Skip to main content

On the Cover Time of Random Geometric Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Abstract

The cover time of graphs has much relevance to algorithmic applications and has been extensively investigated. Recently, with the advent of ad-hoc and sensor networks, an interesting class of random graphs, namely random geometric graphs, has gained new relevance and its properties have been the subject of much study. A random geometric graph \({\mathcal G}(n,r)\) is obtained by placing n points uniformly at random on the unit square and connecting two points iff their Euclidean distance is at most r. The phase transition behavior with respect to the radius r of such graphs has been of special interest. We show that there exists a critical radius r opt such that for any \(r \geq r_{\rm opt} {\mathcal G}(n,r)\) has optimal cover time of Θ(n log n) with high probability, and, importantly, r opt = Θ(r con) where r con denotes the critical radius guaranteeing asymptotic connectivity. Moreover, since a disconnected graph has infinite cover time, there is a phase transition and the corresponding threshold width is O(r con). We are able to draw our results by giving a tight bound on the electrical resistance of \({\mathcal G}(n,r)\) via the power of certain constructed flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proc. of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 482–491 (2003)

    Google Scholar 

  2. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In: Proc. 23 Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM (2004)

    Google Scholar 

  3. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Robotic exploration, brownian motion and electrical resistance. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 116–130. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Jerrum, M., Sinclair, A.: The markov chain monte carlo method: an approach to approximate counting and integration. In: Hochbaum, D. (ed.) Approximations for NP-hard Problems, pp. 482–520. PWS Publishing, Boston (1997)

    Google Scholar 

  5. Avin, C., Brito, C.: Efficient and robust query processing in dynamic environments using random walk techniques. In: Proc. of the third international symposium on Information processing in sensor networks, pp. 277–286 (2004)

    Google Scholar 

  6. Matthews, P.: Covering problems for Brownian motion on spheres. Ann. Probab. 16, 189–199 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aldous, D.J.: Lower bounds for covering times for reversible Markov chains and random walks on graphs. J. Theoret. Probab. 2, 91–100 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R.: The electrical resistance of a graph captures its commute and cover times. In: Proc. of the 21st annual ACM symposium on Theory of computing, pp. 574–586 (1989)

    Google Scholar 

  9. Broder, A., Karlin, A.: Bounds on the cover time. J. Theoret. Probab. 2, 101–120 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zuckerman, D.: A technique for lower bounding the cover time. In: Proc. of the twenty-second annual ACM symposium on Theory of computing, pp. 254–259 (1990)

    Google Scholar 

  11. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: 20th Annual Symposium on Foundations of Computer Science (San Juan, Puerto Rico, 1979), pp. 218–223. IEEE, New York (1979)

    Chapter  Google Scholar 

  12. Jonasson, J.: On the cover time for random walks on random graphs. Comb. Probab. Comput. 7, 265–279 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jonasson, J., Schramm, O.: On the cover time of planar graphs. Electronic Communications in Probability 5, 85–90 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Cooper, C., Frieze, A.: The cover time of sparse random graphs. In: Proc. of the fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 140–147 (2003)

    Google Scholar 

  15. Penrose, M.D.: Random Geometric Graphs. In: Volume 5 of Oxford Studies in Probability. Oxford University Press, Oxford (2003)

    Google Scholar 

  16. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: Scalable coordination in sensor networks. In: Proc. of the ACM/IEEE International Conference on Mobile Computing and Networking., pp. 263–270 (1999)

    Google Scholar 

  17. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Communications of the ACM 43, 51–58 (2000)

    Article  Google Scholar 

  18. Goel, A., Rai, S., Krishnamachari, B.: Monotone properties have sharp thresholds in random geometric graphs. STOC slides (2004), http://www.stanford.edu/sanat/slides/thresholdsstoc.pdf

  19. Avin, C., Ercal, G.: Bounds on the mixing time and partial cover of ad-hoc and sensor networks. In: Proceedings of the 2nd European Workshop on Wireless Sensor Networks (EWSN 2005), pp. 1–12 (2005)

    Google Scholar 

  20. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip and mixing times of random walks on random graphs. Unpublished. (2004), http://www.stanford.edu/~boyd/reports/gossip_gnr.pdf

  21. Sadagopan, N., Krishnamachari, B., Helmy, A.: Active query forwarding in sensor networks (acquire). To appear Elsevier journal on Ad Hoc Networks (2003)

    Google Scholar 

  22. Braginsky, D., Estrin, D.: Rumor routing algorthim for sensor networks. In: Proc. of the 1st ACM Int. workshop on Wireless sensor networks and applications, pp. 22–31 (2002)

    Google Scholar 

  23. Servetto, S.D., Barrenechea, G.: Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks. In: Proc. of the 1st Int. workshop on Wireless sensor networks and applications, pp. 12–21 (2002)

    Google Scholar 

  24. Penrose, M.D.: The longest edge of the random minimal spanning tree. The Annals of Applied Probability 7, 340–361 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless networks. In: Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W. H. Fleming, pp. 547–566 (1998)

    Google Scholar 

  26. Feige, U.: A tight lower bound on the cover time for random walks on graphs. Random Structures and Algorithms 6, 433–438 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rai, S.: The spectrum of a random geometric graph is concentrated (2004), http://arxiv.org/PS_cache/math/pdf/0408/0408103.pdf

  28. Winkler, P., Zuckerman, D.: Multiple cover time. Random Structures and Algorithms 9, 403–411 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dolev, S., Schiller, E., Welch, J.: Random walk for self-stabilizing group communication in ad-hoc networks. In: Proc. of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS 2002), p. 70. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  30. Goel, A., Rai, S., Krishnamachari, B.: Sharp thresholds for monotone properties in random geometric graphs. In: Proc. of the thirty-sixth annual ACM symposium on Theory of computing, pp. 580–586 (2004)

    Google Scholar 

  31. Avin, C., Ercal, G.: On the cover time of random geometric graphs. Technical Report 040050, UCLA (2004), ftp://ftp.cs.ucla.edu/tech-report/2004-reports/040050.pdf

  32. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. In: The Mathematical Association of America, vol. 22 (1984)

    Google Scholar 

  33. Bollobás, B.: Random Graphs. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  34. Muthukrishnan, S., Pandurangan, G.: The bin-covering technique for thresholding random geometric graph properties. In: Proc. of the ACM-SIAM Symposium on Discrete Algorithms (2005) (to appear)

    Google Scholar 

  35. Synge, J.L.: The fundamental theorem of electrical networks. Quarterly of Applied Math., 113–127 (1951)

    Google Scholar 

  36. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs. Unpublished (1997), http://stat-www.berkeley.edu/users/aldous/RWG/book.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avin, C., Ercal, G. (2005). On the Cover Time of Random Geometric Graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_55

Download citation

  • DOI: https://doi.org/10.1007/11523468_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics