Gy. More precisely any vertex attached to v by
a port ¢ X is not visited by the robot.

We prove P}, by induction on k. Let G be the star composed of one degree-d
vertex v and d leaf vertices. Let Xo = {po,p1,p2, -, pr}- Recall that ¢t + r <
d/2 — 1. Thus, t < d/2 — 1 and hence 2t + r + 1 < d — 1. Therefore, we have
d—|Xo| =d— (r+1) >2¢t. Py is trivially true.

Let £ > 0, and let G_; and Xj_; be respectively a graph and a set satisfying
the induction property for £ — 1. Assume first that v is colored by color ¢, and
that the robot starts its traversal at ug. If the robot never visits vertices attached
to v by ports not in X_; then the graph G_; and the set Xy_; satisfy Py. Le.,
Gr = Gig_1 and X = Xj_1. Otherwise, let p be the first port not in X;_; that
is visited by the robot at v, when starting at ug. For a port ¢ € {0,1,---,d—1},
set twin(7) = j if there exists a port j and a loop labeled by ¢ and j in Gg_q;
Set twin(i) = i otherwise. Define a sequence of ports (i;);>1 as follows. Let i1 be
the port in X;_; such that fx(i1) = p. For all [> 2, let 4; be the port such that
S (4) = twin(é;—1). This sequence is well defined because f} is surjective.

Observe that there exists some [such that ¢; ¢ Xj_1. Indeed, suppose, for
the purpose of contradiction, that i; € X;_; for all [. Since Xj_; is finite, there
exists some i; = i;4,, for m > 1. Let 4; be the first port repeated twice in this
process. If | > 1, then we have fi(i;) = twin(é;—1) and fx(414m) = twWin(G4m—1).
Therefore twin(i;_1) = twin (i1, 1), yielding 4;_; = 4;4,m—1 by bijectivity of f,
which contradicts the minimality of [. If [= 1, then we have ¢; = 414, therefore
im = p, contradicting i; € X _, for all j.

From the above, let h be the smallest index such that ip, ¢ X. Let ¢ = ip. If
g = p, then set Gy, = Gi—1 and Xy, = Xj_1 U {p}. If ¢ # p, then connect ports
p and ¢ to create a loop, denote the new graph Gj, and let X}, = X1 U {p, ¢}.

In Gy, if v is colored by color ¢, then by the choice of p, starting at ug, the
robot enters and exits v through ports in X ; until it eventually exits v through
port p. After that, the robot goes back to v by port ¢. Port ¢ was chosen so that
it causes the robot to continue entering v on ports ip_1,%,_2,- - -1, after which
the robot exits v through port p, locking the robot in a cycle. Since the ports
of v occurring in this cycle are all from X}, the robot does not visit any of the
ports outside Xy, as claimed. By induction, we have d — | Xy _1| > 2(t — (k —1)).
By the construction of Xj from Xj_1, we have |Xj| < |Xg_1| + 2. Therefore
d — | Xg| > 2(t — k), which completes the correctness of G}, and Xj.

If the color of v in G}, is in {c1,- -, ck—1} then the robot is doomed to fail
in exploring G,. Indeed since starting at ug in G—1 the robot does not traverse
any of the vertices corresponding to ports not in Xj_1, then in G, too, the robot
does not traverse any of the vertices corresponding to ports not in Xy O X1,
and thus fails to explore Gy because d — | X| > 1. This completes the proof of
P, and thus the induction.

In particular, G; is not explored by the robot if the node v is colored with
a color in ¢q,¢a, - -,¢. If v is colored c¢pq; with 1 < ¢ < 7, then assume that
the robot starts the traversal at vertex ug. Since the edge labeled p; leads to a
degree-1 vertex in Gy, this vertex will never be visited by the robot, by definition
of p;. Therefore the graph G; cannot be explored by the robot. O

The theorem above makes use of graphs with loops. For graphs without loops
we have the following theorem.

Theorem 4. For any d > 4 and for any 1-state robot using at most |logd| — 2
colors, there exists a graph of mazximum degree d, without loops, that cannot be
explored by the robot.

5 Further Investigations

It was known that there is no 0-bit exploration-labeling scheme, even for bounded
degree graphs. We proved that there is a 2-bit exploration-labeling scheme for ar-
bitrary graphs, and that there is a 1-bit exploration-labeling scheme for bounded
degree graphs. It remains open whether or not there exists a 1-bit exploration-
labeling scheme for arbitrary graphs.

References

1. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In 19th Symposium on Foundations of Computer Science
(FOCS), pages 132-142, 1978.

L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.

3. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little
Memory. In 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 588-597, 2002.

4. P. Fraigniaud, D. Ilcinkas, A. Pelc, G. Peer and D. Peleg. Graph Exploration by
a Finite Automaton. In Proc. 29th Int. Symp. on Mathematical Foundations of
Computer Science (MFCS), LNCS 3153, 451-462, 2004.

5. D. Kozen. Automata and planar graphs. In Fund. Computat. Theory (FCT),
243-254, 1979. Fundamentals of Computation Theory (FCT), pages 243-254, 1979.

6. M.O. Rabin, Maze threading automata. Seminar talk presented at the University
of California at Berkeley, October 1967.

7. H.A. Rollik. Automaten in planaren Graphen. Acta Informatica 13:287-298, 1980
(also in LNCS 67, pages 266-275, 1979).

8. C. E. Shannon. Presentation of a maze-solving machine. In 8th Conf. of the Josiah
Macy Jr. Found. (Cybernetics), pages 173-180, 1951.

N

